Properties

Label 82.6.c.a.73.7
Level $82$
Weight $6$
Character 82.73
Analytic conductor $13.151$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [82,6,Mod(9,82)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(82, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("82.9"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 82 = 2 \cdot 41 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 82.c (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1514732247\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} + 3744 x^{13} + 591440 x^{12} + 1165004 x^{11} + 3495880 x^{10} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.7
Root \(-15.0753 - 15.0753i\) of defining polynomial
Character \(\chi\) \(=\) 82.73
Dual form 82.6.c.a.9.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} +(15.0753 - 15.0753i) q^{3} -16.0000 q^{4} -29.0716i q^{5} +(60.3011 + 60.3011i) q^{6} +(1.29408 - 1.29408i) q^{7} -64.0000i q^{8} -211.528i q^{9} +116.286 q^{10} +(90.7123 - 90.7123i) q^{11} +(-241.205 + 241.205i) q^{12} +(438.083 - 438.083i) q^{13} +(5.17633 + 5.17633i) q^{14} +(-438.262 - 438.262i) q^{15} +256.000 q^{16} +(-1538.58 - 1538.58i) q^{17} +846.114 q^{18} +(-1320.70 - 1320.70i) q^{19} +465.145i q^{20} -39.0173i q^{21} +(362.849 + 362.849i) q^{22} +796.221 q^{23} +(-964.818 - 964.818i) q^{24} +2279.84 q^{25} +(1752.33 + 1752.33i) q^{26} +(474.443 + 474.443i) q^{27} +(-20.7053 + 20.7053i) q^{28} +(2187.02 - 2187.02i) q^{29} +(1753.05 - 1753.05i) q^{30} +174.422 q^{31} +1024.00i q^{32} -2735.03i q^{33} +(6154.33 - 6154.33i) q^{34} +(-37.6210 - 37.6210i) q^{35} +3384.45i q^{36} -1072.33 q^{37} +(5282.80 - 5282.80i) q^{38} -13208.4i q^{39} -1860.58 q^{40} +(7458.36 + 7760.74i) q^{41} +156.069 q^{42} -4353.29i q^{43} +(-1451.40 + 1451.40i) q^{44} -6149.46 q^{45} +3184.88i q^{46} +(9984.85 + 9984.85i) q^{47} +(3859.27 - 3859.27i) q^{48} +16803.7i q^{49} +9119.38i q^{50} -46389.2 q^{51} +(-7009.33 + 7009.33i) q^{52} +(-7743.18 + 7743.18i) q^{53} +(-1897.77 + 1897.77i) q^{54} +(-2637.15 - 2637.15i) q^{55} +(-82.8212 - 82.8212i) q^{56} -39819.9 q^{57} +(8748.08 + 8748.08i) q^{58} -18613.4 q^{59} +(7012.19 + 7012.19i) q^{60} +12279.5i q^{61} +697.690i q^{62} +(-273.735 - 273.735i) q^{63} -4096.00 q^{64} +(-12735.8 - 12735.8i) q^{65} +10940.1 q^{66} +(-1586.86 - 1586.86i) q^{67} +(24617.3 + 24617.3i) q^{68} +(12003.3 - 12003.3i) q^{69} +(150.484 - 150.484i) q^{70} +(-3331.87 + 3331.87i) q^{71} -13537.8 q^{72} +53891.1i q^{73} -4289.33i q^{74} +(34369.3 - 34369.3i) q^{75} +(21131.2 + 21131.2i) q^{76} -234.778i q^{77} +52833.8 q^{78} +(25621.2 - 25621.2i) q^{79} -7442.32i q^{80} +65706.1 q^{81} +(-31043.0 + 29833.4i) q^{82} +39021.7 q^{83} +624.277i q^{84} +(-44729.0 + 44729.0i) q^{85} +17413.2 q^{86} -65939.9i q^{87} +(-5805.59 - 5805.59i) q^{88} +(26981.0 - 26981.0i) q^{89} -24597.8i q^{90} -1133.83i q^{91} -12739.5 q^{92} +(2629.47 - 2629.47i) q^{93} +(-39939.4 + 39939.4i) q^{94} +(-38394.8 + 38394.8i) q^{95} +(15437.1 + 15437.1i) q^{96} +(19676.4 + 19676.4i) q^{97} -67214.6 q^{98} +(-19188.2 - 19188.2i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{3} - 256 q^{4} - 8 q^{6} - 100 q^{7} - 160 q^{10} - 418 q^{11} + 32 q^{12} - 194 q^{13} - 400 q^{14} + 1576 q^{15} + 4096 q^{16} + 2508 q^{17} + 3888 q^{18} + 1458 q^{19} - 1672 q^{22} + 11312 q^{23}+ \cdots + 266182 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/82\mathbb{Z}\right)^\times\).

\(n\) \(47\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 15.0753 15.0753i 0.967080 0.967080i −0.0323952 0.999475i \(-0.510314\pi\)
0.999475 + 0.0323952i \(0.0103135\pi\)
\(4\) −16.0000 −0.500000
\(5\) 29.0716i 0.520048i −0.965602 0.260024i \(-0.916270\pi\)
0.965602 0.260024i \(-0.0837305\pi\)
\(6\) 60.3011 + 60.3011i 0.683829 + 0.683829i
\(7\) 1.29408 1.29408i 0.00998198 0.00998198i −0.702098 0.712080i \(-0.747753\pi\)
0.712080 + 0.702098i \(0.247753\pi\)
\(8\) 64.0000i 0.353553i
\(9\) 211.528i 0.870487i
\(10\) 116.286 0.367729
\(11\) 90.7123 90.7123i 0.226040 0.226040i −0.584996 0.811036i \(-0.698904\pi\)
0.811036 + 0.584996i \(0.198904\pi\)
\(12\) −241.205 + 241.205i −0.483540 + 0.483540i
\(13\) 438.083 438.083i 0.718949 0.718949i −0.249441 0.968390i \(-0.580247\pi\)
0.968390 + 0.249441i \(0.0802470\pi\)
\(14\) 5.17633 + 5.17633i 0.00705832 + 0.00705832i
\(15\) −438.262 438.262i −0.502928 0.502928i
\(16\) 256.000 0.250000
\(17\) −1538.58 1538.58i −1.29122 1.29122i −0.934036 0.357180i \(-0.883738\pi\)
−0.357180 0.934036i \(-0.616262\pi\)
\(18\) 846.114 0.615527
\(19\) −1320.70 1320.70i −0.839306 0.839306i 0.149461 0.988768i \(-0.452246\pi\)
−0.988768 + 0.149461i \(0.952246\pi\)
\(20\) 465.145i 0.260024i
\(21\) 39.0173i 0.0193067i
\(22\) 362.849 + 362.849i 0.159834 + 0.159834i
\(23\) 796.221 0.313844 0.156922 0.987611i \(-0.449843\pi\)
0.156922 + 0.987611i \(0.449843\pi\)
\(24\) −964.818 964.818i −0.341914 0.341914i
\(25\) 2279.84 0.729550
\(26\) 1752.33 + 1752.33i 0.508373 + 0.508373i
\(27\) 474.443 + 474.443i 0.125249 + 0.125249i
\(28\) −20.7053 + 20.7053i −0.00499099 + 0.00499099i
\(29\) 2187.02 2187.02i 0.482900 0.482900i −0.423156 0.906057i \(-0.639078\pi\)
0.906057 + 0.423156i \(0.139078\pi\)
\(30\) 1753.05 1753.05i 0.355624 0.355624i
\(31\) 174.422 0.0325985 0.0162993 0.999867i \(-0.494812\pi\)
0.0162993 + 0.999867i \(0.494812\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 2735.03i 0.437197i
\(34\) 6154.33 6154.33i 0.913027 0.913027i
\(35\) −37.6210 37.6210i −0.00519111 0.00519111i
\(36\) 3384.45i 0.435244i
\(37\) −1072.33 −0.128773 −0.0643865 0.997925i \(-0.520509\pi\)
−0.0643865 + 0.997925i \(0.520509\pi\)
\(38\) 5282.80 5282.80i 0.593479 0.593479i
\(39\) 13208.4i 1.39056i
\(40\) −1860.58 −0.183865
\(41\) 7458.36 + 7760.74i 0.692921 + 0.721014i
\(42\) 156.069 0.0136519
\(43\) 4353.29i 0.359043i −0.983754 0.179522i \(-0.942545\pi\)
0.983754 0.179522i \(-0.0574550\pi\)
\(44\) −1451.40 + 1451.40i −0.113020 + 0.113020i
\(45\) −6149.46 −0.452695
\(46\) 3184.88i 0.221921i
\(47\) 9984.85 + 9984.85i 0.659321 + 0.659321i 0.955219 0.295898i \(-0.0956189\pi\)
−0.295898 + 0.955219i \(0.595619\pi\)
\(48\) 3859.27 3859.27i 0.241770 0.241770i
\(49\) 16803.7i 0.999801i
\(50\) 9119.38i 0.515870i
\(51\) −46389.2 −2.49742
\(52\) −7009.33 + 7009.33i −0.359474 + 0.359474i
\(53\) −7743.18 + 7743.18i −0.378643 + 0.378643i −0.870612 0.491970i \(-0.836277\pi\)
0.491970 + 0.870612i \(0.336277\pi\)
\(54\) −1897.77 + 1897.77i −0.0885646 + 0.0885646i
\(55\) −2637.15 2637.15i −0.117551 0.117551i
\(56\) −82.8212 82.8212i −0.00352916 0.00352916i
\(57\) −39819.9 −1.62335
\(58\) 8748.08 + 8748.08i 0.341462 + 0.341462i
\(59\) −18613.4 −0.696139 −0.348070 0.937469i \(-0.613163\pi\)
−0.348070 + 0.937469i \(0.613163\pi\)
\(60\) 7012.19 + 7012.19i 0.251464 + 0.251464i
\(61\) 12279.5i 0.422528i 0.977429 + 0.211264i \(0.0677580\pi\)
−0.977429 + 0.211264i \(0.932242\pi\)
\(62\) 697.690i 0.0230506i
