Properties

Label 82.6.a.a.1.2
Level $82$
Weight $6$
Character 82.1
Self dual yes
Analytic conductor $13.151$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [82,6,Mod(1,82)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(82, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("82.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 82 = 2 \cdot 41 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 82.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.1514732247\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.73428.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 45x - 39 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.69713\) of defining polynomial
Character \(\chi\) \(=\) 82.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -8.27134 q^{3} +16.0000 q^{4} -4.76019 q^{5} -33.0854 q^{6} -76.4095 q^{7} +64.0000 q^{8} -174.585 q^{9} -19.0407 q^{10} +124.811 q^{11} -132.341 q^{12} -935.146 q^{13} -305.638 q^{14} +39.3731 q^{15} +256.000 q^{16} +1142.21 q^{17} -698.340 q^{18} -3055.02 q^{19} -76.1630 q^{20} +632.009 q^{21} +499.243 q^{22} -3108.53 q^{23} -529.366 q^{24} -3102.34 q^{25} -3740.59 q^{26} +3453.99 q^{27} -1222.55 q^{28} +2771.90 q^{29} +157.492 q^{30} +575.249 q^{31} +1024.00 q^{32} -1032.35 q^{33} +4568.85 q^{34} +363.724 q^{35} -2793.36 q^{36} -1516.57 q^{37} -12220.1 q^{38} +7734.91 q^{39} -304.652 q^{40} +1681.00 q^{41} +2528.04 q^{42} +17117.9 q^{43} +1996.97 q^{44} +831.057 q^{45} -12434.1 q^{46} +26873.2 q^{47} -2117.46 q^{48} -10968.6 q^{49} -12409.4 q^{50} -9447.64 q^{51} -14962.3 q^{52} -36955.2 q^{53} +13815.9 q^{54} -594.122 q^{55} -4890.21 q^{56} +25269.1 q^{57} +11087.6 q^{58} +7484.42 q^{59} +629.970 q^{60} +45169.2 q^{61} +2301.00 q^{62} +13339.9 q^{63} +4096.00 q^{64} +4451.47 q^{65} -4129.41 q^{66} -57071.7 q^{67} +18275.4 q^{68} +25711.7 q^{69} +1454.89 q^{70} +36439.2 q^{71} -11173.4 q^{72} +56382.1 q^{73} -6066.27 q^{74} +25660.5 q^{75} -48880.4 q^{76} -9536.72 q^{77} +30939.7 q^{78} +36053.2 q^{79} -1218.61 q^{80} +13855.0 q^{81} +6724.00 q^{82} -4558.43 q^{83} +10112.1 q^{84} -5437.15 q^{85} +68471.8 q^{86} -22927.3 q^{87} +7987.88 q^{88} -135570. q^{89} +3324.23 q^{90} +71454.1 q^{91} -49736.5 q^{92} -4758.08 q^{93} +107493. q^{94} +14542.5 q^{95} -8469.85 q^{96} -141531. q^{97} -43874.3 q^{98} -21790.1 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 12 q^{2} - 28 q^{3} + 48 q^{4} - 26 q^{5} - 112 q^{6} - 158 q^{7} + 192 q^{8} - 61 q^{9} - 104 q^{10} - 846 q^{11} - 448 q^{12} - 1258 q^{13} - 632 q^{14} - 682 q^{15} + 768 q^{16} - 2166 q^{17} - 244 q^{18}+ \cdots - 176672 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −8.27134 −0.530607 −0.265303 0.964165i \(-0.585472\pi\)
−0.265303 + 0.964165i \(0.585472\pi\)
\(4\) 16.0000 0.500000
\(5\) −4.76019 −0.0851528 −0.0425764 0.999093i \(-0.513557\pi\)
−0.0425764 + 0.999093i \(0.513557\pi\)
\(6\) −33.0854 −0.375196
\(7\) −76.4095 −0.589389 −0.294695 0.955591i \(-0.595218\pi\)
−0.294695 + 0.955591i \(0.595218\pi\)
\(8\) 64.0000 0.353553
\(9\) −174.585 −0.718456
\(10\) −19.0407 −0.0602121
\(11\) 124.811 0.311007 0.155503 0.987835i \(-0.450300\pi\)
0.155503 + 0.987835i \(0.450300\pi\)
\(12\) −132.341 −0.265303
\(13\) −935.146 −1.53469 −0.767346 0.641233i \(-0.778423\pi\)
−0.767346 + 0.641233i \(0.778423\pi\)
\(14\) −305.638 −0.416761
\(15\) 39.3731 0.0451826
\(16\) 256.000 0.250000
\(17\) 1142.21 0.958572 0.479286 0.877659i \(-0.340896\pi\)
0.479286 + 0.877659i \(0.340896\pi\)
\(18\) −698.340 −0.508025
\(19\) −3055.02 −1.94147 −0.970735 0.240154i \(-0.922802\pi\)
−0.970735 + 0.240154i \(0.922802\pi\)
\(20\) −76.1630 −0.0425764
\(21\) 632.009 0.312734
