Properties

Label 82.6.a.b
Level $82$
Weight $6$
Character orbit 82.a
Self dual yes
Analytic conductor $13.151$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [82,6,Mod(1,82)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(82, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("82.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 82 = 2 \cdot 41 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 82.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.1514732247\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 492x^{2} - 5166x - 12280 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + ( - \beta_{3} - \beta_1 + 2) q^{3} + 16 q^{4} + ( - 3 \beta_{3} - 2 \beta_{2} + 2) q^{5} + (4 \beta_{3} + 4 \beta_1 - 8) q^{6} + ( - 8 \beta_{3} - 3 \beta_{2} + \cdots + 38) q^{7} - 64 q^{8}+ \cdots + ( - 3439 \beta_{3} + 1830 \beta_{2} + \cdots + 55538) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{2} + 8 q^{3} + 64 q^{4} + 12 q^{5} - 32 q^{6} + 158 q^{7} - 256 q^{8} + 184 q^{9} - 48 q^{10} + 2 q^{11} + 128 q^{12} - 900 q^{13} - 632 q^{14} + 762 q^{15} + 1024 q^{16} + 1660 q^{17} - 736 q^{18}+ \cdots + 218492 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 492x^{2} - 5166x - 12280 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 27\nu^{2} + 88\nu - 2800 ) / 65 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 4\nu^{3} - 43\nu^{2} - 1522\nu - 4920 ) / 65 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 4\beta_{2} + 18\beta _1 + 248 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 27\beta_{3} + 43\beta_{2} + 574\beta _1 + 3896 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−10.2810
26.5353
−3.54047
−12.7138
−4.00000 −15.9626 16.0000 −89.9884 63.8502 −126.868 −64.0000 11.8031 359.953
1.2 −4.00000 −11.4976 16.0000 45.3504 45.9904 −37.0896 −64.0000 −110.805 −181.402
1.3 −4.00000 9.35476 16.0000 97.4041 −37.4190 219.239 −64.0000 −155.488 −389.616
1.4 −4.00000 26.1054 16.0000 −40.7661 −104.422 102.718 −64.0000 438.491 163.065
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(41\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 82.6.a.b 4
3.b odd 2 1 738.6.a.h 4
4.b odd 2 1 656.6.a.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
82.6.a.b 4 1.a even 1 1 trivial
656.6.a.b 4 4.b odd 2 1
738.6.a.h 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 8T_{3}^{3} - 546T_{3}^{2} + 198T_{3} + 44820 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(82))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 8 T^{3} + \cdots + 44820 \) Copy content Toggle raw display
$5$ \( T^{4} - 12 T^{3} + \cdots + 16204824 \) Copy content Toggle raw display
$7$ \( T^{4} - 158 T^{3} + \cdots + 105966628 \) Copy content Toggle raw display
$11$ \( T^{4} - 2 T^{3} + \cdots - 337366620 \) Copy content Toggle raw display
$13$ \( T^{4} + 900 T^{3} + \cdots + 143706672 \) Copy content Toggle raw display
$17$ \( T^{4} - 1660 T^{3} + \cdots + 923839344 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 3740511005500 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 69689610155520 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 7482482178480 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 80754677049600 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 15\!\cdots\!20 \) Copy content Toggle raw display
$41$ \( (T - 1681)^{4} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 61151127709568 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 87\!\cdots\!88 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 640391879919600 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 52\!\cdots\!80 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 26\!\cdots\!60 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 19\!\cdots\!40 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 67\!\cdots\!80 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 26\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 44\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 52\!\cdots\!60 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 96\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 21\!\cdots\!40 \) Copy content Toggle raw display
show more
show less