\(63\) −273.735 273.735i −0.00868918 0.00868918i
\(64\) −4096.00 −0.125000
\(65\) −12735.8 12735.8i −0.373888 0.373888i
\(66\) 10940.1 0.309145
\(67\) −1586.86 1586.86i −0.0431870 0.0431870i 0.685184 0.728370i \(-0.259722\pi\)
−0.728370 + 0.685184i \(0.759722\pi\)
\(68\) 24617.3 + 24617.3i 0.645608 + 0.645608i
\(69\) 12003.3 12003.3i 0.303512 0.303512i
\(70\) 150.484 150.484i 0.00367067 0.00367067i
\(71\) −3331.87 + 3331.87i −0.0784408 + 0.0784408i −0.745239 0.666798i \(-0.767664\pi\)
0.666798 + 0.745239i \(0.267664\pi\)
\(72\) −13537.8 −0.307764
\(73\) 53891.1i 1.18361i 0.806080 + 0.591807i \(0.201585\pi\)
−0.806080 + 0.591807i \(0.798415\pi\)
\(74\) 4289.33i 0.0910563i
\(75\) 34369.3 34369.3i 0.705533 0.705533i
\(76\) 21131.2 + 21131.2i 0.419653 + 0.419653i
\(77\) 234.778i 0.00451264i
\(78\) 52833.8 0.983276
\(79\) 25621.2 25621.2i 0.461883 0.461883i −0.437389 0.899272i \(-0.644097\pi\)
0.899272 + 0.437389i \(0.144097\pi\)
\(80\) 7442.32i 0.130012i
\(81\) 65706.1 1.11274
\(82\) −31043.0 + 29833.4i −0.509834 + 0.489969i
\(83\) 39021.7 0.621743 0.310872 0.950452i \(-0.399379\pi\)
0.310872 + 0.950452i \(0.399379\pi\)
\(84\) 624.277i 0.00965337i
\(85\) −44729.0 + 44729.0i −0.671494 + 0.671494i
\(86\) 17413.2 0.253882
\(87\) 65939.9i 0.934007i
\(88\) −5805.59 5805.59i −0.0799170 0.0799170i
\(89\) 26981.0 26981.0i 0.361064 0.361064i −0.503141 0.864204i \(-0.667822\pi\)
0.864204 + 0.503141i \(0.167822\pi\)
\(90\) 24597.8i 0.320104i
\(91\) 1133.83i 0.0143531i
\(92\) −12739.5 −0.156922
\(93\) 2629.47 2629.47i 0.0315254 0.0315254i
\(94\) −39939.4 + 39939.4i −0.466211 + 0.466211i
\(95\) −38394.8 + 38394.8i −0.436479 + 0.436479i
\(96\) 15437.1 + 15437.1i 0.170957 + 0.170957i
\(97\) 19676.4 + 19676.4i 0.212333 + 0.212333i 0.805258 0.592925i \(-0.202027\pi\)
−0.592925 + 0.805258i \(0.702027\pi\)
\(98\) −67214.6 −0.706966
\(99\) −19188.2 19188.2i −0.196765 0.196765i
\(100\) −36477.5 −0.364775
\(101\) −94917.4 94917.4i −0.925854 0.925854i 0.0715807 0.997435i \(-0.477196\pi\)
−0.997435 + 0.0715807i \(0.977196\pi\)
\(102\) 185557.i 1.76594i
\(103\) 39232.3i 0.364377i 0.983264 + 0.182188i \(0.0583181\pi\)
−0.983264 + 0.182188i \(0.941682\pi\)
\(104\) −28037.3 28037.3i −0.254187 0.254187i
\(105\) −1134.29 −0.0100404
\(106\) −30972.7 30972.7i −0.267741 0.267741i
\(107\) 56249.6 0.474964 0.237482 0.971392i \(-0.423678\pi\)
0.237482 + 0.971392i \(0.423678\pi\)
\(108\) −7591.09 7591.09i −0.0626246 0.0626246i
\(109\) 74716.8 + 74716.8i 0.602354 + 0.602354i 0.940937 0.338582i \(-0.109947\pi\)
−0.338582 + 0.940937i \(0.609947\pi\)
\(110\) 10548.6 10548.6i 0.0831214 0.0831214i
\(111\) −16165.7 + 16165.7i −0.124534 + 0.124534i
\(112\) 331.285 331.285i 0.00249549 0.00249549i
\(113\) 101323. 0.746468 0.373234 0.927737i \(-0.378249\pi\)
0.373234 + 0.927737i \(0.378249\pi\)
\(114\) 159280.i 1.14788i
\(115\) 23147.4i 0.163214i
\(116\) −34992.3 + 34992.3i −0.241450 + 0.241450i
\(117\) −92667.0 92667.0i −0.625836 0.625836i
\(118\) 74453.7i 0.492245i
\(119\) −3982.10 −0.0257778
\(120\) −28048.8 + 28048.8i −0.177812 + 0.177812i
\(121\) 144594.i 0.897812i
\(122\) −49118.0 −0.298773
\(123\) 229432. + 4558.53i 1.36739 + 0.0271683i
\(124\) −2790.76 −0.0162993
\(125\) 157127.i 0.899449i
\(126\) 1094.94 1094.94i 0.00614418 0.00614418i
\(127\) 350446. 1.92802 0.964011 0.265864i \(-0.0856572\pi\)
0.964011 + 0.265864i \(0.0856572\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) −65627.1 65627.1i −0.347223 0.347223i
\(130\) 50943.0 50943.0i 0.264379 0.264379i
\(131\) 132949.i 0.676872i 0.940989 + 0.338436i \(0.109898\pi\)
−0.940989 + 0.338436i \(0.890102\pi\)
\(132\) 43760.4i 0.218598i
\(133\) −3418.19 −0.0167559
\(134\) 6347.46 6347.46i 0.0305378 0.0305378i
\(135\) 13792.8 13792.8i 0.0651356 0.0651356i
\(136\) −98469.3 + 98469.3i −0.456514 + 0.456514i
\(137\) −209109. 209109.i −0.951855 0.951855i 0.0470384 0.998893i \(-0.485022\pi\)
−0.998893 + 0.0470384i \(0.985022\pi\)
\(138\) 48013.0 + 48013.0i 0.214616 + 0.214616i
\(139\) 53031.6 0.232808 0.116404 0.993202i \(-0.462863\pi\)
0.116404 + 0.993202i \(0.462863\pi\)
\(140\) 601.936 + 601.936i 0.00259555 + 0.00259555i
\(141\) 301049. 1.27523
\(142\) −13327.5 13327.5i −0.0554660 0.0554660i
\(143\) 79479.0i 0.325022i
\(144\) 54151.3i 0.217622i
\(145\) −63580.1 63580.1i −0.251131 0.251131i
\(146\) −215564. −0.836941
\(147\) 253320. + 253320.i 0.966887 + 0.966887i
\(148\) 17157.3 0.0643865
\(149\) −194432. 194432.i −0.717468 0.717468i 0.250618 0.968086i \(-0.419366\pi\)
−0.968086 + 0.250618i \(0.919366\pi\)
\(150\) 137477. + 137477.i 0.498887 + 0.498887i
\(151\) −355880. + 355880.i −1.27017 + 1.27017i −0.324167 + 0.946000i \(0.605084\pi\)
−0.946000 + 0.324167i \(0.894916\pi\)
\(152\) −84524.8 + 84524.8i −0.296740 + 0.296740i
\(153\) −325454. + 325454.i −1.12399 + 1.12399i
\(154\) 939.113 0.00319092
\(155\) 5070.73i 0.0169528i
\(156\) 211335.i 0.695281i
\(157\) −169591. + 169591.i −0.549102 + 0.549102i −0.926181 0.377079i \(-0.876928\pi\)
0.377079 + 0.926181i \(0.376928\pi\)
\(158\) 102485. + 102485.i 0.326601 + 0.326601i
\(159\) 233461.i 0.732355i
\(160\) 29769.3 0.0919324
\(161\) 1030.38 1030.38i 0.00313279 0.00313279i
\(162\) 262825.i 0.786825i
\(163\) 640203. 1.88733 0.943667 0.330897i \(-0.107351\pi\)
0.943667 + 0.330897i \(0.107351\pi\)
\(164\) −119334. 124172.i −0.346460 0.360507i
\(165\) −79511.5 −0.227363
\(166\) 156087.i 0.439639i
\(167\) −70046.6 + 70046.6i −0.194355 + 0.194355i −0.797575 0.603220i \(-0.793884\pi\)
0.603220 + 0.797575i \(0.293884\pi\)
\(168\) −2497.11 −0.00682596
\(169\) 12540.1i 0.0337742i
\(170\) −178916. 178916.i −0.474818 0.474818i
\(171\) −279366. + 279366.i −0.730605 + 0.730605i
\(172\) 69652.7i 0.179522i
\(173\) 526318.i 1.33700i −0.743710 0.668502i \(-0.766936\pi\)
0.743710 0.668502i \(-0.233064\pi\)
\(174\) 263759. 0.660442
\(175\) 2950.30 2950.30i 0.00728235 0.00728235i
\(176\) 23222.3 23222.3i 0.0565099 0.0565099i
\(177\) −280603. + 280603.i −0.673222 + 0.673222i
\(178\) 107924. + 107924.i 0.255310 + 0.255310i
\(179\) 73671.0 + 73671.0i 0.171856 + 0.171856i 0.787794 0.615938i \(-0.211223\pi\)
−0.615938 + 0.787794i \(0.711223\pi\)
\(180\) 98391.4 0.226348
\(181\) −545651. 545651.i −1.23799 1.23799i −0.960819 0.277176i \(-0.910602\pi\)
−0.277176 0.960819i \(-0.589398\pi\)
\(182\) 4535.32 0.0101491
\(183\) 185117. + 185117.i 0.408619 + 0.408619i
\(184\) 50958.2i 0.110961i
\(185\) 31174.4i 0.0669682i
\(186\) 10517.9 + 10517.9i 0.0222918 + 0.0222918i
\(187\) −279137. −0.583731
\(188\) −159758. 159758.i −0.329661 0.329661i
\(189\) 1227.94 0.00250047
\(190\) −153579. 153579.i −0.308638 0.308638i
\(191\) −48418.4 48418.4i −0.0960345 0.0960345i 0.657457 0.753492i \(-0.271632\pi\)
−0.753492 + 0.657457i \(0.771632\pi\)
\(192\) −61748.4 + 61748.4i −0.120885 + 0.120885i
\(193\) 527106. 527106.i 1.01860 1.01860i 0.0187796 0.999824i \(-0.494022\pi\)
0.999824 0.0187796i \(-0.00597809\pi\)