\(22\) 499.243 0.219915
\(23\) −3108.53 −1.22528 −0.612641 0.790362i \(-0.709893\pi\)
−0.612641 + 0.790362i \(0.709893\pi\)
\(24\) −529.366 −0.187598
\(25\) −3102.34 −0.992749
\(26\) −3740.59 −1.08519
\(27\) 3453.99 0.911825
\(28\) −1222.55 −0.294695
\(29\) 2771.90 0.612044 0.306022 0.952024i \(-0.401002\pi\)
0.306022 + 0.952024i \(0.401002\pi\)
\(30\) 157.492 0.0319490
\(31\) 575.249 0.107511 0.0537554 0.998554i \(-0.482881\pi\)
0.0537554 + 0.998554i \(0.482881\pi\)
\(32\) 1024.00 0.176777
\(33\) −1032.35 −0.165022
\(34\) 4568.85 0.677813
\(35\) 363.724 0.0501882
\(36\) −2793.36 −0.359228
\(37\) −1516.57 −0.182120 −0.0910599 0.995845i \(-0.529025\pi\)
−0.0910599 + 0.995845i \(0.529025\pi\)
\(38\) −12220.1 −1.37283
\(39\) 7734.91 0.814318
\(40\) −304.652 −0.0301061
\(41\) 1681.00 0.156174
\(42\) 2528.04 0.221136
\(43\) 17117.9 1.41182 0.705912 0.708300i \(-0.250538\pi\)
0.705912 + 0.708300i \(0.250538\pi\)
\(44\) 1996.97 0.155503
\(45\) 831.057 0.0611786
\(46\) −12434.1 −0.866405
\(47\) 26873.2 1.77449 0.887246 0.461296i \(-0.152615\pi\)
0.887246 + 0.461296i \(0.152615\pi\)
\(48\) −2117.46 −0.132652
\(49\) −10968.6 −0.652620
\(50\) −12409.4 −0.701980
\(51\) −9447.64 −0.508625
\(52\) −14962.3 −0.767346
\(53\) −36955.2 −1.80712 −0.903558 0.428465i \(-0.859055\pi\)
−0.903558 + 0.428465i \(0.859055\pi\)
\(54\) 13815.9 0.644757
\(55\) −594.122 −0.0264831
\(56\) −4890.21 −0.208381
\(57\) 25269.1 1.03016
\(58\) 11087.6 0.432780
\(59\) 7484.42 0.279916 0.139958 0.990157i \(-0.455303\pi\)
0.139958 + 0.990157i \(0.455303\pi\)
\(60\) 629.970 0.0225913
\(61\) 45169.2 1.55424 0.777120 0.629352i \(-0.216680\pi\)
0.777120 + 0.629352i \(0.216680\pi\)
\(62\) 2301.00 0.0760216
\(63\) 13339.9 0.423451
\(64\) 4096.00 0.125000
\(65\) 4451.47 0.130683
\(66\) −4129.41 −0.116688
\(67\) −57071.7 −1.55322 −0.776612 0.629979i \(-0.783063\pi\)
−0.776612 + 0.629979i \(0.783063\pi\)
\(68\) 18275.4 0.479286
\(69\) 25711.7 0.650143
\(70\) 1454.89 0.0354884
\(71\) 36439.2 0.857873 0.428936 0.903335i \(-0.358888\pi\)
0.428936 + 0.903335i \(0.358888\pi\)
\(72\) −11173.4 −0.254013
\(73\) 56382.1 1.23832 0.619162 0.785263i \(-0.287472\pi\)
0.619162 + 0.785263i \(0.287472\pi\)
\(74\) −6066.27 −0.128778
\(75\) 25660.5 0.526759
\(76\) −48880.4 −0.970735
\(77\) −9536.72 −0.183304
\(78\) 30939.7 0.575810
\(79\) 36053.2 0.649944 0.324972 0.945724i \(-0.394645\pi\)
0.324972 + 0.945724i \(0.394645\pi\)
\(80\) −1218.61 −0.0212882
\(81\) 13855.0 0.234636
\(82\) 6724.00 0.110432
\(83\) −4558.43 −0.0726306 −0.0363153 0.999340i \(-0.511562\pi\)
−0.0363153 + 0.999340i \(0.511562\pi\)
\(84\) 10112.1 0.156367
\(85\) −5437.15 −0.0816251
\(86\) 68471.8 0.998310
\(87\) −22927.3 −0.324755
\(88\) 7987.88 0.109958
\(89\) −135570. −1.81421 −0.907105 0.420905i \(-0.861713\pi\)
−0.907105 + 0.420905i \(0.861713\pi\)
\(90\) 3324.23 0.0432598
\(91\) 71454.1 0.904531
\(92\) −49736.5 −0.612641
\(93\) −4758.08 −0.0570459
\(94\) 107493. 1.25476
\(95\) 14542.5 0.165322
\(96\) −8469.85 −0.0937989
\(97\) −141531. −1.52729 −0.763647 0.645634i \(-0.776593\pi\)
−0.763647 + 0.645634i \(0.776593\pi\)
\(98\) −43874.3 −0.461472
\(99\) −21790.1 −0.223445
\(100\) −49637.5 −0.496375
\(101\) −45753.4 −0.446293 −0.223147 0.974785i \(-0.571633\pi\)
−0.223147 + 0.974785i \(0.571633\pi\)
\(102\) −37790.5 −0.359652
\(103\) −90208.3 −0.837825 −0.418913 0.908027i \(-0.637589\pi\)
−0.418913 + 0.908027i \(0.637589\pi\)
\(104\) −59849.4 −0.542596
\(105\) −3008.48 −0.0266302
\(106\) −147821. −1.27782
\(107\) 42059.2 0.355141 0.177571 0.984108i \(-0.443176\pi\)
0.177571 + 0.984108i \(0.443176\pi\)
\(108\) 55263.8 0.455912
\(109\) −244428. −1.97054 −0.985268 0.171020i \(-0.945294\pi\)
