Properties

Label 82.6.a.c.1.5
Level $82$
Weight $6$
Character 82.1
Self dual yes
Analytic conductor $13.151$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [82,6,Mod(1,82)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(82, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("82.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 82 = 2 \cdot 41 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 82.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.1514732247\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 730x^{3} - 4674x^{2} + 68790x + 487116 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-19.2082\) of defining polynomial
Character \(\chi\) \(=\) 82.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +17.2082 q^{3} +16.0000 q^{4} -11.6574 q^{5} -68.8328 q^{6} -121.255 q^{7} -64.0000 q^{8} +53.1223 q^{9} +46.6298 q^{10} -379.908 q^{11} +275.331 q^{12} -771.276 q^{13} +485.021 q^{14} -200.604 q^{15} +256.000 q^{16} +2288.12 q^{17} -212.489 q^{18} +401.355 q^{19} -186.519 q^{20} -2086.58 q^{21} +1519.63 q^{22} -4787.55 q^{23} -1101.33 q^{24} -2989.10 q^{25} +3085.11 q^{26} -3267.45 q^{27} -1940.08 q^{28} -5724.34 q^{29} +802.415 q^{30} +3444.52 q^{31} -1024.00 q^{32} -6537.54 q^{33} -9152.49 q^{34} +1413.53 q^{35} +849.957 q^{36} +8660.85 q^{37} -1605.42 q^{38} -13272.3 q^{39} +746.076 q^{40} -1681.00 q^{41} +8346.34 q^{42} +8179.43 q^{43} -6078.53 q^{44} -619.270 q^{45} +19150.2 q^{46} -18780.7 q^{47} +4405.30 q^{48} -2104.18 q^{49} +11956.4 q^{50} +39374.5 q^{51} -12340.4 q^{52} +2021.20 q^{53} +13069.8 q^{54} +4428.76 q^{55} +7760.33 q^{56} +6906.60 q^{57} +22897.4 q^{58} +45753.6 q^{59} -3209.66 q^{60} -25094.8 q^{61} -13778.1 q^{62} -6441.35 q^{63} +4096.00 q^{64} +8991.11 q^{65} +26150.2 q^{66} +27844.3 q^{67} +36609.9 q^{68} -82385.1 q^{69} -5654.10 q^{70} -23526.6 q^{71} -3399.83 q^{72} +19764.3 q^{73} -34643.4 q^{74} -51437.1 q^{75} +6421.68 q^{76} +46065.8 q^{77} +53089.1 q^{78} +92632.2 q^{79} -2984.31 q^{80} -69135.7 q^{81} +6724.00 q^{82} -98359.5 q^{83} -33385.3 q^{84} -26673.6 q^{85} -32717.7 q^{86} -98505.6 q^{87} +24314.1 q^{88} +5411.37 q^{89} +2477.08 q^{90} +93521.3 q^{91} -76600.7 q^{92} +59274.0 q^{93} +75122.9 q^{94} -4678.78 q^{95} -17621.2 q^{96} -37923.2 q^{97} +8416.72 q^{98} -20181.6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 20 q^{2} - 10 q^{3} + 80 q^{4} - 38 q^{5} + 40 q^{6} - 38 q^{7} - 320 q^{8} + 265 q^{9} + 152 q^{10} + 416 q^{11} - 160 q^{12} + 268 q^{13} + 152 q^{14} + 22 q^{15} + 1280 q^{16} - 2198 q^{17} - 1060 q^{18}+ \cdots - 139442 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 17.2082 1.10391 0.551953 0.833875i \(-0.313883\pi\)
0.551953 + 0.833875i \(0.313883\pi\)
\(4\) 16.0000 0.500000
\(5\) −11.6574 −0.208535 −0.104267 0.994549i \(-0.533250\pi\)
−0.104267 + 0.994549i \(0.533250\pi\)
\(6\) −68.8328 −0.780580
\(7\) −121.255 −0.935309 −0.467655 0.883911i \(-0.654901\pi\)
−0.467655 + 0.883911i \(0.654901\pi\)
\(8\) −64.0000 −0.353553
\(9\) 53.1223 0.218610
\(10\) 46.6298 0.147456
\(11\) −379.908 −0.946666 −0.473333 0.880883i \(-0.656949\pi\)
−0.473333 + 0.880883i \(0.656949\pi\)
\(12\) 275.331 0.551953
\(13\) −771.276 −1.26576 −0.632880 0.774250i \(-0.718128\pi\)
−0.632880 + 0.774250i \(0.718128\pi\)
\(14\) 485.021 0.661364
\(15\) −200.604 −0.230203
\(16\) 256.000 0.250000
\(17\) 2288.12 1.92025 0.960123 0.279579i \(-0.0901948\pi\)
0.960123 + 0.279579i \(0.0901948\pi\)
\(18\) −212.489 −0.154581
\(19\) 401.355 0.255061 0.127531 0.991835i \(-0.459295\pi\)
0.127531 + 0.991835i \(0.459295\pi\)
\(20\) −186.519 −0.104267
\(21\) −2086.58 −1.03249
\(22\) 1519.63 0.669394
\(23\) −4787.55 −1.88709 −0.943547 0.331240i \(-0.892533\pi\)
−0.943547 + 0.331240i \(0.892533\pi\)
\(24\) −1101.33 −0.390290
\(25\) −2989.10 −0.956513
\(26\) 3085.11 0.895028
\(27\) −3267.45 −0.862581
\(28\) −1940.08 −0.467655
\(29\) −5724.34 −1.26395 −0.631976 0.774988i \(-0.717756\pi\)
−0.631976 + 0.774988i \(0.717756\pi\)
\(30\) 802.415 0.162778
\(31\) 3444.52 0.643761 0.321881 0.946780i \(-0.395685\pi\)
0.321881 + 0.946780i \(0.395685\pi\)
\(32\) −1024.00 −0.176777
\(33\) −6537.54 −1.04503
\(34\) −9152.49 −1.35782
\(35\) 1413.53 0.195044
\(36\) 849.957 0.109305
\(37\) 8660.85 1.04005 0.520027 0.854150i \(-0.325922\pi\)
0.520027 + 0.854150i \(0.325922\pi\)
\(38\) −1605.42 −0.180356
\(39\) −13272.3 −1.39728
\(40\) 746.076 0.0737282
\(41\) −1681.00 −0.156174
\(42\) 8346.34 0.730084
\(43\) 8179.43 0.674608 0.337304 0.941396i \(-0.390485\pi\)
0.337304 + 0.941396i \(0.390485\pi\)
\(44\) −6078.53 −0.473333
\(45\) −619.270 −0.0455878
\(46\) 19150.2 1.33438
\(47\) −18780.7 −1.24013 −0.620066 0.784550i \(-0.712894\pi\)
−0.620066 + 0.784550i \(0.712894\pi\)
\(48\) 4405.30 0.275977
\(49\) −2104.18 −0.125197
\(50\) 11956.4 0.676357
\(51\) 39374.5 2.11977
\(52\) −12340.4 −0.632880
\(53\) 2021.20 0.0988370 0.0494185 0.998778i \(-0.484263\pi\)
0.0494185 + 0.998778i \(0.484263\pi\)
\(54\) 13069.8 0.609937
\(55\) 4428.76 0.197413
\(56\) 7760.33 0.330682
\(57\) 6906.60 0.281564
\(58\) 22897.4 0.893748
\(59\) 45753.6 1.71118 0.855590 0.517655i \(-0.173195\pi\)
0.855590 + 0.517655i \(0.173195\pi\)
\(60\) −3209.66 −0.115101
\(61\) −25094.8 −0.863492 −0.431746 0.901995i \(-0.642102\pi\)
−0.431746 + 0.901995i \(0.642102\pi\)