\(194\) −78705.7 + 78705.7i −0.150142 + 0.150142i
\(195\) −383990. −0.723159
\(196\) 268858.i 0.499900i
\(197\) 30753.1i 0.0564576i −0.999601 0.0282288i \(-0.991013\pi\)
0.999601 0.0282288i \(-0.00898671\pi\)
\(198\) 76752.9 76752.9i 0.139134 0.139134i
\(199\) 475668. + 475668.i 0.851475 + 0.851475i 0.990315 0.138840i \(-0.0443375\pi\)
−0.138840 + 0.990315i \(0.544337\pi\)
\(200\) 145910.i 0.257935i
\(201\) −47844.9 −0.0835305
\(202\) 379670. 379670.i 0.654678 0.654678i
\(203\) 5660.36i 0.00964060i
\(204\) 742227. 1.24871
\(205\) 225617. 216826.i 0.374962 0.360352i
\(206\) −156929. −0.257653
\(207\) 168423.i 0.273197i
\(208\) 112149. 112149.i 0.179737 0.179737i
\(209\) −239608. −0.379433
\(210\) 4537.18i 0.00709966i
\(211\) −106423. 106423.i −0.164561 0.164561i 0.620023 0.784584i \(-0.287123\pi\)
−0.784584 + 0.620023i \(0.787123\pi\)
\(212\) 123891. 123891.i 0.189321 0.189321i
\(213\) 100458.i 0.151717i
\(214\) 224999.i 0.335850i
\(215\) −126557. −0.186720
\(216\) 30364.4 30364.4i 0.0442823 0.0442823i
\(217\) 225.717 225.717i 0.000325398 0.000325398i
\(218\) −298867. + 298867.i −0.425929 + 0.425929i
\(219\) 812423. + 812423.i 1.14465 + 1.14465i
\(220\) 42194.4 + 42194.4i 0.0587757 + 0.0587757i
\(221\) −1.34805e6 −1.85663
\(222\) −64662.9 64662.9i −0.0880587 0.0880587i
\(223\) 1.22912e6 1.65513 0.827564 0.561372i \(-0.189726\pi\)
0.827564 + 0.561372i \(0.189726\pi\)
\(224\) 1325.14 + 1325.14i 0.00176458 + 0.00176458i
\(225\) 482252.i 0.635064i
\(226\) 405291.i 0.527832i
\(227\) −701903. 701903.i −0.904091 0.904091i 0.0916960 0.995787i \(-0.470771\pi\)
−0.995787 + 0.0916960i \(0.970771\pi\)
\(228\) 637118. 0.811676
\(229\) −816924. 816924.i −1.02942 1.02942i −0.999554 0.0298673i \(-0.990492\pi\)
−0.0298673 0.999554i \(-0.509508\pi\)
\(230\) 92589.6 0.115410
\(231\) −3539.35 3539.35i −0.00436409 0.00436409i
\(232\) −139969. 139969.i −0.170731 0.170731i
\(233\) −584569. + 584569.i −0.705418 + 0.705418i −0.965568 0.260151i \(-0.916228\pi\)
0.260151 + 0.965568i \(0.416228\pi\)
\(234\) 370668. 370668.i 0.442533 0.442533i
\(235\) 290275. 290275.i 0.342879 0.342879i
\(236\) 297815. 0.348070
\(237\) 772494.i 0.893356i
\(238\) 15928.4i 0.0182276i
\(239\) 718011. 718011.i 0.813085 0.813085i −0.172010 0.985095i \(-0.555026\pi\)
0.985095 + 0.172010i \(0.0550261\pi\)
\(240\) −112195. 112195.i −0.125732 0.125732i
\(241\) 879782.i 0.975737i 0.872917 + 0.487868i \(0.162225\pi\)
−0.872917 + 0.487868i \(0.837775\pi\)
\(242\) −578374. −0.634849
\(243\) 875249. 875249.i 0.950859 0.950859i
\(244\) 196472.i 0.211264i
\(245\) 488508. 0.519944
\(246\) −18234.1 + 917729.i −0.0192109 + 0.966889i
\(247\) −1.15715e6 −1.20684
\(248\) 11163.0i 0.0115253i
\(249\) 588263. 588263.i 0.601275 0.601275i
\(250\) 628509. 0.636007
\(251\) 881026.i 0.882682i −0.897339 0.441341i \(-0.854503\pi\)
0.897339 0.441341i \(-0.145497\pi\)
\(252\) 4379.76 + 4379.76i 0.00434459 + 0.00434459i
\(253\) 72227.1 72227.1i 0.0709412 0.0709412i
\(254\) 1.40178e6i 1.36332i
\(255\) 1.34861e6i 1.29878i
\(256\) 65536.0 0.0625000
\(257\) −476350. + 476350.i −0.449876 + 0.449876i −0.895313 0.445437i \(-0.853048\pi\)
0.445437 + 0.895313i \(0.353048\pi\)
\(258\) 262508. 262508.i 0.245524 0.245524i
\(259\) −1387.69 + 1387.69i −0.00128541 + 0.00128541i
\(260\) 203772. + 203772.i 0.186944 + 0.186944i
\(261\) −462617. 462617.i −0.420359 0.420359i
\(262\) −531796. −0.478621
\(263\) −387994. 387994.i −0.345888 0.345888i 0.512687 0.858575i \(-0.328650\pi\)
−0.858575 + 0.512687i \(0.828650\pi\)
\(264\) −175042. −0.154572
\(265\) 225106. + 225106.i 0.196912 + 0.196912i
\(266\) 13672.8i 0.0118482i
\(267\) 813494.i 0.698355i
\(268\) 25389.8 + 25389.8i 0.0215935 + 0.0215935i
\(269\) 264165. 0.222584 0.111292 0.993788i \(-0.464501\pi\)
0.111292 + 0.993788i \(0.464501\pi\)
\(270\) 55171.2 + 55171.2i 0.0460578 + 0.0460578i
\(271\) −190896. −0.157897 −0.0789486 0.996879i \(-0.525156\pi\)
−0.0789486 + 0.996879i \(0.525156\pi\)
\(272\) −393877. 393877.i −0.322804 0.322804i
\(273\) −17092.8 17092.8i −0.0138806 0.0138806i
\(274\) 836435. 836435.i 0.673063 0.673063i
\(275\) 206810. 206810.i 0.164907 0.164907i
\(276\) −192052. + 192052.i −0.151756 + 0.151756i
\(277\) −348476. −0.272881 −0.136441 0.990648i \(-0.543566\pi\)
−0.136441 + 0.990648i \(0.543566\pi\)
\(278\) 212126.i 0.164620i
\(279\) 36895.3i 0.0283766i
\(280\) −2407.74 + 2407.74i −0.00183533 + 0.00183533i
\(281\) 1.23000e6 + 1.23000e6i 0.929265 + 0.929265i 0.997658 0.0683938i \(-0.0217874\pi\)
−0.0683938 + 0.997658i \(0.521787\pi\)
\(282\) 1.20420e6i 0.901726i
\(283\) 990383. 0.735084 0.367542 0.930007i \(-0.380199\pi\)
0.367542 + 0.930007i \(0.380199\pi\)
\(284\) 53309.9 53309.9i 0.0392204 0.0392204i
\(285\) 1.15763e6i 0.844221i
\(286\) 317916. 0.229825
\(287\) 19694.8 + 391.310i 0.0141139 + 0.000280425i
\(288\) 216605. 0.153882
\(289\) 3.31462e6i 2.33447i
\(290\) 254320. 254320.i 0.177577 0.177577i
\(291\) 593256. 0.410686
\(292\) 862257.i 0.591807i
\(293\) −1.09966e6 1.09966e6i −0.748324 0.748324i 0.225841 0.974164i \(-0.427487\pi\)
−0.974164 + 0.225841i \(0.927487\pi\)
\(294\) −1.01328e6 + 1.01328e6i −0.683693 + 0.683693i
\(295\) 541121.i 0.362026i
\(296\) 68629.3i 0.0455282i
\(297\) 86075.7 0.0566225
\(298\) 777729. 777729.i 0.507327 0.507327i
\(299\) 348811. 348811.i 0.225638 0.225638i
\(300\) −549909. + 549909.i −0.352767 + 0.352767i
\(301\) −5633.51 5633.51i −0.00358396 0.00358396i
\(302\) −1.42352e6 1.42352e6i −0.898144 0.898144i
\(303\) −2.86181e6 −1.79075
\(304\) −338099. 338099.i −0.209827 0.209827i
\(305\) 356984. 0.219735
\(306\) −1.30182e6 1.30182e6i −0.794778 0.794778i
\(307\) 236383.i 0.143143i 0.997435 + 0.0715716i \(0.0228014\pi\)
−0.997435 + 0.0715716i \(0.977199\pi\)
\(308\) 3756.45i 0.00225632i
\(309\) 591438. + 591438.i 0.352381 + 0.352381i
\(310\) 20282.9 0.0119874
\(311\) −1.42271e6 1.42271e6i −0.834096 0.834096i 0.153978 0.988074i \(-0.450792\pi\)
−0.988074 + 0.153978i \(0.950792\pi\)
\(312\) −845341. −0.491638
\(313\) 755614. + 755614.i 0.435953 + 0.435953i 0.890647 0.454695i \(-0.150252\pi\)
−0.454695 + 0.890647i \(0.650252\pi\)
\(314\) −678363. 678363.i −0.388274 0.388274i
\(315\) −7957.91 + 7957.91i −0.00451879 + 0.00451879i
\(316\) −409939. + 409939.i −0.230942 + 0.230942i
\(317\) −2.16182e6 + 2.16182e6i −1.20829 + 1.20829i −0.236710 + 0.971580i \(0.576069\pi\)
−0.971580 + 0.236710i \(0.923931\pi\)
\(318\) −933845. −0.517854
\(319\) 396779.i 0.218309i
\(320\) 119077.i 0.0650060i
\(321\) 847979. 847979.i 0.459328 0.459328i
\(322\) 4121.50 + 4121.50i 0.00221521 + 0.00221521i
\(323\) 4.06402e6i 2.16745i
\(324\) −1.05130e6 −0.556370
\(325\) 998760. 998760.i 0.524509 0.524509i
\(326\) 2.56081e6i 1.33455i
\(327\) 2.25275e6 1.16505
\(328\) 496687. 477335.i 0.254917 0.244984i
\(329\) 25842.4 0.0131627
\(330\) 318046.i 0.160770i
\(331\) −1.08830e6 + 1.08830e6i −0.545984 + 0.545984i −0.925277 0.379293i \(-0.876167\pi\)