−0.985268 + 0.171020i \(0.945294\pi\)
\(110\) −2376.49 −0.0187264
\(111\) 12544.0 0.0966340
\(112\) −19560.8 −0.147347
\(113\) −68385.3 −0.503809 −0.251905 0.967752i \(-0.581057\pi\)
−0.251905 + 0.967752i \(0.581057\pi\)
\(114\) 101077. 0.728431
\(115\) 14797.2 0.104336
\(116\) 44350.4 0.306022
\(117\) 163262. 1.10261
\(118\) 29937.7 0.197931
\(119\) −87276.0 −0.564972
\(120\) 2519.88 0.0159745
\(121\) −145473. −0.903275
\(122\) 180677. 1.09901
\(123\) −13904.1 −0.0828669
\(124\) 9203.99 0.0537554
\(125\) 29643.3 0.169688
\(126\) 53359.8 0.299425
\(127\) −186682. −1.02705 −0.513527 0.858073i \(-0.671662\pi\)
−0.513527 + 0.858073i \(0.671662\pi\)
\(128\) 16384.0 0.0883883
\(129\) −141588. −0.749123
\(130\) 17805.9 0.0924071
\(131\) −2821.99 −0.0143674 −0.00718368 0.999974i \(-0.502287\pi\)
−0.00718368 + 0.999974i \(0.502287\pi\)
\(132\) −16517.6 −0.0825112
\(133\) 233433. 1.14428
\(134\) −228287. −1.09830
\(135\) −16441.6 −0.0776444
\(136\) 73101.6 0.338907
\(137\) 55704.6 0.253565 0.126782 0.991931i \(-0.459535\pi\)
0.126782 + 0.991931i \(0.459535\pi\)
\(138\) 102847. 0.459720
\(139\) 417622. 1.83336 0.916678 0.399627i \(-0.130860\pi\)
0.916678 + 0.399627i \(0.130860\pi\)
\(140\) 5819.58 0.0250941
\(141\) −222277. −0.941558
\(142\) 145757. 0.606608
\(143\) −116716. −0.477300
\(144\) −44693.7 −0.179614
\(145\) −13194.8 −0.0521173
\(146\) 225528. 0.875627
\(147\) 90724.9 0.346285
\(148\) −24265.1 −0.0910599
\(149\) 159690. 0.589268 0.294634 0.955610i \(-0.404802\pi\)
0.294634 + 0.955610i \(0.404802\pi\)
\(150\) 102642. 0.372475
\(151\) 39532.4 0.141095 0.0705474 0.997508i \(-0.477525\pi\)
0.0705474 + 0.997508i \(0.477525\pi\)
\(152\) −195522. −0.686413
\(153\) −199413. −0.688692
\(154\) −38146.9 −0.129616
\(155\) −2738.29 −0.00915484
\(156\) 123759. 0.407159
\(157\) −154842. −0.501347 −0.250674 0.968072i \(-0.580652\pi\)
−0.250674 + 0.968072i \(0.580652\pi\)
\(158\) 144213. 0.459580
\(159\) 305669. 0.958868
\(160\) −4874.43 −0.0150530
\(161\) 237521. 0.722168
\(162\) 55420.1 0.165913
\(163\) −104196. −0.307171 −0.153586 0.988135i \(-0.549082\pi\)
−0.153586 + 0.988135i \(0.549082\pi\)
\(164\) 26896.0 0.0780869
\(165\) 4914.18 0.0140521
\(166\) −18233.7 −0.0513576
\(167\) 315536. 0.875503 0.437751 0.899096i \(-0.355775\pi\)
0.437751 + 0.899096i \(0.355775\pi\)
\(168\) 40448.6 0.110568
\(169\) 503206. 1.35528
\(170\) −21748.6 −0.0577177
\(171\) 533361. 1.39486
\(172\) 273887. 0.705912
\(173\) −657453. −1.67013 −0.835064 0.550153i \(-0.814569\pi\)
−0.835064 + 0.550153i \(0.814569\pi\)
\(174\) −91709.3 −0.229636
\(175\) 237048. 0.585116
\(176\) 31951.5 0.0777517
\(177\) −61906.1 −0.148525
\(178\) −542279. −1.28284
\(179\) −545805. −1.27322 −0.636612 0.771184i \(-0.719665\pi\)
−0.636612 + 0.771184i \(0.719665\pi\)
\(180\) 13296.9 0.0305893
\(181\) 124475. 0.282413 0.141207 0.989980i \(-0.454902\pi\)
0.141207 + 0.989980i \(0.454902\pi\)
\(182\) 285816. 0.639600
\(183\) −373610. −0.824690
\(184\) −198946. −0.433202
\(185\) 7219.14 0.0155080
\(186\) −19032.3 −0.0403376
\(187\) 142560. 0.298123
\(188\) 429971. 0.887246
\(189\) −263917. −0.537420
\(190\) 58169.9 0.116900
\(191\) 460797. 0.913957 0.456979 0.889478i \(-0.348932\pi\)
0.456979 + 0.889478i \(0.348932\pi\)
\(192\) −33879.4 −0.0663258
\(193\) 342453. 0.661772 0.330886 0.943671i \(-0.392653\pi\)
0.330886 + 0.943671i \(0.392653\pi\)
\(194\) −566125. −1.07996
\(195\) −36819.6 −0.0693415
\(196\) −175497. −0.326310
\(197\) 3226.14 0.00592266 0.00296133 0.999996i \(-0.499057\pi\)
0.00296133 + 0.999996i \(0.499057\pi\)
\(198\) −87160.2 −0.157999
\(199\) 66020.1 0.118180 0.0590900 0.998253i \(-0.481180\pi\)