\(62\) −13778.1 −0.455208
\(63\) −6441.35 −0.204468
\(64\) 4096.00 0.125000
\(65\) 8991.11 0.263955
\(66\) 26150.2 0.738949
\(67\) 27844.3 0.757790 0.378895 0.925440i \(-0.376304\pi\)
0.378895 + 0.925440i \(0.376304\pi\)
\(68\) 36609.9 0.960123
\(69\) −82385.1 −2.08318
\(70\) −5654.10 −0.137917
\(71\) −23526.6 −0.553877 −0.276939 0.960888i \(-0.589320\pi\)
−0.276939 + 0.960888i \(0.589320\pi\)
\(72\) −3399.83 −0.0772904
\(73\) 19764.3 0.434086 0.217043 0.976162i \(-0.430359\pi\)
0.217043 + 0.976162i \(0.430359\pi\)
\(74\) −34643.4 −0.735430
\(75\) −51437.1 −1.05590
\(76\) 6421.68 0.127531
\(77\) 46065.8 0.885426
\(78\) 53089.1 0.988028
\(79\) 92632.2 1.66991 0.834957 0.550315i \(-0.185492\pi\)
0.834957 + 0.550315i \(0.185492\pi\)
\(80\) −2984.31 −0.0521337
\(81\) −69135.7 −1.17082
\(82\) 6724.00 0.110432
\(83\) −98359.5 −1.56719 −0.783594 0.621274i \(-0.786616\pi\)
−0.783594 + 0.621274i \(0.786616\pi\)
\(84\) −33385.3 −0.516247
\(85\) −26673.6 −0.400438
\(86\) −32717.7 −0.477020
\(87\) −98505.6 −1.39528
\(88\) 24314.1 0.334697
\(89\) 5411.37 0.0724157 0.0362078 0.999344i \(-0.488472\pi\)
0.0362078 + 0.999344i \(0.488472\pi\)
\(90\) 2477.08 0.0322355
\(91\) 93521.3 1.18388
\(92\) −76600.7 −0.943547
\(93\) 59274.0 0.710652
\(94\) 75122.9 0.876906
\(95\) −4678.78 −0.0531892
\(96\) −17621.2 −0.195145
\(97\) −37923.2 −0.409238 −0.204619 0.978842i \(-0.565596\pi\)
−0.204619 + 0.978842i \(0.565596\pi\)
\(98\) 8416.72 0.0885274
\(99\) −20181.6 −0.206951
\(100\) −47825.7 −0.478257
\(101\) −11287.7 −0.110103 −0.0550517 0.998484i \(-0.517532\pi\)
−0.0550517 + 0.998484i \(0.517532\pi\)
\(102\) −157498. −1.49891
\(103\) 85113.2 0.790504 0.395252 0.918573i \(-0.370657\pi\)
0.395252 + 0.918573i \(0.370657\pi\)
\(104\) 49361.7 0.447514
\(105\) 24324.2 0.215311
\(106\) −8084.80 −0.0698883
\(107\) −172432. −1.45599 −0.727996 0.685582i \(-0.759548\pi\)
−0.727996 + 0.685582i \(0.759548\pi\)
\(108\) −52279.3 −0.431291
\(109\) 220320. 1.77618 0.888092 0.459666i \(-0.152031\pi\)
0.888092 + 0.459666i \(0.152031\pi\)
\(110\) −17715.0 −0.139592
\(111\) 149038. 1.14812
\(112\) −31041.3 −0.233827
\(113\) 201882. 1.48731 0.743654 0.668565i \(-0.233091\pi\)
0.743654 + 0.668565i \(0.233091\pi\)
\(114\) −27626.4 −0.199096
\(115\) 55810.6 0.393524
\(116\) −91589.4 −0.631976
\(117\) −40972.0 −0.276708
\(118\) −183015. −1.20999
\(119\) −277447. −1.79602
\(120\) 12838.6 0.0813890
\(121\) −16720.8 −0.103823
\(122\) 100379. 0.610581
\(123\) −28927.0 −0.172401
\(124\) 55112.4 0.321881
\(125\) 71274.8 0.408001
\(126\) 25765.4 0.144581
\(127\) −130701. −0.719070 −0.359535 0.933132i \(-0.617065\pi\)
−0.359535 + 0.933132i \(0.617065\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 140753. 0.744705
\(130\) −35964.4 −0.186644
\(131\) −69625.8 −0.354480 −0.177240 0.984168i \(-0.556717\pi\)
−0.177240 + 0.984168i \(0.556717\pi\)
\(132\) −104601. −0.522516
\(133\) −48666.4 −0.238561
\(134\) −111377. −0.535839
\(135\) 38090.2 0.179878
\(136\) −146440. −0.678909
\(137\) 234560. 1.06771 0.533855 0.845576i \(-0.320743\pi\)
0.533855 + 0.845576i \(0.320743\pi\)
\(138\) 329540. 1.47303
\(139\) −232569. −1.02097 −0.510487 0.859885i \(-0.670535\pi\)
−0.510487 + 0.859885i \(0.670535\pi\)
\(140\) 22616.4 0.0975222
\(141\) −323183. −1.36899
\(142\) 94106.5 0.391650
\(143\) 293014. 1.19825
\(144\) 13599.3 0.0546526
\(145\) 66731.2 0.263578
\(146\) −79057.4 −0.306945
\(147\) −36209.2 −0.138205
\(148\) 138574. 0.520027
\(149\) −256426. −0.946230 −0.473115 0.881001i \(-0.656870\pi\)
−0.473115 + 0.881001i \(0.656870\pi\)
\(150\) 205748. 0.746635
\(151\) 36721.0 0.131061 0.0655303 0.997851i \(-0.479126\pi\)
0.0655303 + 0.997851i \(0.479126\pi\)
\(152\) −25686.7 −0.0901778
\(153\) 121550. 0.419785
\(154\) −184263. −0.626091
\(155\) −40154.3 −0.134247
\(156\) −212357. −0.698641
\(157\) 123544. 0.400012 0.200006 0.979795i \(-0.435904\pi\)
0.200006 + 0.979795i \(0.435904\pi\)
\(158\) −370529. −1.18081
\(159\) 34781.2 0.109107
\(160\) 11937.2 0.0368641
\(161\) 580515. 1.76502
\(162\) 276543. 0.827895
\(163\) 306138. 0.902502 0.451251 0.892397i \(-0.350978\pi\)
0.451251 + 0.892397i \(0.350978\pi\)
\(164\) −26896.0 −0.0780869
\(165\) 76211.0 0.217925
\(166\) 393438. 1.10817
\(167\) −596701. −1.65564 −0.827819 0.560995i \(-0.810419\pi\)
−0.827819 + 0.560995i \(0.810419\pi\)
\(168\) 133541. 0.365042
\(169\) 223574. 0.602151
\(170\) 106695. 0.283152
\(171\) 21320.9 0.0557590
\(172\) 130871. 0.337304
\(173\) 55163.9 0.140133 0.0700664 0.997542i \(-0.477679\pi\)
0.0700664 + 0.997542i \(0.477679\pi\)
\(174\) 394022. 0.986615
\(175\) 362444. 0.894636
\(176\) −97256.5 −0.236667
\(177\) 787338. 1.88898
\(178\) −21645.5 −0.0512056
\(179\) −90282.8 −0.210607 −0.105303 0.994440i \(-0.533581\pi\)
−0.105303 + 0.994440i \(0.533581\pi\)
\(180\) −9908.32 −0.0227939
\(181\) 106707. 0.242100 0.121050 0.992646i \(-0.461374\pi\)
0.121050 + 0.992646i \(0.461374\pi\)
\(182\) −374085. −0.837128
\(183\) −431836. −0.953215
\(184\) 306403. 0.667188
\(185\) −100963. −0.216887
\(186\) −237096. −0.502507
\(187\) −869276. −1.81783
\(188\) −300492. −0.620066
\(189\) 396196. 0.806780
\(190\) 18715.1 0.0376104
\(191\) −646690. −1.28266 −0.641331 0.767264i \(-0.721618\pi\)
−0.641331 + 0.767264i \(0.721618\pi\)
\(192\) 70484.8 0.137988
\(193\) 457039. 0.883201 0.441601 0.897212i \(-0.354411\pi\)
