Properties

Label 820.2.b
Level $820$
Weight $2$
Character orbit 820.b
Rep. character $\chi_{820}(81,\cdot)$
Character field $\Q$
Dimension $14$
Newform subspaces $2$
Sturm bound $252$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 41 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(252\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(820, [\chi])\).

Total New Old
Modular forms 132 14 118
Cusp forms 120 14 106
Eisenstein series 12 0 12

Trace form

\( 14 q + 2 q^{5} - 22 q^{9} + 12 q^{21} - 8 q^{23} + 14 q^{25} + 12 q^{31} + 28 q^{33} - 16 q^{37} - 4 q^{39} - 2 q^{41} + 6 q^{45} - 26 q^{49} + 48 q^{51} - 36 q^{57} + 4 q^{59} + 36 q^{61} + 12 q^{73} - 28 q^{77}+ \cdots - 44 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(820, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
820.2.b.a 820.b 41.b $6$ $6.548$ 6.0.36433296.1 None 820.2.b.a \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{3}-q^{5}-\beta _{4}q^{7}+(-2-\beta _{3}+\cdots)q^{9}+\cdots\)
820.2.b.b 820.b 41.b $8$ $6.548$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 820.2.b.b \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{6}q^{3}+q^{5}-\beta _{4}q^{7}+(-1-\beta _{3}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(820, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(820, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(41, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(82, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(164, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(205, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(410, [\chi])\)\(^{\oplus 2}\)