0.0590900 + 0.998253i \(0.481180\pi\)
\(200\) −198550. −0.350990
\(201\) 472060. 0.824151
\(202\) −183014. −0.315577
\(203\) −211800. −0.360732
\(204\) −151162. −0.254312
\(205\) −8001.87 −0.0132986
\(206\) −360833. −0.592432
\(207\) 542703. 0.880311
\(208\) −239397. −0.383673
\(209\) −381300. −0.603810
\(210\) −12033.9 −0.0188304
\(211\) 746065. 1.15364 0.576820 0.816871i \(-0.304293\pi\)
0.576820 + 0.816871i \(0.304293\pi\)
\(212\) −591284. −0.903558
\(213\) −301401. −0.455193
\(214\) 168237. 0.251123
\(215\) −81484.6 −0.120221
\(216\) 221055. 0.322379
\(217\) −43954.5 −0.0633657
\(218\) −977711. −1.39338
\(219\) −466356. −0.657063
\(220\) −9505.95 −0.0132416
\(221\) −1.06814e6 −1.47111
\(222\) 50176.2 0.0683306
\(223\) 332416. 0.447630 0.223815 0.974632i \(-0.428149\pi\)
0.223815 + 0.974632i \(0.428149\pi\)
\(224\) −78243.3 −0.104190
\(225\) 541622. 0.713247
\(226\) −273541. −0.356247
\(227\) −1.00980e6 −1.30069 −0.650343 0.759640i \(-0.725375\pi\)
−0.650343 + 0.759640i \(0.725375\pi\)
\(228\) 404306. 0.515078
\(229\) 32659.2 0.0411545 0.0205772 0.999788i \(-0.493450\pi\)
0.0205772 + 0.999788i \(0.493450\pi\)
\(230\) 59188.8 0.0737768
\(231\) 78881.5 0.0972624
\(232\) 177402. 0.216390
\(233\) −902680. −1.08929 −0.544646 0.838666i \(-0.683336\pi\)
−0.544646 + 0.838666i \(0.683336\pi\)
\(234\) 653050. 0.779663
\(235\) −127921. −0.151103
\(236\) 119751. 0.139958
\(237\) −298208. −0.344865
\(238\) −349104. −0.399496
\(239\) 200303. 0.226826 0.113413 0.993548i \(-0.463822\pi\)
0.113413 + 0.993548i \(0.463822\pi\)
\(240\) 10079.5 0.0112957
\(241\) 296117. 0.328414 0.164207 0.986426i \(-0.447494\pi\)
0.164207 + 0.986426i \(0.447494\pi\)
\(242\) −581893. −0.638712
\(243\) −953919. −1.03632
\(244\) 722708. 0.777120
\(245\) 52212.5 0.0555724
\(246\) −55616.5 −0.0585957
\(247\) 2.85689e6 2.97956
\(248\) 36816.0 0.0380108
\(249\) 37704.3 0.0385383
\(250\) 118573. 0.119988
\(251\) 215205. 0.215610 0.107805 0.994172i \(-0.465618\pi\)
0.107805 + 0.994172i \(0.465618\pi\)
\(252\) 213439. 0.211725
\(253\) −387978. −0.381071
\(254\) −746729. −0.726238
\(255\) 44972.5 0.0433108
\(256\) 65536.0 0.0625000
\(257\) −287466. −0.271490 −0.135745 0.990744i \(-0.543343\pi\)
−0.135745 + 0.990744i \(0.543343\pi\)
\(258\) −566353. −0.529710
\(259\) 115880. 0.107339
\(260\) 71223.5 0.0653417
\(261\) −483932. −0.439727
\(262\) −11287.9 −0.0101593
\(263\) −225651. −0.201163 −0.100582 0.994929i \(-0.532070\pi\)
−0.100582 + 0.994929i \(0.532070\pi\)
\(264\) −66070.5 −0.0583442
\(265\) 175914. 0.153881
\(266\) 933732. 0.809129
\(267\) 1.12134e6 0.962632
\(268\) −913148. −0.776612
\(269\) 644667. 0.543193 0.271597 0.962411i \(-0.412448\pi\)
0.271597 + 0.962411i \(0.412448\pi\)
\(270\) −65766.5 −0.0549029
\(271\) 81510.0 0.0674199 0.0337099 0.999432i \(-0.489268\pi\)
0.0337099 + 0.999432i \(0.489268\pi\)
\(272\) 292407. 0.239643
\(273\) −591021. −0.479950
\(274\) 222818. 0.179298
\(275\) −387205. −0.308752
\(276\) 411388. 0.325071
\(277\) −748512. −0.586138 −0.293069 0.956091i \(-0.594677\pi\)
−0.293069 + 0.956091i \(0.594677\pi\)
\(278\) 1.67049e6 1.29638
\(279\) −100430. −0.0772418
\(280\) 23278.3 0.0177442
\(281\) −1.80784e6 −1.36583 −0.682913 0.730500i \(-0.739287\pi\)
−0.682913 + 0.730500i \(0.739287\pi\)
\(282\) −889109. −0.665782
\(283\) −75266.3 −0.0558643 −0.0279321 0.999610i \(-0.508892\pi\)
−0.0279321 + 0.999610i \(0.508892\pi\)
\(284\) 583027. 0.428936
\(285\) −120286. −0.0877207
\(286\) −466865. −0.337502
\(287\) −128444. −0.0920472
\(288\) −178775. −0.127006
\(289\) −115206. −0.0811391
\(290\) −52779.0 −0.0368525
\(291\) 1.17065e6 0.810393
\(292\) 902114. 0.619162