0.441601 + 0.897212i \(0.354411\pi\)
\(194\) 151693. 0.289375
\(195\) 154721. 0.291382
\(196\) −33666.9 −0.0625983
\(197\) −513012. −0.941808 −0.470904 0.882184i \(-0.656072\pi\)
−0.470904 + 0.882184i \(0.656072\pi\)
\(198\) 80726.4 0.146336
\(199\) −615301. −1.10143 −0.550713 0.834695i \(-0.685644\pi\)
−0.550713 + 0.834695i \(0.685644\pi\)
\(200\) 191303. 0.338179
\(201\) 479150. 0.836530
\(202\) 45150.6 0.0778548
\(203\) 694106. 1.18219
\(204\) 629991. 1.05989
\(205\) 19596.2 0.0325676
\(206\) −340453. −0.558971
\(207\) −254325. −0.412538
\(208\) −197447. −0.316440
\(209\) −152478. −0.241458
\(210\) −97296.9 −0.152248
\(211\) −483353. −0.747409 −0.373705 0.927548i \(-0.621913\pi\)
−0.373705 + 0.927548i \(0.621913\pi\)
\(212\) 32339.2 0.0494185
\(213\) −404851. −0.611429
\(214\) 689728. 1.02954
\(215\) −95351.2 −0.140679
\(216\) 209117. 0.304969
\(217\) −417666. −0.602116
\(218\) −881281. −1.25595
\(219\) 340109. 0.479190
\(220\) 70860.1 0.0987064
\(221\) −1.76477e6 −2.43057
\(222\) −596150. −0.811846
\(223\) −26435.3 −0.0355978 −0.0177989 0.999842i \(-0.505666\pi\)
−0.0177989 + 0.999842i \(0.505666\pi\)
\(224\) 124165. 0.165341
\(225\) −158788. −0.209104
\(226\) −807526. −1.05168
\(227\) −812709. −1.04682 −0.523408 0.852082i \(-0.675340\pi\)
−0.523408 + 0.852082i \(0.675340\pi\)
\(228\) 110506. 0.140782
\(229\) 159021. 0.200385 0.100193 0.994968i \(-0.468054\pi\)
0.100193 + 0.994968i \(0.468054\pi\)
\(230\) −223242. −0.278264
\(231\) 792710. 0.977428
\(232\) 366358. 0.446874
\(233\) −59625.4 −0.0719517 −0.0359759 0.999353i \(-0.511454\pi\)
−0.0359759 + 0.999353i \(0.511454\pi\)
\(234\) 163888. 0.195662
\(235\) 218935. 0.258611
\(236\) 732058. 0.855590
\(237\) 1.59403e6 1.84343
\(238\) 1.10979e6 1.26998
\(239\) −742389. −0.840691 −0.420346 0.907364i \(-0.638091\pi\)
−0.420346 + 0.907364i \(0.638091\pi\)
\(240\) −51354.5 −0.0575507
\(241\) 36559.2 0.0405465 0.0202733 0.999794i \(-0.493546\pi\)
0.0202733 + 0.999794i \(0.493546\pi\)
\(242\) 66883.1 0.0734138
\(243\) −395710. −0.429894
\(244\) −401516. −0.431746
\(245\) 24529.4 0.0261078
\(246\) 115708. 0.121906
\(247\) −309556. −0.322847
\(248\) −220449. −0.227604
\(249\) −1.69259e6 −1.73003
\(250\) −285099. −0.288500
\(251\) 1.18970e6 1.19193 0.595966 0.803010i \(-0.296769\pi\)
0.595966 + 0.803010i \(0.296769\pi\)
\(252\) −103062. −0.102234
\(253\) 1.81883e6 1.78645
\(254\) 522806. 0.508459
\(255\) −459006. −0.442046
\(256\) 65536.0 0.0625000
\(257\) −1.99616e6 −1.88522 −0.942612 0.333891i \(-0.891638\pi\)
−0.942612 + 0.333891i \(0.891638\pi\)
\(258\) −563013. −0.526586
\(259\) −1.05017e6 −0.972772
\(260\) 143858. 0.131978
\(261\) −304090. −0.276313
\(262\) 278503. 0.250655
\(263\) −1.75336e6 −1.56308 −0.781541 0.623854i \(-0.785566\pi\)
−0.781541 + 0.623854i \(0.785566\pi\)
\(264\) 418402. 0.369474
\(265\) −23562.0 −0.0206109
\(266\) 194666. 0.168688
\(267\) 93120.0 0.0799401
\(268\) 445508. 0.378895
\(269\) −58101.7 −0.0489563 −0.0244781 0.999700i \(-0.507792\pi\)
−0.0244781 + 0.999700i \(0.507792\pi\)
\(270\) −152361. −0.127193
\(271\) 191066. 0.158038 0.0790189 0.996873i \(-0.474821\pi\)
0.0790189 + 0.996873i \(0.474821\pi\)
\(272\) 585759. 0.480061
\(273\) 1.60933e6 1.30689
\(274\) −938241. −0.754984
\(275\) 1.13559e6 0.905499
\(276\) −1.31816e6 −1.04159
\(277\) −1.61158e6 −1.26198 −0.630989 0.775792i \(-0.717351\pi\)
−0.630989 + 0.775792i \(0.717351\pi\)
\(278\) 930276. 0.721938
\(279\) 182981. 0.140733
\(280\) −90465.6 −0.0689586
\(281\) 1.10967e6 0.838355 0.419177 0.907904i \(-0.362319\pi\)
0.419177 + 0.907904i \(0.362319\pi\)
\(282\) 1.29273e6 0.968022
\(283\) −1.85363e6 −1.37581 −0.687903 0.725802i \(-0.741469\pi\)
−0.687903 + 0.725802i \(0.741469\pi\)
\(284\) −376426. −0.276939
\(285\) −80513.3 −0.0587159
\(286\) −1.17206e6 −0.847293
\(287\) 203830. 0.146071
\(288\) −54397.2 −0.0386452
\(289\) 3.81564e6 2.68734
\(290\) −266925. −0.186378
\(291\) −652590. −0.451760
\(292\) 316230. 0.217043
\(293\) 468790. 0.319014 0.159507 0.987197i \(-0.449010\pi\)
0.159507 + 0.987197i \(0.449010\pi\)
\(294\) 144837. 0.0977260
\(295\) −533370. −0.356840
\(296\) −554294. −0.367715
\(297\) 1.24133e6 0.816577
\(298\) 1.02570e6 0.669085
\(299\) 3.69252e6 2.38861
\(300\) −822994. −0.527951
\(301\) −991798. −0.630967
\(302\) −146884. −0.0926738
\(303\) −194240. −0.121544
\(304\) 102747. 0.0637654
\(305\) 292541. 0.180068
\(306\) −486201. −0.296833
\(307\) −1.15839e6 −0.701472 −0.350736 0.936474i \(-0.614069\pi\)
−0.350736 + 0.936474i \(0.614069\pi\)
\(308\) 737053. 0.442713
\(309\) 1.46465e6 0.872643
\(310\) 160617. 0.0949266
\(311\) 1.31726e6 0.772271 0.386136 0.922442i \(-0.373810\pi\)
0.386136 + 0.922442i \(0.373810\pi\)
\(312\) 849426. 0.494014
\(313\) 1.51337e6 0.873140 0.436570 0.899670i \(-0.356193\pi\)
0.436570 + 0.899670i \(0.356193\pi\)
\(314\) −494177. −0.282851
\(315\) 75089.7 0.0426387
\(316\) 1.48212e6 0.834957
\(317\) 793249. 0.443365 0.221682 0.975119i \(-0.428845\pi\)
0.221682 + 0.975119i \(0.428845\pi\)
\(318\) −139125. −0.0771502
\(319\) 2.17472e6 1.19654
\(320\) −47748.9 −0.0260668
\(321\) −2.96725e6 −1.60728
\(322\) −2.32206e6 −1.24805
\(323\) 918349. 0.489781
\(324\) −1.10617e6 −0.585410
\(325\) 2.30543e6 1.21072
\(326\) −1.22455e6 −0.638165
\(327\) 3.79131e6 1.96074
\(328\) 107584. 0.0552158