0.379293 + 0.925277i \(0.376167\pi\)
\(332\) −624347. −0.310872
\(333\) 226829.i 0.112095i
\(334\) −280186. 280186.i −0.137430 0.137430i
\(335\) −46132.6 + 46132.6i −0.0224593 + 0.0224593i
\(336\) 9988.43i 0.00482668i
\(337\) 2.29343e6i 1.10005i 0.835150 + 0.550023i \(0.185381\pi\)
−0.835150 + 0.550023i \(0.814619\pi\)
\(338\) 50160.5 0.0238820
\(339\) 1.52747e6 1.52747e6i 0.721894 0.721894i
\(340\) 715664. 715664.i 0.335747 0.335747i
\(341\) 15822.3 15822.3i 0.00736856 0.00736856i
\(342\) −1.11746e6 1.11746e6i −0.516616 0.516616i
\(343\) 43494.9 + 43494.9i 0.0199620 + 0.0199620i
\(344\) −278611. −0.126941
\(345\) −348954. 348954.i −0.157841 0.157841i
\(346\) 2.10527e6 0.945404
\(347\) 1.24204e6 + 1.24204e6i 0.553747 + 0.553747i 0.927520 0.373773i \(-0.121936\pi\)
−0.373773 + 0.927520i \(0.621936\pi\)
\(348\) 1.05504e6i 0.467003i
\(349\) 2.67812e6i 1.17697i −0.808506 0.588487i \(-0.799724\pi\)
0.808506 0.588487i \(-0.200276\pi\)
\(350\) 11801.2 + 11801.2i 0.00514940 + 0.00514940i
\(351\) 415691. 0.180095
\(352\) 92889.4 + 92889.4i 0.0399585 + 0.0399585i
\(353\) −2.71246e6 −1.15858 −0.579290 0.815122i \(-0.696670\pi\)
−0.579290 + 0.815122i \(0.696670\pi\)
\(354\) −1.12241e6 1.12241e6i −0.476040 0.476040i
\(355\) 96862.6 + 96862.6i 0.0407930 + 0.0407930i
\(356\) −431697. + 431697.i −0.180532 + 0.180532i
\(357\) −60031.4 + 60031.4i −0.0249292 + 0.0249292i
\(358\) −294684. + 294684.i −0.121520 + 0.121520i
\(359\) 3.99187e6 1.63471 0.817354 0.576136i \(-0.195440\pi\)
0.817354 + 0.576136i \(0.195440\pi\)
\(360\) 393566.i 0.160052i
\(361\) 1.01240e6i 0.408870i
\(362\) 2.18261e6 2.18261e6i 0.875395 0.875395i
\(363\) 2.17979e6 + 2.17979e6i 0.868256 + 0.868256i
\(364\) 18141.3i 0.00717653i
\(365\) 1.56670e6 0.615536
\(366\) −740467. + 740467.i −0.288937 + 0.288937i
\(367\) 1.50364e6i 0.582746i 0.956610 + 0.291373i \(0.0941120\pi\)
−0.956610 + 0.291373i \(0.905888\pi\)
\(368\) 203833. 0.0784611
\(369\) 1.64162e6 1.57765e6i 0.627633 0.603179i
\(370\) −124698. −0.0473537
\(371\) 20040.6i 0.00755920i
\(372\) −42071.5 + 42071.5i −0.0157627 + 0.0157627i
\(373\) 3.96397e6 1.47523 0.737613 0.675224i \(-0.235953\pi\)
0.737613 + 0.675224i \(0.235953\pi\)
\(374\) 1.11655e6i 0.412760i
\(375\) −2.36874e6 2.36874e6i −0.869839 0.869839i
\(376\) 639031. 639031.i 0.233105 0.233105i
\(377\) 1.91619e6i 0.694361i
\(378\) 4911.75i 0.00176810i
\(379\) −1.56055e6 −0.558059 −0.279029 0.960283i \(-0.590013\pi\)
−0.279029 + 0.960283i \(0.590013\pi\)
\(380\) 614317. 614317.i 0.218240 0.218240i
\(381\) 5.28307e6 5.28307e6i 1.86455 1.86455i
\(382\) 193674. 193674.i 0.0679067 0.0679067i
\(383\) −2.61684e6 2.61684e6i −0.911549 0.911549i 0.0848454 0.996394i \(-0.472960\pi\)
−0.996394 + 0.0848454i \(0.972960\pi\)
\(384\) −246993. 246993.i −0.0854786 0.0854786i
\(385\) −6825.37 −0.00234679
\(386\) 2.10843e6 + 2.10843e6i 0.720261 + 0.720261i
\(387\) −920845. −0.312542
\(388\) −314823. 314823.i −0.106166 0.106166i
\(389\) 5.53656e6i 1.85510i −0.373704 0.927548i \(-0.621913\pi\)
0.373704 0.927548i \(-0.378087\pi\)
\(390\) 1.53596e6i 0.511350i
\(391\) −1.22505e6 1.22505e6i −0.405240 0.405240i
\(392\) 1.07543e6 0.353483
\(393\) 2.00424e6 + 2.00424e6i 0.654589 + 0.654589i
\(394\) 123012. 0.0399216
\(395\) −744849. 744849.i −0.240201 0.240201i
\(396\) 307012. + 307012.i 0.0983823 + 0.0983823i
\(397\) −3.57890e6 + 3.57890e6i −1.13965 + 1.13965i −0.151141 + 0.988512i \(0.548295\pi\)
−0.988512 + 0.151141i \(0.951705\pi\)
\(398\) −1.90267e6 + 1.90267e6i −0.602083 + 0.602083i
\(399\) −51530.2 + 51530.2i −0.0162043 + 0.0162043i
\(400\) 583640. 0.182388
\(401\) 1.27802e6i 0.396895i −0.980112 0.198447i \(-0.936410\pi\)
0.980112 0.198447i \(-0.0635899\pi\)
\(402\) 191380.i 0.0590650i
\(403\) 76411.5 76411.5i 0.0234367 0.0234367i
\(404\) 1.51868e6 + 1.51868e6i 0.462927 + 0.462927i
\(405\) 1.91018e6i 0.578678i
\(406\) 22641.4 0.00681693
\(407\) −97273.7 + 97273.7i −0.0291078 + 0.0291078i
\(408\) 2.96891e6i 0.882970i
\(409\) −321785. −0.0951169 −0.0475584 0.998868i \(-0.515144\pi\)
−0.0475584 + 0.998868i \(0.515144\pi\)
\(410\) 867305. + 902468.i 0.254807 + 0.265138i
\(411\) −6.30475e6 −1.84104
\(412\) 627717.i 0.182188i
\(413\) −24087.3 + 24087.3i −0.00694885 + 0.00694885i
\(414\) 673694. 0.193180
\(415\) 1.13442e6i 0.323336i
\(416\) 448597. + 448597.i 0.127093 + 0.127093i
\(417\) 799466. 799466.i 0.225144 0.225144i
\(418\) 958430.i 0.268299i
\(419\) 5.24453e6i 1.45939i 0.683773 + 0.729695i \(0.260338\pi\)
−0.683773 + 0.729695i \(0.739662\pi\)
\(420\) 18148.7 0.00502022
\(421\) −1.23496e6 + 1.23496e6i −0.339585 + 0.339585i −0.856211 0.516626i \(-0.827188\pi\)
0.516626 + 0.856211i \(0.327188\pi\)
\(422\) 425691. 425691.i 0.116362 0.116362i
\(423\) 2.11208e6 2.11208e6i 0.573931 0.573931i
\(424\) 495563. + 495563.i 0.133870 + 0.133870i
\(425\) −3.50773e6 3.50773e6i −0.942006 0.942006i
\(426\) −401831. −0.107280
\(427\) 15890.7 + 15890.7i 0.00421767 + 0.00421767i
\(428\) −899994. −0.237482
\(429\) −1.19817e6 1.19817e6i −0.314322 0.314322i
\(430\) 506228.i 0.132031i
\(431\) 7.04222e6i 1.82606i −0.407887 0.913032i \(-0.633734\pi\)
0.407887 0.913032i \(-0.366266\pi\)
\(432\) 121458. + 121458.i 0.0313123 + 0.0313123i
\(433\) −4.02436e6 −1.03152 −0.515759 0.856734i \(-0.672490\pi\)
−0.515759 + 0.856734i \(0.672490\pi\)
\(434\) 902.867 + 902.867i 0.000230091 + 0.000230091i
\(435\) −1.91698e6 −0.485728
\(436\) −1.19547e6 1.19547e6i −0.301177 0.301177i
\(437\) −1.05157e6 1.05157e6i −0.263411 0.263411i
\(438\) −3.24969e6 + 3.24969e6i −0.809389 + 0.809389i
\(439\) 1.69237e6 1.69237e6i 0.419117 0.419117i −0.465783 0.884899i \(-0.654227\pi\)
0.884899 + 0.465783i \(0.154227\pi\)
\(440\) −168778. + 168778.i −0.0415607 + 0.0415607i
\(441\) 3.55445e6 0.870314
\(442\) 5.39222e6i 1.31284i
\(443\) 3.70906e6i 0.897954i 0.893543 + 0.448977i \(0.148212\pi\)
−0.893543 + 0.448977i \(0.851788\pi\)
\(444\) 258651. 258651.i 0.0622669 0.0622669i
\(445\) −784381. 784381.i −0.187770 0.187770i
\(446\) 4.91647e6i 1.17035i
\(447\) −5.86224e6 −1.38770
\(448\) −5300.56 + 5300.56i −0.00124775 + 0.00124775i
\(449\) 7.31892e6i 1.71329i 0.515905 + 0.856646i \(0.327456\pi\)
−0.515905 + 0.856646i \(0.672544\pi\)
\(450\) 1.92901e6 0.449058
\(451\) 1.38056e6 + 27430.0i 0.319605 + 0.00635015i
\(452\) −1.62116e6 −0.373234
\(453\) 1.07300e7i 2.45671i
\(454\) 2.80761e6 2.80761e6i 0.639289 0.639289i
\(455\) −32962.2 −0.00746428
\(456\) 2.54847e6i 0.573942i
\(457\) 2.27205e6 + 2.27205e6i 0.508895 + 0.508895i 0.914187 0.405292i \(-0.132830\pi\)
−0.405292 + 0.914187i \(0.632830\pi\)
\(458\) 3.26770e6 3.26770e6i 0.727911 0.727911i
\(459\) 1.45994e6i 0.323447i
\(460\) 370358.i 0.0816070i
\(461\) −3.99752e6 −0.876070 −0.438035 0.898958i \(-0.644325\pi\)
−0.438035 + 0.898958i \(0.644325\pi\)
\(462\) 14157.4 14157.4i 0.00308588 0.00308588i
\(463\) −3.10875e6 + 3.10875e6i −0.673959 + 0.673959i −0.958626 0.284667i \(-0.908117\pi\)
0.284667 + 0.958626i \(0.408117\pi\)