\(293\) −100696. −0.0685243 −0.0342621 0.999413i \(-0.510908\pi\)
−0.0342621 + 0.999413i \(0.510908\pi\)
\(294\) 362900. 0.244860
\(295\) −35627.2 −0.0238356
\(296\) −97060.3 −0.0643891
\(297\) 431094. 0.283584
\(298\) 638761. 0.416675
\(299\) 2.90693e6 1.88043
\(300\) 410568. 0.263380
\(301\) −1.30797e6 −0.832114
\(302\) 158130. 0.0997690
\(303\) 378442. 0.236806
\(304\) −782086. −0.485367
\(305\) −215014. −0.132348
\(306\) −797653. −0.486979
\(307\) 2.30045e6 1.39305 0.696527 0.717531i \(-0.254728\pi\)
0.696527 + 0.717531i \(0.254728\pi\)
\(308\) −152588. −0.0916521
\(309\) 746144. 0.444556
\(310\) −10953.2 −0.00647345
\(311\) −2.34404e6 −1.37424 −0.687122 0.726542i \(-0.741126\pi\)
−0.687122 + 0.726542i \(0.741126\pi\)
\(312\) 495035. 0.287905
\(313\) 511798. 0.295283 0.147641 0.989041i \(-0.452832\pi\)
0.147641 + 0.989041i \(0.452832\pi\)
\(314\) −619367. −0.354506
\(315\) −63500.6 −0.0360580
\(316\) 576851. 0.324972
\(317\) 365311. 0.204180 0.102090 0.994775i \(-0.467447\pi\)
0.102090 + 0.994775i \(0.467447\pi\)
\(318\) 1.22268e6 0.678022
\(319\) 345963. 0.190350
\(320\) −19497.7 −0.0106441
\(321\) −347886. −0.188440
\(322\) 950086. 0.510650
\(323\) −3.48949e6 −1.86104
\(324\) 221680. 0.117318
\(325\) 2.90114e6 1.52356
\(326\) −416782. −0.217203
\(327\) 2.02174e6 1.04558
\(328\) 107584. 0.0552158
\(329\) −2.05337e6 −1.04587
\(330\) 19656.7 0.00993634
\(331\) −3.50026e6 −1.75602 −0.878011 0.478640i \(-0.841130\pi\)
−0.878011 + 0.478640i \(0.841130\pi\)
\(332\) −72934.9 −0.0363153
\(333\) 264770. 0.130845
\(334\) 1.26214e6 0.619074
\(335\) 271672. 0.132261
\(336\) 161794. 0.0781835
\(337\) −228628. −0.109661 −0.0548307 0.998496i \(-0.517462\pi\)
−0.0548307 + 0.998496i \(0.517462\pi\)
\(338\) 2.01282e6 0.958327
\(339\) 565638. 0.267325
\(340\) −86994.4 −0.0408126
\(341\) 71797.3 0.0334366
\(342\) 2.13344e6 0.986316
\(343\) 2.12232e6 0.974037
\(344\) 1.09555e6 0.499155
\(345\) −122393. −0.0553615
\(346\) −2.62981e6 −1.18096
\(347\) −3.56146e6 −1.58783 −0.793915 0.608028i \(-0.791961\pi\)
−0.793915 + 0.608028i \(0.791961\pi\)
\(348\) −366837. −0.162377
\(349\) −3.23779e6 −1.42293 −0.711467 0.702720i \(-0.751969\pi\)
−0.711467 + 0.702720i \(0.751969\pi\)
\(350\) 948193. 0.413739
\(351\) −3.22998e6 −1.39937
\(352\) 127806. 0.0549788
\(353\) 3.71627e6 1.58734 0.793671 0.608347i \(-0.208167\pi\)
0.793671 + 0.608347i \(0.208167\pi\)
\(354\) −247625. −0.105023
\(355\) −173457. −0.0730503
\(356\) −2.16911e6 −0.907105
\(357\) 721889. 0.299778
\(358\) −2.18322e6 −0.900306
\(359\) −1.56926e6 −0.642627 −0.321314 0.946973i \(-0.604124\pi\)
−0.321314 + 0.946973i \(0.604124\pi\)
\(360\) 53187.6 0.0216299
\(361\) 6.85707e6 2.76930
\(362\) 497899. 0.199696
\(363\) 1.20326e6 0.479284
\(364\) 1.14327e6 0.452266
\(365\) −268389. −0.105447
\(366\) −1.49444e6 −0.583144
\(367\) 2.34115e6 0.907327 0.453664 0.891173i \(-0.350117\pi\)
0.453664 + 0.891173i \(0.350117\pi\)
\(368\) −795784. −0.306320
\(369\) −293477. −0.112204
\(370\) 28876.6 0.0109658
\(371\) 2.82373e6 1.06510
\(372\) −76129.3 −0.0285230
\(373\) −3.55497e6 −1.32301 −0.661506 0.749940i \(-0.730083\pi\)
−0.661506 + 0.749940i \(0.730083\pi\)
\(374\) 570242. 0.210804
\(375\) −245190. −0.0900377
\(376\) 1.71988e6 0.627378
\(377\) −2.59213e6 −0.939299
\(378\) −1.05567e6 −0.380013
\(379\) −117840. −0.0421401 −0.0210700 0.999778i \(-0.506707\pi\)
−0.0210700 + 0.999778i \(0.506707\pi\)
\(380\) 232680. 0.0826608
\(381\) 1.54411e6 0.544962
\(382\) 1.84319e6 0.646265
\(383\) −2.59595e6 −0.904274 −0.452137 0.891949i \(-0.649338\pi\)
−0.452137 + 0.891949i \(0.649338\pi\)
\(384\) −135518. −0.0468995
\(385\) 45396.6 0.0156089
\(386\) 1.36981e6 0.467943
\(387\) −2.98853e6 −1.01433