\(329\) 2.27726e6 1.15991
\(330\) −304844. −0.154096
\(331\) 1.27130e6 0.637791 0.318896 0.947790i \(-0.396688\pi\)
0.318896 + 0.947790i \(0.396688\pi\)
\(332\) −1.57375e6 −0.783594
\(333\) 460084. 0.227367
\(334\) 2.38680e6 1.17071
\(335\) −324593. −0.158026
\(336\) −534166. −0.258124
\(337\) −3.22914e6 −1.54886 −0.774429 0.632661i \(-0.781963\pi\)
−0.774429 + 0.632661i \(0.781963\pi\)
\(338\) −894297. −0.425785
\(339\) 3.47402e6 1.64185
\(340\) −426778. −0.200219
\(341\) −1.30860e6 −0.609427
\(342\) −85283.6 −0.0394276
\(343\) 2.29308e6 1.05241
\(344\) −523483. −0.238510
\(345\) 960399. 0.434414
\(346\) −220656. −0.0990889
\(347\) −3.58896e6 −1.60009 −0.800046 0.599939i \(-0.795191\pi\)
−0.800046 + 0.599939i \(0.795191\pi\)
\(348\) −1.57609e6 −0.697642
\(349\) −2.16986e6 −0.953606 −0.476803 0.879010i \(-0.658205\pi\)
−0.476803 + 0.879010i \(0.658205\pi\)
\(350\) −1.44978e6 −0.632603
\(351\) 2.52011e6 1.09182
\(352\) 389026. 0.167349
\(353\) −3.83421e6 −1.63772 −0.818858 0.573996i \(-0.805393\pi\)
−0.818858 + 0.573996i \(0.805393\pi\)
\(354\) −3.14935e6 −1.33571
\(355\) 274260. 0.115503
\(356\) 86582.0 0.0362078
\(357\) −4.77436e6 −1.98264
\(358\) 361131. 0.148922
\(359\) −2.82546e6 −1.15705 −0.578526 0.815664i \(-0.696372\pi\)
−0.578526 + 0.815664i \(0.696372\pi\)
\(360\) 39633.3 0.0161177
\(361\) −2.31501e6 −0.934944
\(362\) −426827. −0.171191
\(363\) −287734. −0.114611
\(364\) 1.49634e6 0.591939
\(365\) −230402. −0.0905219
\(366\) 1.72734e6 0.674025
\(367\) −2.72488e6 −1.05604 −0.528022 0.849231i \(-0.677066\pi\)
−0.528022 + 0.849231i \(0.677066\pi\)
\(368\) −1.22561e6 −0.471773
\(369\) −89298.6 −0.0341412
\(370\) 403853. 0.153363
\(371\) −245081. −0.0924431
\(372\) 948385. 0.355326
\(373\) −2.06470e6 −0.768396 −0.384198 0.923251i \(-0.625522\pi\)
−0.384198 + 0.923251i \(0.625522\pi\)
\(374\) 3.47710e6 1.28540
\(375\) 1.22651e6 0.450395
\(376\) 1.20197e6 0.438453
\(377\) 4.41505e6 1.59986
\(378\) −1.58478e6 −0.570480
\(379\) −879611. −0.314552 −0.157276 0.987555i \(-0.550271\pi\)
−0.157276 + 0.987555i \(0.550271\pi\)
\(380\) −74860.4 −0.0265946
\(381\) −2.24914e6 −0.793786
\(382\) 2.58676e6 0.906979
\(383\) 1.08234e6 0.377021 0.188511 0.982071i \(-0.439634\pi\)
0.188511 + 0.982071i \(0.439634\pi\)
\(384\) −281939. −0.0975725
\(385\) −537010. −0.184642
\(386\) −1.82816e6 −0.624518
\(387\) 434510. 0.147476
\(388\) −606771. −0.204619
\(389\) 4.48669e6 1.50332 0.751661 0.659550i \(-0.229253\pi\)
0.751661 + 0.659550i \(0.229253\pi\)
\(390\) −618884. −0.206038
\(391\) −1.09545e7 −3.62368
\(392\) 134668. 0.0442637
\(393\) −1.19814e6 −0.391313
\(394\) 2.05205e6 0.665959
\(395\) −1.07985e6 −0.348235
\(396\) −322905. −0.103475
\(397\) −1.44653e6 −0.460629 −0.230314 0.973116i \(-0.573975\pi\)
−0.230314 + 0.973116i \(0.573975\pi\)
\(398\) 2.46120e6 0.778825
\(399\) −837461. −0.263349
\(400\) −765211. −0.239128
\(401\) 5.12175e6 1.59059 0.795294 0.606224i \(-0.207316\pi\)
0.795294 + 0.606224i \(0.207316\pi\)
\(402\) −1.91660e6 −0.591516
\(403\) −2.65668e6 −0.814848
\(404\) −180603. −0.0550517
\(405\) 805946. 0.244157
\(406\) −2.77642e6 −0.835931
\(407\) −3.29033e6 −0.984584
\(408\) −2.51997e6 −0.749453
\(409\) 4.30793e6 1.27339 0.636693 0.771117i \(-0.280302\pi\)
0.636693 + 0.771117i \(0.280302\pi\)
\(410\) −78384.7 −0.0230288
\(411\) 4.03636e6 1.17865
\(412\) 1.36181e6 0.395252
\(413\) −5.54786e6 −1.60048
\(414\) 1.01730e6 0.291708
\(415\) 1.14662e6 0.326813
\(416\) 789787. 0.223757
\(417\) −4.00210e6 −1.12706
\(418\) 609912. 0.170737
\(419\) 4.20512e6 1.17015 0.585077 0.810978i \(-0.301064\pi\)
0.585077 + 0.810978i \(0.301064\pi\)
\(420\) 389188. 0.107655
\(421\) 4.33022e6 1.19071 0.595353 0.803464i \(-0.297012\pi\)
0.595353 + 0.803464i \(0.297012\pi\)
\(422\) 1.93341e6 0.528498
\(423\) −997676. −0.271106
\(424\) −129357. −0.0349441
\(425\) −6.83943e6 −1.83674
\(426\) 1.61940e6 0.432346
\(427\) 3.04287e6 0.807632
\(428\) −2.75891e6 −0.727996
\(429\) 5.04225e6 1.32276
\(430\) 381405. 0.0994753
\(431\) 5.17175e6 1.34105 0.670524 0.741888i \(-0.266069\pi\)
0.670524 + 0.741888i \(0.266069\pi\)
\(432\) −836468. −0.215645
\(433\) −233332. −0.0598074 −0.0299037 0.999553i \(-0.509520\pi\)
−0.0299037 + 0.999553i \(0.509520\pi\)
\(434\) 1.67066e6 0.425760
\(435\) 1.14832e6 0.290965
\(436\) 3.52512e6 0.888092
\(437\) −1.92151e6 −0.481325
\(438\) −1.36044e6 −0.338838
\(439\) −3.29986e6 −0.817211 −0.408606 0.912711i \(-0.633985\pi\)
−0.408606 + 0.912711i \(0.633985\pi\)
\(440\) −283441. −0.0697960
\(441\) −111779. −0.0273693
\(442\) 7.05910e6 1.71867
\(443\) 1.37780e6 0.333562 0.166781 0.985994i \(-0.446663\pi\)
0.166781 + 0.985994i \(0.446663\pi\)
\(444\) 2.38460e6 0.574062
\(445\) −63082.8 −0.0151012
\(446\) 105741. 0.0251714
\(447\) −4.41263e6 −1.04455
\(448\) −496661. −0.116914
\(449\) 866827. 0.202916 0.101458 0.994840i \(-0.467649\pi\)
0.101458 + 0.994840i \(0.467649\pi\)
\(450\) 635152. 0.147859
\(451\) 638626. 0.147844
\(452\) 3.23011e6 0.743654
\(453\) 631902. 0.144679
\(454\) 3.25083e6 0.740210
\(455\) −1.09022e6 −0.246880
\(456\) −442022. −0.0995479
\(457\) 5.48827e6 1.22926 0.614631 0.788815i \(-0.289305\pi\)
0.614631 + 0.788815i \(0.289305\pi\)
\(458\) −636083. −0.141694
\(459\) −7.47633e6 −1.65637
\(460\) 892969. 0.196762
\(461\) 6.52468e6 1.42991 0.714953 0.699173i \(-0.246448\pi\)