\(464\) 559877. 559877.i 0.120725 0.120725i
\(465\) −76442.7 76442.7i −0.0163947 0.0163947i
\(466\) −2.33828e6 2.33828e6i −0.498806 0.498806i
\(467\) 6.59950e6 1.40029 0.700147 0.713999i \(-0.253118\pi\)
0.700147 + 0.713999i \(0.253118\pi\)
\(468\) 1.48267e6 + 1.48267e6i 0.312918 + 0.312918i
\(469\) −4107.07 −0.000862183
\(470\) 1.16110e6 + 1.16110e6i 0.242452 + 0.242452i
\(471\) 5.11326e6i 1.06205i
\(472\) 1.19126e6i 0.246122i
\(473\) −394897. 394897.i −0.0811579 0.0811579i
\(474\) 3.08998e6 0.631698
\(475\) −3.01099e6 3.01099e6i −0.612316 0.612316i
\(476\) 63713.7 0.0128889
\(477\) 1.63790e6 + 1.63790e6i 0.329604 + 0.329604i
\(478\) 2.87204e6 + 2.87204e6i 0.574938 + 0.574938i
\(479\) 3.46258e6 3.46258e6i 0.689542 0.689542i −0.272589 0.962131i \(-0.587880\pi\)
0.962131 + 0.272589i \(0.0878798\pi\)
\(480\) 448780. 448780.i 0.0889059 0.0889059i
\(481\) −469770. + 469770.i −0.0925812 + 0.0925812i
\(482\) −3.51913e6 −0.689950
\(483\) 31066.4i 0.00605931i
\(484\) 2.31350e6i 0.448906i
\(485\) 572025. 572025.i 0.110423 0.110423i
\(486\) 3.50100e6 + 3.50100e6i 0.672359 + 0.672359i
\(487\) 4.97835e6i 0.951181i 0.879667 + 0.475590i \(0.157765\pi\)
−0.879667 + 0.475590i \(0.842235\pi\)
\(488\) 785887. 0.149386
\(489\) 9.65124e6 9.65124e6i 1.82520 1.82520i
\(490\) 1.95403e6i 0.367656i
\(491\) 9.12861e6 1.70884 0.854419 0.519585i \(-0.173913\pi\)
0.854419 + 0.519585i \(0.173913\pi\)
\(492\) −3.67092e6 72936.5i −0.683694 0.0135841i
\(493\) −6.72982e6 −1.24706
\(494\) 4.62861e6i 0.853362i
\(495\) −557832. + 557832.i −0.102327 + 0.102327i
\(496\) 44652.1 0.00814963
\(497\) 8623.42i 0.00156599i
\(498\) 2.35305e6 + 2.35305e6i 0.425166 + 0.425166i
\(499\) −3.64397e6 + 3.64397e6i −0.655124 + 0.655124i −0.954222 0.299099i \(-0.903314\pi\)
0.299099 + 0.954222i \(0.403314\pi\)
\(500\) 2.51404e6i 0.449725i
\(501\) 2.11194e6i 0.375914i
\(502\) 3.52410e6 0.624151
\(503\) −6.15017e6 + 6.15017e6i −1.08384 + 1.08384i −0.0876973 + 0.996147i \(0.527951\pi\)
−0.996147 + 0.0876973i \(0.972049\pi\)
\(504\) −17519.0 + 17519.0i −0.00307209 + 0.00307209i
\(505\) −2.75940e6 + 2.75940e6i −0.481489 + 0.481489i
\(506\) 288908. + 288908.i 0.0501630 + 0.0501630i
\(507\) −189046. 189046.i −0.0326624 0.0326624i
\(508\) −5.60714e6 −0.964011
\(509\) 6.38525e6 + 6.38525e6i 1.09240 + 1.09240i 0.995271 + 0.0971326i \(0.0309671\pi\)
0.0971326 + 0.995271i \(0.469033\pi\)
\(510\) −5.39442e6 −0.918374
\(511\) 69739.5 + 69739.5i 0.0118148 + 0.0118148i
\(512\) 262144.i 0.0441942i
\(513\) 1.25320e6i 0.210245i
\(514\) −1.90540e6 1.90540e6i −0.318111 0.318111i
\(515\) 1.14054e6 0.189493
\(516\) 1.05003e6 + 1.05003e6i 0.173612 + 0.173612i
\(517\) 1.81150e6 0.298065
\(518\) −5550.74 5550.74i −0.000908922 0.000908922i
\(519\) −7.93439e6 7.93439e6i −1.29299 1.29299i
\(520\) −815088. + 815088.i −0.132189 + 0.132189i
\(521\) 6.28797e6 6.28797e6i 1.01488 1.01488i 0.0149953 0.999888i \(-0.495227\pi\)
0.999888 0.0149953i \(-0.00477334\pi\)
\(522\) 1.85047e6 1.85047e6i 0.297238 0.297238i
\(523\) −1.12668e7 −1.80113 −0.900567 0.434718i \(-0.856848\pi\)
−0.900567 + 0.434718i \(0.856848\pi\)
\(524\) 2.12718e6i 0.338436i
\(525\) 88953.3i 0.0140852i
\(526\) 1.55198e6 1.55198e6i 0.244580 0.244580i
\(527\) −268363. 268363.i −0.0420917 0.0420917i
\(528\) 700167.i 0.109299i
\(529\) −5.80237e6 −0.901502
\(530\) −900425. + 900425.i −0.139238 + 0.139238i
\(531\) 3.93727e6i 0.605980i
\(532\) 54691.0 0.00837793
\(533\) 6.66723e6 + 132469.i 1.01655 + 0.0201975i
\(534\) 3.25397e6 0.493811
\(535\) 1.63527e6i 0.247004i
\(536\) −101559. + 101559.i −0.0152689 + 0.0152689i
\(537\) 2.22122e6 0.332397
\(538\) 1.05666e6i 0.157391i
\(539\) 1.52430e6 + 1.52430e6i 0.225994 + 0.225994i
\(540\) −220685. + 220685.i −0.0325678 + 0.0325678i
\(541\) 6.26323e6i 0.920037i 0.887909 + 0.460019i \(0.152157\pi\)
−0.887909 + 0.460019i \(0.847843\pi\)
\(542\) 763585.i 0.111650i
\(543\) −1.64517e7 −2.39448
\(544\) 1.57551e6 1.57551e6i 0.228257 0.228257i
\(545\) 2.17213e6 2.17213e6i 0.313253 0.313253i
\(546\) 68371.2 68371.2i 0.00981503 0.00981503i
\(547\) 716056. + 716056.i 0.102324 + 0.102324i 0.756416 0.654091i \(-0.226949\pi\)
−0.654091 + 0.756416i \(0.726949\pi\)
\(548\) 3.34574e6 + 3.34574e6i 0.475927 + 0.475927i
\(549\) 2.59746e6 0.367805
\(550\) 827239. + 827239.i 0.116607 + 0.116607i
\(551\) −5.77679e6 −0.810603
\(552\) −768209. 768209.i −0.107308 0.107308i
\(553\) 66311.9i 0.00922101i
\(554\) 1.39391e6i 0.192956i
\(555\) 469963. + 469963.i 0.0647636 + 0.0647636i
\(556\) −848505. −0.116404
\(557\) 1.17587e6 + 1.17587e6i 0.160592 + 0.160592i 0.782829 0.622237i \(-0.213776\pi\)
−0.622237 + 0.782829i \(0.713776\pi\)
\(558\) 147581. 0.0200653
\(559\) −1.90710e6 1.90710e6i −0.258134 0.258134i
\(560\) −9630.97 9630.97i −0.00129778 0.00129778i
\(561\) −4.20807e6 + 4.20807e6i −0.564515 + 0.564515i
\(562\) −4.92000e6 + 4.92000e6i −0.657089 + 0.657089i
\(563\) 3.17808e6 3.17808e6i 0.422565 0.422565i −0.463521 0.886086i \(-0.653414\pi\)
0.886086 + 0.463521i \(0.153414\pi\)
\(564\) −4.81678e6 −0.637616
\(565\) 2.94561e6i 0.388199i
\(566\) 3.96153e6i 0.519783i
\(567\) 85029.1 85029.1i 0.0111073 0.0111073i
\(568\) 213240. + 213240.i 0.0277330 + 0.0277330i
\(569\) 1.10902e7i 1.43601i −0.696036 0.718006i \(-0.745055\pi\)
0.696036 0.718006i \(-0.254945\pi\)
\(570\) −4.63050e6 −0.596954
\(571\) 9.40293e6 9.40293e6i 1.20690 1.20690i 0.234880 0.972024i \(-0.424530\pi\)
0.972024 0.234880i \(-0.0754697\pi\)
\(572\) 1.27166e6i 0.162511i
\(573\) −1.45984e6 −0.185746
\(574\) −1565.24 + 78779.0i −0.000198290 + 0.00998001i
\(575\) 1.81526e6 0.228965
\(576\) 866420.i 0.108811i
\(577\) −1.42013e6 + 1.42013e6i −0.177578 + 0.177578i −0.790299 0.612721i \(-0.790075\pi\)
0.612721 + 0.790299i \(0.290075\pi\)
\(578\) −1.32585e7 −1.65072
\(579\) 1.58926e7i 1.97014i
\(580\) 1.01728e6 + 1.01728e6i 0.125566 + 0.125566i
\(581\) 50497.3 50497.3i 0.00620623 0.00620623i
\(582\) 2.37302e6i 0.290399i
\(583\) 1.40480e6i 0.171176i
\(584\) 3.44903e6 0.418470
\(585\) −2.69397e6 + 2.69397e6i −0.325465 + 0.325465i
\(586\) 4.39864e6 4.39864e6i 0.529145 0.529145i
\(587\) 1.03846e7 1.03846e7i 1.24393 1.24393i 0.285573 0.958357i \(-0.407816\pi\)
0.958357 0.285573i \(-0.0921838\pi\)
\(588\) −4.05312e6 4.05312e6i −0.483444 0.483444i
\(589\) −230360. 230360.i −0.0273602 0.0273602i
\(590\) −2.16448e6 −0.255991
\(591\) −463611. 463611.i −0.0545991 0.0545991i
\(592\) −274517. −0.0321933
\(593\) 4.75316e6 + 4.75316e6i 0.555067 + 0.555067i 0.927899 0.372832i \(-0.121613\pi\)
−0.372832 + 0.927899i \(0.621613\pi\)
\(594\) 344303.i 0.0400382i
\(595\) 115766.i 0.0134057i
\(596\) 3.11092e6 + 3.11092e6i 0.358734 + 0.358734i
\(597\) 1.43417e7 1.64689
\(598\) 1.39524e6 + 1.39524e6i 0.159550 + 0.159550i
\(599\) 1.64547e6 0.187380 0.0936899 0.995601i \(-0.470134\pi\)
0.0936899 + 0.995601i \(0.470134\pi\)
\(600\) −2.19963e6 2.19963e6i −0.249444 0.249444i