\(388\) −2.26450e6 −0.763647
\(389\) −988327. −0.331152 −0.165576 0.986197i \(-0.552948\pi\)
−0.165576 + 0.986197i \(0.552948\pi\)
\(390\) −147279. −0.0490318
\(391\) −3.55061e6 −1.17452
\(392\) −701989. −0.230736
\(393\) 23341.6 0.00762341
\(394\) 12904.5 0.00418796
\(395\) −171620. −0.0553445
\(396\) −348641. −0.111722
\(397\) −3.82557e6 −1.21821 −0.609103 0.793091i \(-0.708470\pi\)
−0.609103 + 0.793091i \(0.708470\pi\)
\(398\) 264081. 0.0835658
\(399\) −1.93080e6 −0.607164
\(400\) −794199. −0.248187
\(401\) 4.62686e6 1.43690 0.718449 0.695580i \(-0.244853\pi\)
0.718449 + 0.695580i \(0.244853\pi\)
\(402\) 1.88824e6 0.582763
\(403\) −537942. −0.164996
\(404\) −732055. −0.223147
\(405\) −65952.5 −0.0199799
\(406\) −847198. −0.255076
\(407\) −189284. −0.0566405
\(408\) −604649. −0.179826
\(409\) 1.18106e6 0.349110 0.174555 0.984647i \(-0.444151\pi\)
0.174555 + 0.984647i \(0.444151\pi\)
\(410\) −32007.5 −0.00940355
\(411\) −460751. −0.134543
\(412\) −1.44333e6 −0.418913
\(413\) −571881. −0.164980
\(414\) 2.17081e6 0.622474
\(415\) 21699.0 0.00618470
\(416\) −957590. −0.271298
\(417\) −3.45430e6 −0.972791
\(418\) −1.52520e6 −0.426958
\(419\) 4.81888e6 1.34094 0.670472 0.741935i \(-0.266092\pi\)
0.670472 + 0.741935i \(0.266092\pi\)
\(420\) −48135.7 −0.0133151
\(421\) −4.66024e6 −1.28145 −0.640727 0.767769i \(-0.721367\pi\)
−0.640727 + 0.767769i \(0.721367\pi\)
\(422\) 2.98426e6 0.815747
\(423\) −4.69165e6 −1.27490
\(424\) −2.36513e6 −0.638912
\(425\) −3.54353e6 −0.951622
\(426\) −1.20560e6 −0.321870
\(427\) −3.45136e6 −0.916053
\(428\) 672947. 0.177571
\(429\) 965400. 0.253258
\(430\) −325938. −0.0850089
\(431\) 2.30312e6 0.597206 0.298603 0.954377i \(-0.403479\pi\)
0.298603 + 0.954377i \(0.403479\pi\)
\(432\) 884221. 0.227956
\(433\) 4.87584e6 1.24977 0.624885 0.780717i \(-0.285146\pi\)
0.624885 + 0.780717i \(0.285146\pi\)
\(434\) −175818. −0.0448063
\(435\) 109138. 0.0276538
\(436\) −3.91084e6 −0.985268
\(437\) 9.49664e6 2.37885
\(438\) −1.86542e6 −0.464614
\(439\) 6.46368e6 1.60073 0.800365 0.599512i \(-0.204639\pi\)
0.800365 + 0.599512i \(0.204639\pi\)
\(440\) −38023.8 −0.00936319
\(441\) 1.91495e6 0.468879
\(442\) −4.27255e6 −1.04023
\(443\) −6.65119e6 −1.61024 −0.805119 0.593114i \(-0.797898\pi\)
−0.805119 + 0.593114i \(0.797898\pi\)
\(444\) 200705. 0.0483170
\(445\) 645337. 0.154485
\(446\) 1.32966e6 0.316522
\(447\) −1.32085e6 −0.312670
\(448\) −312973. −0.0736737
\(449\) −3.46875e6 −0.812002 −0.406001 0.913873i \(-0.633077\pi\)
−0.406001 + 0.913873i \(0.633077\pi\)
\(450\) 2.16649e6 0.504342
\(451\) 209807. 0.0485711
\(452\) −1.09416e6 −0.251905
\(453\) −326986. −0.0748658
\(454\) −4.03922e6 −0.919725
\(455\) −340135. −0.0770234
\(456\) 1.61723e6 0.364215
\(457\) 1.77221e6 0.396940 0.198470 0.980107i \(-0.436403\pi\)
0.198470 + 0.980107i \(0.436403\pi\)
\(458\) 130637. 0.0291006
\(459\) 3.94519e6 0.874050
\(460\) 236755. 0.0521681
\(461\) 6.05367e6 1.32668 0.663340 0.748318i \(-0.269138\pi\)
0.663340 + 0.748318i \(0.269138\pi\)
\(462\) 315526. 0.0687749
\(463\) 1.40006e6 0.303524 0.151762 0.988417i \(-0.451505\pi\)
0.151762 + 0.988417i \(0.451505\pi\)
\(464\) 709607. 0.153011
\(465\) 22649.4 0.00485762
\(466\) −3.61072e6 −0.770245
\(467\) −4.16130e6 −0.882950 −0.441475 0.897273i \(-0.645545\pi\)
−0.441475 + 0.897273i \(0.645545\pi\)
\(468\) 2.61220e6 0.551305
\(469\) 4.36082e6 0.915454
\(470\) −511685. −0.106846
\(471\) 1.28075e6 0.266018
\(472\) 479003. 0.0989653
\(473\) 2.13650e6 0.439087
\(474\) −1.19283e6 −0.243856
\(475\) 9.47772e6 1.92739
\(476\) −1.39642e6 −0.282486
\(477\) 6.45183e6 1.29833
\(478\) 801212. 0.160390
\(479\) 4.06980e6 0.810466 0.405233 0.914213i \(-0.367190\pi\)