0.714953 + 0.699173i \(0.246448\pi\)
\(462\) −3.17084e6 −0.691146
\(463\) 847051. 0.183636 0.0918178 0.995776i \(-0.470732\pi\)
0.0918178 + 0.995776i \(0.470732\pi\)
\(464\) −1.46543e6 −0.315988
\(465\) −690984. −0.148196
\(466\) 238501. 0.0508776
\(467\) −4.69693e6 −0.996603 −0.498302 0.867004i \(-0.666043\pi\)
−0.498302 + 0.867004i \(0.666043\pi\)
\(468\) −655552. −0.138354
\(469\) −3.37626e6 −0.708768
\(470\) −875742. −0.182865
\(471\) 2.12597e6 0.441576
\(472\) −2.92823e6 −0.604993
\(473\) −3.10743e6 −0.638629
\(474\) −6.37614e6 −1.30350
\(475\) −1.19969e6 −0.243970
\(476\) −4.43915e6 −0.898012
\(477\) 107371. 0.0216068
\(478\) 2.96955e6 0.594458
\(479\) 2.95657e6 0.588776 0.294388 0.955686i \(-0.404884\pi\)
0.294388 + 0.955686i \(0.404884\pi\)
\(480\) 205418. 0.0406945
\(481\) −6.67991e6 −1.31646
\(482\) −146237. −0.0286707
\(483\) 9.98962e6 1.94841
\(484\) −267532. −0.0519114
\(485\) 442088. 0.0853403
\(486\) 1.58284e6 0.303981
\(487\) 2.50852e6 0.479286 0.239643 0.970861i \(-0.422970\pi\)
0.239643 + 0.970861i \(0.422970\pi\)
\(488\) 1.60606e6 0.305291
\(489\) 5.26808e6 0.996278
\(490\) −98117.4 −0.0184610
\(491\) 9.20277e6 1.72272 0.861361 0.507994i \(-0.169613\pi\)
0.861361 + 0.507994i \(0.169613\pi\)
\(492\) −462832. −0.0862006
\(493\) −1.30980e7 −2.42710
\(494\) 1.23822e6 0.228287
\(495\) 235266. 0.0431565
\(496\) 881798. 0.160940
\(497\) 2.85272e6 0.518047
\(498\) 6.77036e6 1.22332
\(499\) −4.58684e6 −0.824635 −0.412318 0.911040i \(-0.635281\pi\)
−0.412318 + 0.911040i \(0.635281\pi\)
\(500\) 1.14040e6 0.204000
\(501\) −1.02681e7 −1.82767
\(502\) −4.75878e6 −0.842823
\(503\) −5.00732e6 −0.882440 −0.441220 0.897399i \(-0.645454\pi\)
−0.441220 + 0.897399i \(0.645454\pi\)
\(504\) 412247. 0.0722904
\(505\) 131585. 0.0229604
\(506\) −7.27531e6 −1.26321
\(507\) 3.84731e6 0.664718
\(508\) −2.09122e6 −0.359535
\(509\) −6.76573e6 −1.15750 −0.578749 0.815505i \(-0.696459\pi\)
−0.578749 + 0.815505i \(0.696459\pi\)
\(510\) 1.83602e6 0.312574
\(511\) −2.39653e6 −0.406004
\(512\) −262144. −0.0441942
\(513\) −1.31141e6 −0.220011
\(514\) 7.98465e6 1.33305
\(515\) −992203. −0.164847
\(516\) 2.25205e6 0.372352
\(517\) 7.13496e6 1.17399
\(518\) 4.20069e6 0.687854
\(519\) 949272. 0.154694
\(520\) −575431. −0.0933222
\(521\) 6.65292e6 1.07379 0.536893 0.843650i \(-0.319598\pi\)
0.536893 + 0.843650i \(0.319598\pi\)
\(522\) 1.21636e6 0.195383
\(523\) 1.61858e6 0.258749 0.129374 0.991596i \(-0.458703\pi\)
0.129374 + 0.991596i \(0.458703\pi\)
\(524\) −1.11401e6 −0.177240
\(525\) 6.23702e6 0.987594
\(526\) 7.01344e6 1.10527
\(527\) 7.88149e6 1.23618
\(528\) −1.67361e6 −0.261258
\(529\) 1.64843e7 2.56112
\(530\) 94248.1 0.0145741
\(531\) 2.43054e6 0.374081
\(532\) −778662. −0.119281
\(533\) 1.29652e6 0.197679
\(534\) −372480. −0.0565262
\(535\) 2.01012e6 0.303625
\(536\) −1.78203e6 −0.267919
\(537\) −1.55361e6 −0.232490
\(538\) 232407. 0.0346173
\(539\) 799395. 0.118519
\(540\) 609443. 0.0899391
\(541\) −5.54011e6 −0.813814 −0.406907 0.913470i \(-0.633393\pi\)
−0.406907 + 0.913470i \(0.633393\pi\)
\(542\) −764265. −0.111750
\(543\) 1.83623e6 0.267256
\(544\) −2.34304e6 −0.339455
\(545\) −2.56837e6 −0.370396
\(546\) −6.43733e6 −0.924111
\(547\) 5.08966e6 0.727312 0.363656 0.931533i \(-0.381528\pi\)
0.363656 + 0.931533i \(0.381528\pi\)
\(548\) 3.75296e6 0.533855
\(549\) −1.33309e6 −0.188768
\(550\) −4.54234e6 −0.640284
\(551\) −2.29749e6 −0.322385
\(552\) 5.27264e6 0.736514
\(553\) −1.12321e7 −1.56189
\(554\) 6.44631e6 0.892353
\(555\) −1.73740e6 −0.239424
\(556\) −3.72111e6 −0.510487
\(557\) −2.56423e6 −0.350202 −0.175101 0.984551i \(-0.556025\pi\)
−0.175101 + 0.984551i \(0.556025\pi\)
\(558\) −731924. −0.0995131
\(559\) −6.30860e6 −0.853893
\(560\) 361863. 0.0487611
\(561\) −1.49587e7 −2.00672
\(562\) −4.43868e6 −0.592806
\(563\) −2.17607e6 −0.289336 −0.144668 0.989480i \(-0.546211\pi\)
−0.144668 + 0.989480i \(0.546211\pi\)
\(564\) −5.17092e6 −0.684495
\(565\) −2.35342e6 −0.310155
\(566\) 7.41453e6 0.972842
\(567\) 8.38307e6 1.09508
\(568\) 1.50570e6 0.195825
\(569\) 1.01231e6 0.131079 0.0655396 0.997850i \(-0.479123\pi\)
0.0655396 + 0.997850i \(0.479123\pi\)
\(570\) 322053. 0.0415184
\(571\) 4.89623e6 0.628451 0.314225 0.949348i \(-0.398255\pi\)
0.314225 + 0.949348i \(0.398255\pi\)
\(572\) 4.68823e6 0.599127
\(573\) −1.11284e7 −1.41594
\(574\) −815320. −0.103288
\(575\) 1.43105e7 1.80503
\(576\) 217589. 0.0273263
\(577\) −9.71524e6 −1.21483 −0.607413 0.794386i \(-0.707793\pi\)
−0.607413 + 0.794386i \(0.707793\pi\)
\(578\) −1.52626e7 −1.90024
\(579\) 7.86482e6 0.974972
\(580\) 1.06770e6 0.131789
\(581\) 1.19266e7 1.46581
\(582\) 2.61036e6 0.319443
\(583\) −767870. −0.0935656
\(584\) −1.26492e6 −0.153472
\(585\) 477628. 0.0577033
\(586\) −1.87516e6 −0.225577
\(587\) −3.69221e6 −0.442274 −0.221137 0.975243i \(-0.570977\pi\)
−0.221137 + 0.975243i \(0.570977\pi\)
\(588\) −579346. −0.0691027
\(589\) 1.38248e6 0.164199
\(590\) 2.13348e6 0.252324
\(591\) −8.82802e6 −1.03967
\(592\) 2.21718e6 0.260014
\(593\) −2.13984e6 −0.249887 −0.124944 0.992164i \(-0.539875\pi\)
−0.124944 + 0.992164i \(0.539875\pi\)
\(594\) −4.96533e6 −0.577407
\(595\) 3.23432e6 0.374533
\(596\) −4.10282e6 −0.473115
\(597\) −1.05882e7 −1.21587
\(598\) −1.47701e7 −1.68900