\(601\) 1.34324e6 + 1.34324e6i 0.151694 + 0.151694i 0.778874 0.627180i \(-0.215791\pi\)
−0.627180 + 0.778874i \(0.715791\pi\)
\(602\) 22534.1 22534.1i 0.00253424 0.00253424i
\(603\) −335667. + 335667.i −0.0375937 + 0.0375937i
\(604\) 5.69407e6 5.69407e6i 0.635083 0.635083i
\(605\) 4.20356e6 0.466905
\(606\) 1.14473e7i 1.26625i
\(607\) 8.35307e6i 0.920184i −0.887871 0.460092i \(-0.847817\pi\)
0.887871 0.460092i \(-0.152183\pi\)
\(608\) 1.35240e6 1.35240e6i 0.148370 0.148370i
\(609\) −85331.6 85331.6i −0.00932323 0.00932323i
\(610\) 1.42794e6i 0.155376i
\(611\) 8.74839e6 0.948036
\(612\) 5.20726e6 5.20726e6i 0.561993 0.561993i
\(613\) 4.17508e6i 0.448759i 0.974502 + 0.224380i \(0.0720355\pi\)
−0.974502 + 0.224380i \(0.927964\pi\)
\(614\) −945533. −0.101218
\(615\) 132524. 6.66995e6i 0.0141288 0.711107i
\(616\) −15025.8 −0.00159546
\(617\) 3.79973e6i 0.401828i 0.979609 + 0.200914i \(0.0643912\pi\)
−0.979609 + 0.200914i \(0.935609\pi\)
\(618\) −2.36575e6 + 2.36575e6i −0.249171 + 0.249171i
\(619\) 1.32599e7 1.39096 0.695478 0.718548i \(-0.255193\pi\)
0.695478 + 0.718548i \(0.255193\pi\)
\(620\) 81131.7i 0.00847640i
\(621\) 377762. + 377762.i 0.0393087 + 0.0393087i
\(622\) 5.69085e6 5.69085e6i 0.589795 0.589795i
\(623\) 69831.3i 0.00720826i
\(624\) 3.38136e6i 0.347640i
\(625\) 2.55658e6 0.261793
\(626\) −3.02246e6 + 3.02246e6i −0.308265 + 0.308265i
\(627\) −3.61215e6 + 3.61215e6i −0.366942 + 0.366942i
\(628\) 2.71345e6 2.71345e6i 0.274551 0.274551i
\(629\) 1.64987e6 + 1.64987e6i 0.166274 + 0.166274i
\(630\) −31831.6 31831.6i −0.00319527 0.00319527i
\(631\) 5.03250e6 0.503165 0.251582 0.967836i \(-0.419049\pi\)
0.251582 + 0.967836i \(0.419049\pi\)
\(632\) −1.63976e6 1.63976e6i −0.163300 0.163300i
\(633\) −3.20870e6 −0.318288
\(634\) −8.64728e6 8.64728e6i −0.854390 0.854390i
\(635\) 1.01880e7i 1.00266i
\(636\) 3.73538e6i 0.366178i
\(637\) 7.36139e6 + 7.36139e6i 0.718805 + 0.718805i
\(638\) 1.58712e6 0.154368
\(639\) 704785. + 704785.i 0.0682817 + 0.0682817i
\(640\) −476309. −0.0459662
\(641\) 7.91859e6 + 7.91859e6i 0.761207 + 0.761207i 0.976541 0.215334i \(-0.0690839\pi\)
−0.215334 + 0.976541i \(0.569084\pi\)
\(642\) 3.39192e6 + 3.39192e6i 0.324794 + 0.324794i
\(643\) −6.02274e6 + 6.02274e6i −0.574469 + 0.574469i −0.933374 0.358905i \(-0.883150\pi\)
0.358905 + 0.933374i \(0.383150\pi\)
\(644\) −16486.0 + 16486.0i −0.00156639 + 0.00156639i
\(645\) −1.90788e6 + 1.90788e6i −0.180573 + 0.180573i
\(646\) −1.62561e7 −1.53262
\(647\) 7.18492e6i 0.674778i 0.941365 + 0.337389i \(0.109544\pi\)
−0.941365 + 0.337389i \(0.890456\pi\)
\(648\) 4.20519e6i 0.393413i
\(649\) −1.68847e6 + 1.68847e6i −0.157355 + 0.157355i
\(650\) 3.99504e6 + 3.99504e6i 0.370884 + 0.370884i
\(651\) 6805.49i 0.000629371i
\(652\) −1.02432e7 −0.943667
\(653\) −6.82064e6 + 6.82064e6i −0.625954 + 0.625954i −0.947047 0.321094i \(-0.895950\pi\)
0.321094 + 0.947047i \(0.395950\pi\)
\(654\) 9.01102e6i 0.823814i
\(655\) 3.86503e6 0.352006
\(656\) 1.90934e6 + 1.98675e6i 0.173230 + 0.180253i
\(657\) 1.13995e7 1.03032
\(658\) 103370.i 0.00930741i
\(659\) −7.20001e6 + 7.20001e6i −0.645832 + 0.645832i −0.951983 0.306151i \(-0.900959\pi\)
0.306151 + 0.951983i \(0.400959\pi\)
\(660\) 1.27218e6 0.113682
\(661\) 1.03342e7i 0.919969i 0.887927 + 0.459984i \(0.152145\pi\)
−0.887927 + 0.459984i \(0.847855\pi\)
\(662\) −4.35321e6 4.35321e6i −0.386069 0.386069i
\(663\) −2.03223e7 + 2.03223e7i −1.79551 + 1.79551i
\(664\) 2.49739e6i 0.219819i
\(665\) 99372.1i 0.00871386i
\(666\) −907315. −0.0792634
\(667\) 1.74135e6 1.74135e6i 0.151556 0.151556i
\(668\) 1.12074e6 1.12074e6i 0.0971775 0.0971775i
\(669\) 1.85293e7 1.85293e7i 1.60064 1.60064i
\(670\) −184531. 184531.i −0.0158811 0.0158811i
\(671\) 1.11390e6 + 1.11390e6i 0.0955081 + 0.0955081i
\(672\) 39953.7 0.00341298
\(673\) −1.08728e7 1.08728e7i −0.925345 0.925345i 0.0720560 0.997401i \(-0.477044\pi\)
−0.997401 + 0.0720560i \(0.977044\pi\)
\(674\) −9.17372e6 −0.777850
\(675\) 1.08166e6 + 1.08166e6i 0.0913756 + 0.0913756i
\(676\) 200642.i 0.0168871i
\(677\) 2.16243e7i 1.81331i 0.421876 + 0.906653i \(0.361372\pi\)
−0.421876 + 0.906653i \(0.638628\pi\)
\(678\) 6.10988e6 + 6.10988e6i 0.510456 + 0.510456i
\(679\) 50925.8 0.00423900
\(680\) 2.86266e6 + 2.86266e6i 0.237409 + 0.237409i
\(681\) −2.11628e7 −1.74866
\(682\) 63289.0 + 63289.0i 0.00521036 + 0.00521036i
\(683\) −463407. 463407.i −0.0380112 0.0380112i 0.687846 0.725857i \(-0.258557\pi\)
−0.725857 + 0.687846i \(0.758557\pi\)
\(684\) 4.46985e6 4.46985e6i 0.365303 0.365303i
\(685\) −6.07912e6 + 6.07912e6i −0.495010 + 0.495010i
\(686\) −173980. + 173980.i −0.0141152 + 0.0141152i
\(687\) −2.46307e7 −1.99107
\(688\) 1.11444e6i 0.0897608i
\(689\) 6.78431e6i 0.544449i
\(690\) 1.39581e6 1.39581e6i 0.111610 0.111610i
\(691\) 8.30925e6 + 8.30925e6i 0.662013 + 0.662013i 0.955854 0.293841i \(-0.0949337\pi\)
−0.293841 + 0.955854i \(0.594934\pi\)
\(692\) 8.42108e6i 0.668502i
\(693\) −49662.3 −0.00392820
\(694\) −4.96815e6 + 4.96815e6i −0.391558 + 0.391558i
\(695\) 1.54171e6i 0.121071i
\(696\) −4.22015e6 −0.330221
\(697\) 465243. 2.34158e7i 0.0362742 1.82569i
\(698\) 1.07125e7 0.832247
\(699\) 1.76251e7i 1.36439i
\(700\) −47204.9 + 47204.9i −0.00364118 + 0.00364118i
\(701\) 5.56323e6 0.427595 0.213797 0.976878i \(-0.431417\pi\)
0.213797 + 0.976878i \(0.431417\pi\)
\(702\) 1.66276e6i 0.127347i
\(703\) 1.41623e6 + 1.41623e6i 0.108080 + 0.108080i
\(704\) −371558. + 371558.i −0.0282549 + 0.0282549i
\(705\) 8.75197e6i 0.663182i
\(706\) 1.08498e7i 0.819240i
\(707\) −245662. −0.0184837
\(708\) 4.48964e6 4.48964e6i 0.336611 0.336611i
\(709\) −1.65007e7 + 1.65007e7i −1.23278 + 1.23278i −0.269890 + 0.962891i \(0.586987\pi\)
−0.962891 + 0.269890i \(0.913013\pi\)
\(710\) −387451. + 387451.i −0.0288450 + 0.0288450i
\(711\) −5.41961e6 5.41961e6i −0.402063 0.402063i
\(712\) −1.72679e6 1.72679e6i −0.127655 0.127655i
\(713\) 138879. 0.0102309
\(714\) −240125. 240125.i −0.0176276 0.0176276i
\(715\) −2.31058e6 −0.169027
\(716\) −1.17874e6 1.17874e6i −0.0859279 0.0859279i
\(717\) 2.16484e7i 1.57264i
\(718\) 1.59675e7i 1.15591i
\(719\) −1.05670e7 1.05670e7i −0.762303 0.762303i 0.214435 0.976738i \(-0.431209\pi\)
−0.976738 + 0.214435i \(0.931209\pi\)
\(720\) −1.57426e6 −0.113174
\(721\) 50769.8 + 50769.8i 0.00363720 + 0.00363720i
\(722\) −4.04961e6 −0.289114
\(723\) 1.32630e7 + 1.32630e7i 0.943615 + 0.943615i
\(724\) 8.73042e6 + 8.73042e6i 0.618997 + 0.618997i
\(725\) 4.98606e6 4.98606e6i 0.352300 0.352300i
\(726\) −8.71916e6 + 8.71916e6i −0.613950 + 0.613950i
\(727\) 1.10210e7 1.10210e7i 0.773364 0.773364i −0.205329 0.978693i \(-0.565827\pi\)
0.978693 + 0.205329i \(0.0658265\pi\)
\(728\) −72565.1 −0.00507457
\(729\) 1.04227e7i 0.726373i
\(730\) 6.26679e6i 0.435249i
\(731\) −6.69790e6 + 6.69790e6i −0.463602 + 0.463602i
\(732\) −2.96187e6 2.96187e6i −0.204309 0.204309i
\(733\) 2.27369e7i 1.56304i −0.623879 0.781521i \(-0.714444\pi\)