0.405233 + 0.914213i \(0.367190\pi\)
\(480\) 40318.1 0.00798724
\(481\) 1.41821e6 0.279498
\(482\) 1.18447e6 0.232224
\(483\) −1.96462e6 −0.383187
\(484\) −2.32757e6 −0.451637
\(485\) 673715. 0.130053
\(486\) −3.81567e6 −0.732792
\(487\) 3.53330e6 0.675085 0.337542 0.941310i \(-0.390404\pi\)
0.337542 + 0.941310i \(0.390404\pi\)
\(488\) 2.89083e6 0.549507
\(489\) 861837. 0.162987
\(490\) 208850. 0.0392956
\(491\) −3.03584e6 −0.568297 −0.284149 0.958780i \(-0.591711\pi\)
−0.284149 + 0.958780i \(0.591711\pi\)
\(492\) −222466. −0.0414334
\(493\) 3.16610e6 0.586688
\(494\) 1.14276e7 2.10687
\(495\) 103725. 0.0190270
\(496\) 147264. 0.0268777
\(497\) −2.78430e6 −0.505621
\(498\) 150817. 0.0272507
\(499\) −4.82818e6 −0.868025 −0.434012 0.900907i \(-0.642903\pi\)
−0.434012 + 0.900907i \(0.642903\pi\)
\(500\) 474293. 0.0848441
\(501\) −2.60990e6 −0.464548
\(502\) 860820. 0.152459
\(503\) 1.00862e7 1.77750 0.888748 0.458395i \(-0.151576\pi\)
0.888748 + 0.458395i \(0.151576\pi\)
\(504\) 853757. 0.149712
\(505\) 217795. 0.0380031
\(506\) −1.55191e6 −0.269458
\(507\) −4.16219e6 −0.719121
\(508\) −2.98692e6 −0.513527
\(509\) 1.03984e7 1.77898 0.889490 0.456954i \(-0.151060\pi\)
0.889490 + 0.456954i \(0.151060\pi\)
\(510\) 179890. 0.0306254
\(511\) −4.30813e6 −0.729855
\(512\) 262144. 0.0441942
\(513\) −1.05520e7 −1.77028
\(514\) −1.14987e6 −0.191973
\(515\) 429408. 0.0713432
\(516\) −2.26541e6 −0.374561
\(517\) 3.35406e6 0.551879
\(518\) 463521. 0.0759005
\(519\) 5.43802e6 0.886181
\(520\) 284894. 0.0462035
\(521\) 8.52366e6 1.37573 0.687863 0.725841i \(-0.258549\pi\)
0.687863 + 0.725841i \(0.258549\pi\)
\(522\) −1.93573e6 −0.310934
\(523\) −7.61908e6 −1.21800 −0.609001 0.793169i \(-0.708430\pi\)
−0.609001 + 0.793169i \(0.708430\pi\)
\(524\) −45151.8 −0.00718368
\(525\) −1.96071e6 −0.310466
\(526\) −902606. −0.142244
\(527\) 657058. 0.103057
\(528\) −264282. −0.0412556
\(529\) 3.22663e6 0.501314
\(530\) 703655. 0.108810
\(531\) −1.30667e6 −0.201108
\(532\) 3.73493e6 0.572141
\(533\) −1.57198e6 −0.239679
\(534\) 4.48537e6 0.680684
\(535\) −200209. −0.0302413
\(536\) −3.65259e6 −0.549148
\(537\) 4.51454e6 0.675582
\(538\) 2.57867e6 0.384096
\(539\) −1.36900e6 −0.202969
\(540\) −263066. −0.0388222
\(541\) 6.23795e6 0.916324 0.458162 0.888869i \(-0.348508\pi\)
0.458162 + 0.888869i \(0.348508\pi\)
\(542\) 326040. 0.0476730
\(543\) −1.02957e6 −0.149850
\(544\) 1.16963e6 0.169453
\(545\) 1.16352e6 0.167797
\(546\) −2.36408e6 −0.339376
\(547\) −1.04568e7 −1.49427 −0.747135 0.664672i \(-0.768571\pi\)
−0.747135 + 0.664672i \(0.768571\pi\)
\(548\) 891273. 0.126782
\(549\) −7.88587e6 −1.11665
\(550\) −1.54882e6 −0.218320
\(551\) −8.46822e6 −1.18826
\(552\) 1.64555e6 0.229860
\(553\) −2.75481e6 −0.383070
\(554\) −2.99405e6 −0.414462
\(555\) −59712.0 −0.00822866
\(556\) 6.68196e6 0.916678
\(557\) −358470. −0.0489570 −0.0244785 0.999700i \(-0.507793\pi\)
−0.0244785 + 0.999700i \(0.507793\pi\)
\(558\) −401720. −0.0546182
\(559\) −1.60078e7 −2.16671
\(560\) 93113.2 0.0125470
\(561\) −1.17917e6 −0.158186
\(562\) −7.23138e6 −0.965785
\(563\) −1.07188e7 −1.42519 −0.712597 0.701573i \(-0.752481\pi\)
−0.712597 + 0.701573i \(0.752481\pi\)
\(564\) −3.55643e6 −0.470779
\(565\) 325527. 0.0429008
\(566\) −301065. −0.0395020
\(567\) −1.05866e6 −0.138292
\(568\) 2.33211e6 0.303304
\(569\) 3.31337e6 0.429032 0.214516 0.976721i \(-0.431183\pi\)
0.214516 + 0.976721i \(0.431183\pi\)
\(570\) −481143. −0.0620279
\(571\) −8.57422e6 −1.10054 −0.550268 0.834988i \(-0.685475\pi\)
−0.550268 + 0.834988i \(0.685475\pi\)
\(572\) −1.86746e6 −0.238650
\(573\) −3.81141e6 −0.484952
\(574\) −513778. −0.0650872