\(599\) −1.50623e7 −1.71524 −0.857619 0.514286i \(-0.828057\pi\)
−0.857619 + 0.514286i \(0.828057\pi\)
\(600\) 3.29198e6 0.373318
\(601\) −1.34923e7 −1.52370 −0.761849 0.647755i \(-0.775708\pi\)
−0.761849 + 0.647755i \(0.775708\pi\)
\(602\) 3.96719e6 0.446161
\(603\) 1.47915e6 0.165661
\(604\) 587536. 0.0655303
\(605\) 194921. 0.0216507
\(606\) 776961. 0.0859444
\(607\) −222180. −0.0244756 −0.0122378 0.999925i \(-0.503896\pi\)
−0.0122378 + 0.999925i \(0.503896\pi\)
\(608\) −410988. −0.0450889
\(609\) 1.19443e7 1.30502
\(610\) −1.17016e6 −0.127327
\(611\) 1.44851e7 1.56971
\(612\) 1.94480e6 0.209893
\(613\) −3.66739e6 −0.394190 −0.197095 0.980384i \(-0.563151\pi\)
−0.197095 + 0.980384i \(0.563151\pi\)
\(614\) 4.63358e6 0.496016
\(615\) 337215. 0.0359517
\(616\) −2.94821e6 −0.313045
\(617\) −1.35201e7 −1.42977 −0.714886 0.699241i \(-0.753521\pi\)
−0.714886 + 0.699241i \(0.753521\pi\)
\(618\) −5.85858e6 −0.617052
\(619\) 5.14426e6 0.539630 0.269815 0.962912i \(-0.413037\pi\)
0.269815 + 0.962912i \(0.413037\pi\)
\(620\) −642469. −0.0671233
\(621\) 1.56431e7 1.62777
\(622\) −5.26903e6 −0.546078
\(623\) −656157. −0.0677310
\(624\) −3.39770e6 −0.349321
\(625\) 8.51007e6 0.871431
\(626\) −6.05347e6 −0.617403
\(627\) −2.62387e6 −0.266547
\(628\) 1.97671e6 0.200006
\(629\) 1.98171e7 1.99716
\(630\) −300359. −0.0301501
\(631\) −1.10859e7 −1.10841 −0.554204 0.832381i \(-0.686977\pi\)
−0.554204 + 0.832381i \(0.686977\pi\)
\(632\) −5.92846e6 −0.590404
\(633\) −8.31764e6 −0.825070
\(634\) −3.17299e6 −0.313506
\(635\) 1.52365e6 0.149951
\(636\) 556499. 0.0545534
\(637\) 1.62290e6 0.158469
\(638\) −8.69889e6 −0.846082
\(639\) −1.24979e6 −0.121083
\(640\) 190996. 0.0184320
\(641\) 2.04308e6 0.196400 0.0981998 0.995167i \(-0.468692\pi\)
0.0981998 + 0.995167i \(0.468692\pi\)
\(642\) 1.18690e7 1.13652
\(643\) 3.32184e6 0.316848 0.158424 0.987371i \(-0.449359\pi\)
0.158424 + 0.987371i \(0.449359\pi\)
\(644\) 9.28824e6 0.882508
\(645\) −1.64082e6 −0.155297
\(646\) −3.67340e6 −0.346327
\(647\) −4.74219e6 −0.445367 −0.222684 0.974891i \(-0.571482\pi\)
−0.222684 + 0.974891i \(0.571482\pi\)
\(648\) 4.42469e6 0.413947
\(649\) −1.73822e7 −1.61992
\(650\) −9.22170e6 −0.856106
\(651\) −7.18728e6 −0.664680
\(652\) 4.89821e6 0.451251
\(653\) 5.28532e6 0.485052 0.242526 0.970145i \(-0.422024\pi\)
0.242526 + 0.970145i \(0.422024\pi\)
\(654\) −1.51653e7 −1.38645
\(655\) 811659. 0.0739215
\(656\) −430336. −0.0390434
\(657\) 1.04993e6 0.0948955
\(658\) −9.10905e6 −0.820178
\(659\) 6.67742e6 0.598957 0.299478 0.954103i \(-0.403187\pi\)
0.299478 + 0.954103i \(0.403187\pi\)
\(660\) 1.21938e6 0.108963
\(661\) 1.01972e7 0.907771 0.453885 0.891060i \(-0.350038\pi\)
0.453885 + 0.891060i \(0.350038\pi\)
\(662\) −5.08520e6 −0.450986
\(663\) −3.03686e7 −2.68312
\(664\) 6.29501e6 0.554084
\(665\) 567326. 0.0497483
\(666\) −1.84034e6 −0.160772
\(667\) 2.74055e7 2.38519
\(668\) −9.54721e6 −0.827819
\(669\) −454905. −0.0392966
\(670\) 1.29837e6 0.111741
\(671\) 9.53370e6 0.817439
\(672\) 2.13666e6 0.182521
\(673\) 1.42122e7 1.20955 0.604774 0.796397i \(-0.293264\pi\)
0.604774 + 0.796397i \(0.293264\pi\)
\(674\) 1.29165e7 1.09521
\(675\) 9.76676e6 0.825071
\(676\) 3.57719e6 0.301075
\(677\) 1.46664e7 1.22985 0.614924 0.788586i \(-0.289187\pi\)
0.614924 + 0.788586i \(0.289187\pi\)
\(678\) −1.38961e7 −1.16096
\(679\) 4.59839e6 0.382764
\(680\) 1.70711e6 0.141576
\(681\) −1.39853e7 −1.15559
\(682\) 5.23441e6 0.430930
\(683\) 692122. 0.0567716 0.0283858 0.999597i \(-0.490963\pi\)
0.0283858 + 0.999597i \(0.490963\pi\)
\(684\) 341134. 0.0278795
\(685\) −2.73437e6 −0.222654
\(686\) −9.17231e6 −0.744164
\(687\) 2.73646e6 0.221206
\(688\) 2.09393e6 0.168652
\(689\) −1.55890e6 −0.125104
\(690\) −3.84160e6 −0.307177
\(691\) 3.64423e6 0.290342 0.145171 0.989407i \(-0.453627\pi\)
0.145171 + 0.989407i \(0.453627\pi\)
\(692\) 882623. 0.0700664
\(693\) 2.44712e6 0.193563
\(694\) 1.43558e7 1.13144
\(695\) 2.71116e6 0.212909
\(696\) 6.30436e6 0.493307
\(697\) −3.84633e6 −0.299892
\(698\) 8.67946e6 0.674301
\(699\) −1.02605e6 −0.0794280
\(700\) 5.79911e6 0.447318
\(701\) 2.14432e7 1.64814 0.824070 0.566488i \(-0.191698\pi\)
0.824070 + 0.566488i \(0.191698\pi\)
\(702\) −1.00804e7 −0.772035
\(703\) 3.47608e6 0.265278
\(704\) −1.55610e6 −0.118333
\(705\) 3.76748e6 0.285482
\(706\) 1.53368e7 1.15804
\(707\) 1.36869e6 0.102981
\(708\) 1.25974e7 0.944491
\(709\) 9.52389e6 0.711539 0.355769 0.934574i \(-0.384219\pi\)
0.355769 + 0.934574i \(0.384219\pi\)
\(710\) −1.09704e6 −0.0816727
\(711\) 4.92084e6 0.365060
\(712\) −346328. −0.0256028
\(713\) −1.64908e7 −1.21484
\(714\) 1.90974e7 1.40194
\(715\) −3.41580e6 −0.249877
\(716\) −1.44453e6 −0.105303
\(717\) −1.27752e7 −0.928045
\(718\) 1.13018e7 0.818159
\(719\) −1.15568e6 −0.0833711 −0.0416855 0.999131i \(-0.513273\pi\)
−0.0416855 + 0.999131i \(0.513273\pi\)
\(720\) −158533. −0.0113970
\(721\) −1.03204e7 −0.739366
\(722\) 9.26005e6 0.661105
\(723\) 629117. 0.0447596
\(724\) 1.70731e6 0.121050
\(725\) 1.71106e7 1.20899
\(726\) 1.15094e6 0.0810420
\(727\) −1.99629e7 −1.40084 −0.700419 0.713732i \(-0.747003\pi\)
−0.700419 + 0.713732i \(0.747003\pi\)
\(728\) −5.98536e6 −0.418564
\(729\) 9.99052e6 0.696256
\(730\) 921607. 0.0640087
\(731\) 1.87155e7 1.29541
\(732\) −6.90937e6 −0.476607
\(733\) −1.87823e7 −1.29119 −0.645593 0.763682i \(-0.723390\pi\)