0.623879 0.781521i \(-0.285556\pi\)
\(734\) −6.01457e6 −0.412063
\(735\) 7.36440e6 7.36440e6i 0.502828 0.502828i
\(736\) 815331.i 0.0554803i
\(737\) −287896. −0.0195239
\(738\) 6.31062e6 + 6.56647e6i 0.426512 + 0.443804i
\(739\) 1.62481e7 1.09444 0.547220 0.836989i \(-0.315686\pi\)
0.547220 + 0.836989i \(0.315686\pi\)
\(740\) 498790.i 0.0334841i
\(741\) −1.74444e7 + 1.74444e7i −1.16711 + 1.16711i
\(742\) −80162.4 −0.00534516
\(743\) 8.39787e6i 0.558081i 0.960279 + 0.279040i \(0.0900163\pi\)
−0.960279 + 0.279040i \(0.909984\pi\)
\(744\) −168286. 168286.i −0.0111459 0.0111459i
\(745\) −5.65245e6 + 5.65245e6i −0.373118 + 0.373118i
\(746\) 1.58559e7i 1.04314i
\(747\) 8.25420e6i 0.541220i
\(748\) 4.46619e6 0.291866
\(749\) 72791.6 72791.6i 0.00474108 0.00474108i
\(750\) 9.47495e6 9.47495e6i 0.615069 0.615069i
\(751\) 1.19566e7 1.19566e7i 0.773583 0.773583i −0.205148 0.978731i \(-0.565768\pi\)
0.978731 + 0.205148i \(0.0657676\pi\)
\(752\) 2.55612e6 + 2.55612e6i 0.164830 + 0.164830i
\(753\) −1.32817e7 1.32817e7i −0.853624 0.853624i
\(754\) 7.66476e6 0.490987
\(755\) 1.03460e7 + 1.03460e7i 0.660548 + 0.660548i
\(756\) −19647.0 −0.00125023
\(757\) 424720. + 424720.i 0.0269378 + 0.0269378i 0.720447 0.693510i \(-0.243936\pi\)
−0.693510 + 0.720447i \(0.743936\pi\)
\(758\) 6.24220e6i 0.394607i
\(759\) 2.17769e6i 0.137212i
\(760\) 2.45727e6 + 2.45727e6i 0.154319 + 0.154319i
\(761\) −2.76470e7 −1.73056 −0.865280 0.501289i \(-0.832859\pi\)
−0.865280 + 0.501289i \(0.832859\pi\)
\(762\) 2.11323e7 + 2.11323e7i 1.31844 + 1.31844i
\(763\) 193379. 0.0120254
\(764\) 774695. + 774695.i 0.0480173 + 0.0480173i
\(765\) 9.46146e6 + 9.46146e6i 0.584527 + 0.584527i
\(766\) 1.04674e7 1.04674e7i 0.644562 0.644562i
\(767\) −8.15422e6 + 8.15422e6i −0.500488 + 0.500488i
\(768\) 987974. 987974.i 0.0604425 0.0604425i
\(769\) −2.55706e6 −0.155928 −0.0779641 0.996956i \(-0.524842\pi\)
−0.0779641 + 0.996956i \(0.524842\pi\)
\(770\) 27301.5i 0.00165943i
\(771\) 1.43622e7i 0.870133i
\(772\) −8.43370e6 + 8.43370e6i −0.509302 + 0.509302i
\(773\) −1.13148e7 1.13148e7i −0.681082 0.681082i 0.279162 0.960244i \(-0.409943\pi\)
−0.960244 + 0.279162i \(0.909943\pi\)
\(774\) 3.68338e6i 0.221001i
\(775\) 397656. 0.0237823
\(776\) 1.25929e6 1.25929e6i 0.0750710 0.0750710i
\(777\) 41839.5i 0.00248619i
\(778\) 2.21463e7 1.31175
\(779\) 399359. 2.00999e7i 0.0235787 1.18672i
\(780\) 6.14384e6 0.361579
\(781\) 604483.i 0.0354614i
\(782\) 4.90021e6 4.90021e6i 0.286548 0.286548i
\(783\) 2.07523e6 0.120966
\(784\) 4.30173e6i 0.249950i
\(785\) 4.93027e6 + 4.93027e6i 0.285559 + 0.285559i
\(786\) −8.01697e6 + 8.01697e6i −0.462865 + 0.462865i
\(787\) 2.07217e7i 1.19258i 0.802769 + 0.596290i \(0.203359\pi\)
−0.802769 + 0.596290i \(0.796641\pi\)
\(788\) 492049.i 0.0282288i
\(789\) −1.16982e7 −0.669003
\(790\) 2.97940e6 2.97940e6i 0.169848 0.169848i
\(791\) 131120. 131120.i 0.00745123 0.00745123i
\(792\) −1.22805e6 + 1.22805e6i −0.0695668 + 0.0695668i
\(793\) 5.37943e6 + 5.37943e6i 0.303776 + 0.303776i
\(794\) −1.43156e7 1.43156e7i −0.805857 0.805857i
\(795\) 6.78708e6 0.380860
\(796\) −7.61070e6 7.61070e6i −0.425737 0.425737i
\(797\) −1.63440e7 −0.911408 −0.455704 0.890131i \(-0.650613\pi\)
−0.455704 + 0.890131i \(0.650613\pi\)
\(798\) −206121. 206121.i −0.0114581 0.0114581i
\(799\) 3.07251e7i 1.70265i
\(800\) 2.33456e6i 0.128967i
\(801\) −5.70726e6 5.70726e6i −0.314301 0.314301i
\(802\) 5.11206e6 0.280647
\(803\) 4.88858e6 + 4.88858e6i 0.267543 + 0.267543i
\(804\) 765518. 0.0417653
\(805\) −29954.6 29954.6i −0.00162920 0.00162920i
\(806\) 305646. + 305646.i 0.0165722 + 0.0165722i
\(807\) 3.98236e6 3.98236e6i 0.215257 0.215257i
\(808\) −6.07472e6 + 6.07472e6i −0.327339 + 0.327339i
\(809\) 1.11480e7 1.11480e7i 0.598860 0.598860i −0.341149 0.940009i \(-0.610816\pi\)
0.940009 + 0.341149i \(0.110816\pi\)
\(810\) 7.64072e6 0.409187
\(811\) 9.51335e6i 0.507904i 0.967217 + 0.253952i \(0.0817305\pi\)
−0.967217 + 0.253952i \(0.918270\pi\)
\(812\) 90565.8i 0.00482030i
\(813\) −2.87782e6 + 2.87782e6i −0.152699 + 0.152699i
\(814\) −389095. 389095.i −0.0205823 0.0205823i
\(815\) 1.86117e7i 0.981504i
\(816\) −1.18756e7 −0.624354
\(817\) −5.74939e6 + 5.74939e6i −0.301347 + 0.301347i
\(818\) 1.28714e6i 0.0672578i
\(819\) −239837. −0.0124942
\(820\) −3.60987e6 + 3.46922e6i −0.187481 + 0.180176i
\(821\) −1.67324e7 −0.866364 −0.433182 0.901307i \(-0.642609\pi\)
−0.433182 + 0.901307i \(0.642609\pi\)
\(822\) 2.52190e7i 1.30181i
\(823\) −1.53825e7 + 1.53825e7i −0.791641 + 0.791641i −0.981761 0.190120i \(-0.939112\pi\)
0.190120 + 0.981761i \(0.439112\pi\)
\(824\) 2.51087e6 0.128827
\(825\) 6.23544e6i 0.318957i
\(826\) −96349.1 96349.1i −0.00491358 0.00491358i
\(827\) −1.05375e7 + 1.05375e7i −0.535764 + 0.535764i −0.922282 0.386518i \(-0.873678\pi\)
0.386518 + 0.922282i \(0.373678\pi\)
\(828\) 2.69477e6i 0.136599i
\(829\) 2.09961e7i 1.06109i −0.847656 0.530546i \(-0.821987\pi\)
0.847656 0.530546i \(-0.178013\pi\)
\(830\) 4.53769e6 0.228633
\(831\) −5.25338e6 + 5.25338e6i −0.263898 + 0.263898i
\(832\) −1.79439e6 + 1.79439e6i −0.0898686 + 0.0898686i
\(833\) 2.58538e7 2.58538e7i 1.29096 1.29096i
\(834\) 3.19786e6 + 3.19786e6i 0.159201 + 0.159201i
\(835\) 2.03636e6 + 2.03636e6i 0.101074 + 0.101074i
\(836\) 3.83372e6 0.189716
\(837\) 82753.6 + 82753.6i 0.00408294 + 0.00408294i
\(838\) −2.09781e7 −1.03194
\(839\) 8.92837e6 + 8.92837e6i 0.437892 + 0.437892i 0.891302 0.453410i \(-0.149793\pi\)
−0.453410 + 0.891302i \(0.649793\pi\)
\(840\) 72594.8i 0.00354983i
\(841\) 1.09450e7i 0.533614i
\(842\) −4.93985e6 4.93985e6i −0.240123 0.240123i
\(843\) 3.70852e7 1.79735
\(844\) 1.70276e6 + 1.70276e6i 0.0822807 + 0.0822807i
\(845\) −364561. −0.0175642
\(846\) 8.44832e6 + 8.44832e6i 0.405830 + 0.405830i
\(847\) 187116. + 187116.i 0.00896194 + 0.00896194i
\(848\) −1.98225e6 + 1.98225e6i −0.0946607 + 0.0946607i
\(849\) 1.49303e7 1.49303e7i 0.710885 0.710885i
\(850\) 1.40309e7 1.40309e7i 0.666099 0.666099i
\(851\) −853814. −0.0404147
\(852\) 1.60732e6i 0.0758585i
\(853\) 1.54675e6i 0.0727860i −0.999338 0.0363930i \(-0.988413\pi\)
0.999338 0.0363930i \(-0.0115868\pi\)
\(854\) −63562.6 + 63562.6i −0.00298234 + 0.00298234i
\(855\) 8.12160e6 + 8.12160e6i 0.379950 + 0.379950i
\(856\) 3.59998e6i 0.167925i
\(857\) −1.11246e7 −0.517408 −0.258704 0.965957i \(-0.583295\pi\)
−0.258704 + 0.965957i \(0.583295\pi\)
\(858\) 4.79267e6 4.79267e6i 0.222259 0.222259i
\(859\) 2.95227e7i 1.36513i −0.730825 0.682565i \(-0.760865\pi\)
0.730825 0.682565i \(-0.239135\pi\)
\(860\) 2.02491e6 0.0933598
\(861\) 302803. 291005.i 0.0139204 0.0133780i
\(862\) 2.81689e7 1.29122
\(863\) 3.76504e6i 0.172085i −0.996291 0.0860424i \(-0.972578\pi\)
0.996291 0.0860424i \(-0.0274220\pi\)
\(864\) −485830. + 485830.i −0.0221411 + 0.0221411i
\(865\) −1.53009e7 −0.695306
\(866\) 1.60974e7i 0.729393i
\(867\) 4.99688e7 + 4.99688e7i 2.25762 + 2.25762i
\(868\) −3611.47 + 3611.47i −0.000162699 + 0.000162699i