−0.645593 + 0.763682i \(0.723390\pi\)
\(734\) 1.08995e7 0.746735
\(735\) 422106. 0.0288206
\(736\) 4.90245e6 0.333594
\(737\) −1.05783e7 −0.717374
\(738\) 357194. 0.0241415
\(739\) −1.38934e7 −0.935830 −0.467915 0.883773i \(-0.654995\pi\)
−0.467915 + 0.883773i \(0.654995\pi\)
\(740\) −1.61541e6 −0.108444
\(741\) −5.32690e6 −0.356393
\(742\) 980323. 0.0653672
\(743\) 5.72049e6 0.380156 0.190078 0.981769i \(-0.439126\pi\)
0.190078 + 0.981769i \(0.439126\pi\)
\(744\) −3.79354e6 −0.251254
\(745\) 2.98927e6 0.197322
\(746\) 8.25881e6 0.543338
\(747\) −5.22508e6 −0.342603
\(748\) −1.39084e7 −0.908916
\(749\) 2.09083e7 1.36180
\(750\) −4.90605e6 −0.318477
\(751\) −1.12332e7 −0.726781 −0.363390 0.931637i \(-0.618381\pi\)
−0.363390 + 0.931637i \(0.618381\pi\)
\(752\) −4.80787e6 −0.310033
\(753\) 2.04725e7 1.31578
\(754\) −1.76602e7 −1.13127
\(755\) −428073. −0.0273307
\(756\) 6.33913e6 0.403390
\(757\) −885804. −0.0561821 −0.0280911 0.999605i \(-0.508943\pi\)
−0.0280911 + 0.999605i \(0.508943\pi\)
\(758\) 3.51845e6 0.222422
\(759\) 3.12988e7 1.97207
\(760\) 299442. 0.0188052
\(761\) −2.39502e7 −1.49916 −0.749580 0.661914i \(-0.769745\pi\)
−0.749580 + 0.661914i \(0.769745\pi\)
\(762\) 8.99655e6 0.561292
\(763\) −2.67150e7 −1.66128
\(764\) −1.03470e7 −0.641331
\(765\) −1.41697e6 −0.0875398
\(766\) −4.32935e6 −0.266594
\(767\) −3.52887e7 −2.16594
\(768\) 1.12776e6 0.0689942
\(769\) 2.21567e7 1.35110 0.675552 0.737312i \(-0.263905\pi\)
0.675552 + 0.737312i \(0.263905\pi\)
\(770\) 2.14804e6 0.130562
\(771\) −3.43504e7 −2.08111
\(772\) 7.31262e6 0.441601
\(773\) 2.67193e7 1.60834 0.804168 0.594402i \(-0.202611\pi\)
0.804168 + 0.594402i \(0.202611\pi\)
\(774\) −1.73804e6 −0.104281
\(775\) −1.02960e7 −0.615766
\(776\) 2.42709e6 0.144687
\(777\) −1.80716e7 −1.07385
\(778\) −1.79468e7 −1.06301
\(779\) −674678. −0.0398339
\(780\) 2.47553e6 0.145691
\(781\) 8.93795e6 0.524337
\(782\) 4.38179e7 2.56233
\(783\) 1.87040e7 1.09026
\(784\) −538670. −0.0312992
\(785\) −1.44021e6 −0.0834164
\(786\) 4.79254e6 0.276700
\(787\) 1.13376e7 0.652505 0.326252 0.945283i \(-0.394214\pi\)
0.326252 + 0.945283i \(0.394214\pi\)
\(788\) −8.20820e6 −0.470904
\(789\) −3.01722e7 −1.72550
\(790\) 4.31942e6 0.246239
\(791\) −2.44792e7 −1.39109
\(792\) 1.29162e6 0.0731682
\(793\) 1.93550e7 1.09297
\(794\) 5.78612e6 0.325714
\(795\) −405460. −0.0227526
\(796\) −9.84482e6 −0.550713
\(797\) 3.02752e7 1.68827 0.844135 0.536131i \(-0.180115\pi\)
0.844135 + 0.536131i \(0.180115\pi\)
\(798\) 3.34984e6 0.186216
\(799\) −4.29726e7 −2.38136
\(800\) 3.06084e6 0.169089
\(801\) 287465. 0.0158308
\(802\) −2.04870e7 −1.12472
\(803\) −7.50864e6 −0.410934
\(804\) 7.66640e6 0.418265
\(805\) −6.76732e6 −0.368067
\(806\) 1.06267e7 0.576184
\(807\) −999827. −0.0540432
\(808\) 722410. 0.0389274
\(809\) 1.48319e7 0.796754 0.398377 0.917222i \(-0.369574\pi\)
0.398377 + 0.917222i \(0.369574\pi\)
\(810\) −3.22378e6 −0.172645
\(811\) 2.51247e6 0.134137 0.0670686 0.997748i \(-0.478635\pi\)
0.0670686 + 0.997748i \(0.478635\pi\)
\(812\) 1.11057e7 0.591093
\(813\) 3.28791e6 0.174459
\(814\) 1.31613e7 0.696206
\(815\) −3.56879e6 −0.188203
\(816\) 1.00799e7 0.529943
\(817\) 3.28285e6 0.172067
\(818\) −1.72317e7 −0.900420
\(819\) 4.96806e6 0.258808
\(820\) 313539. 0.0162838
\(821\) −2.86543e7 −1.48365 −0.741825 0.670593i \(-0.766040\pi\)
−0.741825 + 0.670593i \(0.766040\pi\)
\(822\) −1.61454e7 −0.833432
\(823\) −2.29169e7 −1.17939 −0.589693 0.807627i \(-0.700751\pi\)
−0.589693 + 0.807627i \(0.700751\pi\)
\(824\) −5.44725e6 −0.279485
\(825\) 1.95414e7 0.999586
\(826\) 2.21915e7 1.13171
\(827\) −2.54816e7 −1.29558 −0.647789 0.761820i \(-0.724306\pi\)
−0.647789 + 0.761820i \(0.724306\pi\)
\(828\) −4.06921e6 −0.206269
\(829\) −7.67593e6 −0.387922 −0.193961 0.981009i \(-0.562134\pi\)
−0.193961 + 0.981009i \(0.562134\pi\)
\(830\) −4.58648e6 −0.231092
\(831\) −2.77323e7 −1.39311
\(832\) −3.15915e6 −0.158220
\(833\) −4.81462e6 −0.240408
\(834\) 1.60084e7 0.796952
\(835\) 6.95601e6 0.345258
\(836\) −2.43965e6 −0.120729
\(837\) −1.12548e7 −0.555296
\(838\) −1.68205e7 −0.827424
\(839\) 2.05736e7 1.00903 0.504517 0.863402i \(-0.331671\pi\)
0.504517 + 0.863402i \(0.331671\pi\)
\(840\) −1.55675e6 −0.0761239
\(841\) 1.22569e7 0.597572
\(842\) −1.73209e7 −0.841957
\(843\) 1.90954e7 0.925466
\(844\) −7.73365e6 −0.373705
\(845\) −2.60631e6 −0.125569
\(846\) 3.99070e6 0.191701
\(847\) 2.02748e6 0.0971065
\(848\) 517427. 0.0247092
\(849\) −3.18977e7 −1.51876
\(850\) 2.73577e7 1.29877
\(851\) −4.14642e7 −1.96268
\(852\) −6.47761e6 −0.305715
\(853\) 2.83130e7 1.33233 0.666167 0.745803i \(-0.267934\pi\)
0.666167 + 0.745803i \(0.267934\pi\)
\(854\) −1.21715e7 −0.571082
\(855\) −248547. −0.0116277
\(856\) 1.10357e7 0.514771
\(857\) 8.95870e6 0.416671 0.208335 0.978057i \(-0.433195\pi\)
0.208335 + 0.978057i \(0.433195\pi\)
\(858\) −2.01690e7 −0.935333
\(859\) 1.67431e7 0.774199 0.387099 0.922038i \(-0.373477\pi\)
0.387099 + 0.922038i \(0.373477\pi\)
\(860\) −1.52562e6 −0.0703396
\(861\) 3.50755e6 0.161249
\(862\) −2.06870e7 −0.948264
\(863\) −1.28254e7 −0.586196 −0.293098 0.956082i \(-0.594686\pi\)
−0.293098 + 0.956082i \(0.594686\pi\)
\(864\) 3.34587e6 0.152484
\(865\) −643070. −0.0292226
\(866\) 933329. 0.0422902
\(867\) 6.56604e7 2.96658