\(869\) 4.64832e6i 0.208808i
\(870\) 7.66790e6i 0.343462i
\(871\) −1.39036e6 −0.0620985
\(872\) 4.78188e6 4.78188e6i 0.212964 0.212964i
\(873\) 4.16213e6 4.16213e6i 0.184833 0.184833i
\(874\) 4.20628e6 4.20628e6i 0.186260 0.186260i
\(875\) −203336. 203336.i −0.00897828 0.00897828i
\(876\) −1.29988e7 1.29988e7i −0.572324 0.572324i
\(877\) 2.18337e6 0.0958581 0.0479290 0.998851i \(-0.484738\pi\)
0.0479290 + 0.998851i \(0.484738\pi\)
\(878\) 6.76949e6 + 6.76949e6i 0.296360 + 0.296360i
\(879\) −3.31554e7 −1.44738
\(880\) −675110. 675110.i −0.0293879 0.0293879i
\(881\) 1.69081e7i 0.733933i −0.930234 0.366966i \(-0.880396\pi\)
0.930234 0.366966i \(-0.119604\pi\)
\(882\) 1.42178e7i 0.615405i
\(883\) 4.91158e6 + 4.91158e6i 0.211992 + 0.211992i 0.805113 0.593121i \(-0.202104\pi\)
−0.593121 + 0.805113i \(0.702104\pi\)
\(884\) 2.15689e7 0.928317
\(885\) 8.15756e6 + 8.15756e6i 0.350108 + 0.350108i
\(886\) −1.48362e7 −0.634949
\(887\) 1.24711e7 + 1.24711e7i 0.532225 + 0.532225i 0.921234 0.389009i \(-0.127183\pi\)
−0.389009 + 0.921234i \(0.627183\pi\)
\(888\) 1.03461e6 + 1.03461e6i 0.0440294 + 0.0440294i
\(889\) 453506. 453506.i 0.0192455 0.0192455i
\(890\) 3.13752e6 3.13752e6i 0.132774 0.132774i
\(891\) 5.96035e6 5.96035e6i 0.251523 0.251523i
\(892\) −1.96659e7 −0.827564
\(893\) 2.63740e7i 1.10674i
\(894\) 2.34490e7i 0.981251i
\(895\) 2.14173e6 2.14173e6i 0.0893733 0.0893733i
\(896\) −21202.2 21202.2i −0.000882290 0.000882290i
\(897\) 1.05168e7i 0.436420i
\(898\) −2.92757e7 −1.21148
\(899\) 381465. 381465.i 0.0157418 0.0157418i
\(900\) 7.71603e6i 0.317532i
\(901\) 2.38270e7 0.977818
\(902\) −109720. + 5.52224e6i −0.00449023 + 0.225995i
\(903\) −169854. −0.00693195
\(904\) 6.48466e6i 0.263916i
\(905\) −1.58629e7 + 1.58629e7i −0.643817 + 0.643817i
\(906\) −4.29199e7 −1.73715
\(907\) 6.54693e6i 0.264253i 0.991233 + 0.132126i \(0.0421805\pi\)
−0.991233 + 0.132126i \(0.957820\pi\)
\(908\) 1.12304e7 + 1.12304e7i 0.452046 + 0.452046i
\(909\) −2.00777e7 + 2.00777e7i −0.805944 + 0.805944i
\(910\) 131849.i 0.00527804i
\(911\) 1.02691e6i 0.0409956i −0.999790 0.0204978i \(-0.993475\pi\)
0.999790 0.0204978i \(-0.00652510\pi\)
\(912\) −1.01939e7 −0.405838
\(913\) 3.53975e6 3.53975e6i 0.140539 0.140539i
\(914\) −9.08821e6 + 9.08821e6i −0.359843 + 0.359843i
\(915\) 5.38164e6 5.38164e6i 0.212501 0.212501i
\(916\) 1.30708e7 + 1.30708e7i 0.514711 + 0.514711i
\(917\) 172047. + 172047.i 0.00675652 + 0.00675652i
\(918\) 5.83976e6 0.228712
\(919\) −2.52302e7 2.52302e7i −0.985444 0.985444i 0.0144520 0.999896i \(-0.495400\pi\)
−0.999896 + 0.0144520i \(0.995400\pi\)
\(920\) −1.48143e6 −0.0577049
\(921\) 3.56354e6 + 3.56354e6i 0.138431 + 0.138431i
\(922\) 1.59901e7i 0.619475i
\(923\) 2.91927e6i 0.112790i
\(924\) 56629.6 + 56629.6i 0.00218204 + 0.00218204i
\(925\) −2.44475e6 −0.0939464
\(926\) −1.24350e7 1.24350e7i −0.476561 0.476561i
\(927\) 8.29874e6 0.317185
\(928\) 2.23951e6 + 2.23951e6i 0.0853655 + 0.0853655i
\(929\) −3.50138e7 3.50138e7i −1.33107 1.33107i −0.904415 0.426653i \(-0.859692\pi\)
−0.426653 0.904415i \(-0.640308\pi\)
\(930\) 305771. 305771.i 0.0115928 0.0115928i
\(931\) 2.21926e7 2.21926e7i 0.839139 0.839139i
\(932\) 9.35311e6 9.35311e6i 0.352709 0.352709i
\(933\) −4.28956e7 −1.61328
\(934\) 2.63980e7i 0.990157i
\(935\) 8.11494e6i 0.303568i
\(936\) −5.93069e6 + 5.93069e6i −0.221266 + 0.221266i
\(937\) 1.24419e7 + 1.24419e7i 0.462955 + 0.462955i 0.899623 0.436668i \(-0.143841\pi\)
−0.436668 + 0.899623i \(0.643841\pi\)
\(938\) 16428.3i 0.000609656i
\(939\) 2.27822e7 0.843202
\(940\) −4.64441e6 + 4.64441e6i −0.171439 + 0.171439i
\(941\) 9.95768e6i 0.366593i 0.983058 + 0.183296i \(0.0586768\pi\)
−0.983058 + 0.183296i \(0.941323\pi\)
\(942\) −2.04530e7 −0.750983
\(943\) 5.93850e6 + 6.17927e6i 0.217469 + 0.226286i
\(944\) −4.76503e6 −0.174035
\(945\) 35698.0i 0.00130036i
\(946\) 1.57959e6 1.57959e6i 0.0573873 0.0573873i
\(947\) −1.33532e7 −0.483851 −0.241926 0.970295i \(-0.577779\pi\)
−0.241926 + 0.970295i \(0.577779\pi\)
\(948\) 1.23599e7i 0.446678i
\(949\) 2.36088e7 + 2.36088e7i 0.850957 + 0.850957i
\(950\) 1.20440e7 1.20440e7i 0.432973 0.432973i
\(951\) 6.51801e7i 2.33703i
\(952\) 254855.i 0.00911382i
\(953\) −1.74086e7 −0.620914 −0.310457 0.950587i \(-0.600482\pi\)
−0.310457 + 0.950587i \(0.600482\pi\)
\(954\) −6.55161e6 + 6.55161e6i −0.233065 + 0.233065i
\(955\) −1.40760e6 + 1.40760e6i −0.0499426 + 0.0499426i
\(956\) −1.14882e7 + 1.14882e7i −0.406543 + 0.406543i
\(957\) −5.98156e6 5.98156e6i −0.211122 0.211122i
\(958\) 1.38503e7 + 1.38503e7i 0.487580 + 0.487580i
\(959\) −541207. −0.0190028
\(960\) 1.79512e6 + 1.79512e6i 0.0628660 + 0.0628660i
\(961\) −2.85987e7 −0.998937
\(962\) −1.87908e6 1.87908e6i −0.0654648 0.0654648i
\(963\) 1.18984e7i 0.413450i
\(964\) 1.40765e7i 0.487868i
\(965\) −1.53238e7 1.53238e7i −0.529723 0.529723i
\(966\) 124266. 0.00428458
\(967\) 1.57761e7 + 1.57761e7i 0.542543 + 0.542543i 0.924274 0.381730i \(-0.124672\pi\)
−0.381730 + 0.924274i \(0.624672\pi\)
\(968\) 9.25399e6 0.317425
\(969\) 6.12662e7 + 6.12662e7i 2.09610 + 2.09610i
\(970\) 2.28810e6 + 2.28810e6i 0.0780810 + 0.0780810i
\(971\) −1.64926e7 + 1.64926e7i −0.561359 + 0.561359i −0.929693 0.368334i \(-0.879928\pi\)
0.368334 + 0.929693i \(0.379928\pi\)
\(972\) −1.40040e7 + 1.40040e7i −0.475429 + 0.475429i
\(973\) 68627.2 68627.2i 0.00232388 0.00232388i
\(974\) −1.99134e7 −0.672586
\(975\) 3.01132e7i 1.01448i
\(976\) 3.14355e6i 0.105632i
\(977\) −3.47968e7 + 3.47968e7i −1.16628 + 1.16628i −0.183206 + 0.983075i \(0.558648\pi\)
−0.983075 + 0.183206i \(0.941352\pi\)
\(978\) 3.86050e7 + 3.86050e7i 1.29061 + 1.29061i
\(979\) 4.89502e6i 0.163229i
\(980\) −7.81614e6 −0.259972
\(981\) 1.58047e7 1.58047e7i 0.524342 0.524342i
\(982\) 3.65144e7i 1.20833i
\(983\) −4.75192e7 −1.56850 −0.784251 0.620444i \(-0.786952\pi\)
−0.784251 + 0.620444i \(0.786952\pi\)
\(984\) 291746. 1.46837e7i 0.00960543 0.483445i
\(985\) −894040. −0.0293607
\(986\) 2.69193e7i 0.881802i
\(987\) 389582. 389582.i 0.0127293 0.0127293i
\(988\) 1.85144e7 0.603418
\(989\) 3.46618e6i 0.112684i
\(990\) −2.23133e6 2.23133e6i −0.0723561 0.0723561i
\(991\) −5.58171e6 + 5.58171e6i −0.180544 + 0.180544i −0.791593 0.611049i \(-0.790748\pi\)
0.611049 + 0.791593i \(0.290748\pi\)
\(992\) 178609.i 0.00576266i
\(993\) 3.28130e7i 1.05602i
\(994\) −34493.7 −0.00110732
\(995\) 1.38284e7 1.38284e7i 0.442808 0.442808i
\(996\) −9.41221e6 + 9.41221e6i −0.300638 + 0.300638i
\(997\) 6.13168e6 6.13168e6i 0.195363 0.195363i −0.602646 0.798009i \(-0.705887\pi\)
0.798009 + 0.602646i \(0.205887\pi\)
\(998\) −1.45759e7 1.45759e7i −0.463242 0.463242i
\(999\) −508761. 508761.i −0.0161287 0.0161287i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 82.6.c.a.73.7 yes 16
41.9 even 4 inner 82.6.c.a.9.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
82.6.c.a.9.7 16 41.9 even 4 inner
82.6.c.a.73.7 yes 16 1.1 even 1 trivial