\(868\) −6.68266e6 −0.301058
\(869\) −3.51917e7 −1.58085
\(870\) −4.59329e6 −0.205743
\(871\) −2.14756e7 −0.959181
\(872\) −1.41005e7 −0.627976
\(873\) −2.01457e6 −0.0894636
\(874\) 7.68602e6 0.340348
\(875\) −8.64244e6 −0.381607
\(876\) 5.44174e6 0.239595
\(877\) 3.69190e7 1.62088 0.810439 0.585823i \(-0.199228\pi\)
0.810439 + 0.585823i \(0.199228\pi\)
\(878\) 1.31994e7 0.577856
\(879\) 8.06703e6 0.352161
\(880\) 1.13376e6 0.0493532
\(881\) −3.95146e7 −1.71521 −0.857605 0.514308i \(-0.828049\pi\)
−0.857605 + 0.514308i \(0.828049\pi\)
\(882\) 447115. 0.0193530
\(883\) 1.73805e7 0.750172 0.375086 0.926990i \(-0.377613\pi\)
0.375086 + 0.926990i \(0.377613\pi\)
\(884\) −2.82364e7 −1.21529
\(885\) −9.17835e6 −0.393918
\(886\) −5.51120e6 −0.235864
\(887\) −5.95831e6 −0.254281 −0.127140 0.991885i \(-0.540580\pi\)
−0.127140 + 0.991885i \(0.540580\pi\)
\(888\) −9.53841e6 −0.405923
\(889\) 1.58482e7 0.672553
\(890\) 252331. 0.0106781
\(891\) 2.62652e7 1.10838
\(892\) −422965. −0.0177989
\(893\) −7.53774e6 −0.316310
\(894\) 1.76505e7 0.738608
\(895\) 1.05247e6 0.0439188
\(896\) 1.98664e6 0.0826704
\(897\) 6.35417e7 2.63680
\(898\) −3.46731e6 −0.143483
\(899\) −1.97176e7 −0.813683
\(900\) −2.54061e6 −0.104552
\(901\) 4.62475e6 0.189791
\(902\) −2.55450e6 −0.104542
\(903\) −1.70671e7 −0.696529
\(904\) −1.29204e7 −0.525842
\(905\) −1.24393e6 −0.0504863
\(906\) −2.52761e6 −0.102303
\(907\) −3.06111e7 −1.23555 −0.617776 0.786354i \(-0.711966\pi\)
−0.617776 + 0.786354i \(0.711966\pi\)
\(908\) −1.30033e7 −0.523408
\(909\) −599626. −0.0240697
\(910\) 4.36088e6 0.174570
\(911\) −2.42170e7 −0.966774 −0.483387 0.875407i \(-0.660594\pi\)
−0.483387 + 0.875407i \(0.660594\pi\)
\(912\) 1.76809e6 0.0703910
\(913\) 3.73676e7 1.48360
\(914\) −2.19531e7 −0.869220
\(915\) 5.03410e6 0.198778
\(916\) 2.54433e6 0.100193
\(917\) 8.44249e6 0.331549
\(918\) 2.99053e7 1.17123
\(919\) 9.71885e6 0.379600 0.189800 0.981823i \(-0.439216\pi\)
0.189800 + 0.981823i \(0.439216\pi\)
\(920\) −3.57188e6 −0.139132
\(921\) −1.99339e7 −0.774360
\(922\) −2.60987e7 −1.01110
\(923\) 1.81455e7 0.701076
\(924\) 1.26834e7 0.488714
\(925\) −2.58882e7 −0.994826
\(926\) −3.38820e6 −0.129850
\(927\) 4.52141e6 0.172812
\(928\) 5.86172e6 0.223437
\(929\) −1.64495e7 −0.625336 −0.312668 0.949862i \(-0.601223\pi\)
−0.312668 + 0.949862i \(0.601223\pi\)
\(930\) 2.76394e6 0.104790
\(931\) −844523. −0.0319328
\(932\) −954006. −0.0359759
\(933\) 2.26676e7 0.852515
\(934\) 1.87877e7 0.704705
\(935\) 1.01335e7 0.379081
\(936\) 2.62221e6 0.0978312
\(937\) 4.00964e7 1.49196 0.745978 0.665971i \(-0.231982\pi\)
0.745978 + 0.665971i \(0.231982\pi\)
\(938\) 1.35051e7 0.501175
\(939\) 2.60423e7 0.963865
\(940\) 3.50297e6 0.129305
\(941\) −2.03772e6 −0.0750190 −0.0375095 0.999296i \(-0.511942\pi\)
−0.0375095 + 0.999296i \(0.511942\pi\)
\(942\) −8.50390e6 −0.312242
\(943\) 8.04787e6 0.294714
\(944\) 1.17129e7 0.427795
\(945\) −4.61863e6 −0.168242
\(946\) 1.24297e7 0.451579
\(947\) −2.60027e7 −0.942201 −0.471100 0.882080i \(-0.656143\pi\)
−0.471100 + 0.882080i \(0.656143\pi\)
\(948\) 2.55045e7 0.921715
\(949\) −1.52438e7 −0.549449
\(950\) 4.79877e6 0.172513
\(951\) 1.36504e7 0.489433
\(952\) 1.77566e7 0.634990
\(953\) 3.15712e7 1.12605 0.563027 0.826439i \(-0.309637\pi\)
0.563027 + 0.826439i \(0.309637\pi\)
\(954\) −429483. −0.0152783
\(955\) 7.53875e6 0.267480
\(956\) −1.18782e7 −0.420346
\(957\) 3.74231e7 1.32087
\(958\) −1.18263e7 −0.416327
\(959\) −2.84416e7 −0.998638
\(960\) −821673. −0.0287754
\(961\) −1.67644e7 −0.585572
\(962\) 2.67196e7 0.930878
\(963\) −9.15999e6 −0.318295
\(964\) 584947. 0.0202733
\(965\) −5.32790e6 −0.184178
\(966\) −3.99585e7 −1.37774
\(967\) −4.38150e7 −1.50680 −0.753402 0.657560i \(-0.771588\pi\)
−0.753402 + 0.657560i \(0.771588\pi\)
\(968\) 1.07013e6 0.0367069
\(969\) 1.58031e7 0.540672
\(970\) −1.76835e6 −0.0603447
\(971\) 3.52313e7 1.19917 0.599584 0.800312i \(-0.295333\pi\)
0.599584 + 0.800312i \(0.295333\pi\)
\(972\) −6.33137e6 −0.214947
\(973\) 2.82002e7 0.954927
\(974\) −1.00341e7 −0.338907
\(975\) 3.96722e7 1.33652
\(976\) −6.42426e6 −0.215873
\(977\) 2.70560e7 0.906833 0.453417 0.891299i \(-0.350205\pi\)
0.453417 + 0.891299i \(0.350205\pi\)
\(978\) −2.10723e7 −0.704475
\(979\) −2.05583e6 −0.0685535
\(980\) 392470. 0.0130539
\(981\) 1.17039e7 0.388292
\(982\) −3.68111e7 −1.21815
\(983\) −1.15654e7 −0.381747 −0.190874 0.981615i \(-0.561132\pi\)
−0.190874 + 0.981615i \(0.561132\pi\)
\(984\) 1.85133e6 0.0609531
\(985\) 5.98041e6 0.196400
\(986\) 5.23919e7 1.71622
\(987\) 3.91876e7 1.28043
\(988\) −4.95289e6 −0.161423
\(989\) −3.91594e7 −1.27305
\(990\) −941063. −0.0305162
\(991\) 2.45423e7 0.793835 0.396918 0.917854i \(-0.370080\pi\)
0.396918 + 0.917854i \(0.370080\pi\)
\(992\) −3.52719e6 −0.113802
\(993\) 2.18768e7 0.704062
\(994\) −1.14109e7 −0.366314
\(995\) 7.17284e6 0.229685
\(996\) −2.70814e7 −0.865015
\(997\) −3.67032e7 −1.16941 −0.584704 0.811247i \(-0.698789\pi\)
−0.584704 + 0.811247i \(0.698789\pi\)
\(998\) 1.83474e7 0.583105
\(999\) −2.82989e7 −0.897132
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 82.6.a.c.1.5 5
3.2 odd 2 738.6.a.k.1.3 5
4.3 odd 2 656.6.a.c.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
82.6.a.c.1.5 5 1.1 even 1 trivial
656.6.a.c.1.1 5 4.3 odd 2
738.6.a.k.1.3 5 3.2 odd 2