\(575\) 9.64373e6 1.21640
\(576\) −715100. −0.0898071
\(577\) −1.29993e7 −1.62547 −0.812737 0.582631i \(-0.802023\pi\)
−0.812737 + 0.582631i \(0.802023\pi\)
\(578\) −460823. −0.0573740
\(579\) −2.83255e6 −0.351140
\(580\) −211116. −0.0260586
\(581\) 348307. 0.0428077
\(582\) 4.68261e6 0.573034
\(583\) −4.61241e6 −0.562026
\(584\) 3.60846e6 0.437814
\(585\) −777160. −0.0938903
\(586\) −402785. −0.0484540
\(587\) 1.27659e7 1.52917 0.764584 0.644524i \(-0.222944\pi\)
0.764584 + 0.644524i \(0.222944\pi\)
\(588\) 1.45160e6 0.173142
\(589\) −1.75740e6 −0.208729
\(590\) −142509. −0.0168543
\(591\) −26684.5 −0.00314261
\(592\) −388241. −0.0455300
\(593\) −1.18387e7 −1.38251 −0.691253 0.722613i \(-0.742941\pi\)
−0.691253 + 0.722613i \(0.742941\pi\)
\(594\) 1.72438e6 0.200524
\(595\) 415450. 0.0481090
\(596\) 2.55505e6 0.294634
\(597\) −546075. −0.0627071
\(598\) 1.16277e7 1.32966
\(599\) 7.06748e6 0.804818 0.402409 0.915460i \(-0.368173\pi\)
0.402409 + 0.915460i \(0.368173\pi\)
\(600\) 1.64227e6 0.186238
\(601\) −6.07935e6 −0.686548 −0.343274 0.939235i \(-0.611536\pi\)
−0.343274 + 0.939235i \(0.611536\pi\)
\(602\) −5.23189e6 −0.588393
\(603\) 9.96387e6 1.11592
\(604\) 632518. 0.0705474
\(605\) 692480. 0.0769164
\(606\) 1.51377e6 0.167447
\(607\) 1.17492e7 1.29431 0.647154 0.762360i \(-0.275959\pi\)
0.647154 + 0.762360i \(0.275959\pi\)
\(608\) −3.12834e6 −0.343207
\(609\) 1.75187e6 0.191407
\(610\) −860056. −0.0935841
\(611\) −2.51303e7 −2.72330
\(612\) −3.19061e6 −0.344346
\(613\) 1.54849e6 0.166440 0.0832198 0.996531i \(-0.473480\pi\)
0.0832198 + 0.996531i \(0.473480\pi\)
\(614\) 9.20182e6 0.985038
\(615\) 66186.2 0.00705634
\(616\) −610350. −0.0648078
\(617\) 953292. 0.100812 0.0504061 0.998729i \(-0.483948\pi\)
0.0504061 + 0.998729i \(0.483948\pi\)
\(618\) 2.98457e6 0.314348
\(619\) −3.71124e6 −0.389307 −0.194654 0.980872i \(-0.562358\pi\)
−0.194654 + 0.980872i \(0.562358\pi\)
\(620\) −43812.7 −0.00457742
\(621\) −1.07368e7 −1.11724
\(622\) −9.37616e6 −0.971738
\(623\) 1.03588e7 1.06928
\(624\) 1.98014e6 0.203579
\(625\) 9.55371e6 0.978300
\(626\) 2.04719e6 0.208796
\(627\) 3.15386e6 0.320386
\(628\) −2.47747e6 −0.250674
\(629\) −1.73224e6 −0.174575
\(630\) −254003. −0.0254969
\(631\) 1.37612e7 1.37589 0.687945 0.725763i \(-0.258513\pi\)
0.687945 + 0.725763i \(0.258513\pi\)
\(632\) 2.30740e6 0.229790
\(633\) −6.17096e6 −0.612129
\(634\) 1.46124e6 0.144377
\(635\) 888642. 0.0874566
\(636\) 4.89071e6 0.479434
\(637\) 1.02572e7 1.00157
\(638\) 1.38385e6 0.134598
\(639\) −6.36173e6 −0.616344
\(640\) −77990.9 −0.00752651
\(641\) −2.70568e6 −0.260094 −0.130047 0.991508i \(-0.541513\pi\)
−0.130047 + 0.991508i \(0.541513\pi\)
\(642\) −1.39154e6 −0.133247
\(643\) −8.40013e6 −0.801232 −0.400616 0.916246i \(-0.631204\pi\)
−0.400616 + 0.916246i \(0.631204\pi\)
\(644\) 3.80034e6 0.361084
\(645\) 673987. 0.0637899
\(646\) −1.39580e7 −1.31595
\(647\) −1.60069e6 −0.150331 −0.0751654 0.997171i \(-0.523948\pi\)
−0.0751654 + 0.997171i \(0.523948\pi\)
\(648\) 886722. 0.0829564
\(649\) 934135. 0.0870558
\(650\) 1.16046e7 1.07732
\(651\) 363563. 0.0336223
\(652\) −1.66713e6 −0.153586
\(653\) −1.22103e7 −1.12058 −0.560290 0.828297i \(-0.689310\pi\)
−0.560290 + 0.828297i \(0.689310\pi\)
\(654\) 8.08698e6 0.739336
\(655\) 13433.2 0.00122342
\(656\) 430336. 0.0390434
\(657\) −9.84347e6 −0.889682
\(658\) −8.21346e6 −0.739540
\(659\) 1.29323e7 1.16001 0.580004 0.814614i \(-0.303051\pi\)
0.580004 + 0.814614i \(0.303051\pi\)
\(660\) 78627.0 0.00702606
\(661\) 9.45698e6 0.841877 0.420939 0.907089i \(-0.361701\pi\)
0.420939 + 0.907089i \(0.361701\pi\)
\(662\) −1.40010e7 −1.24170
\(663\) 8.83492e6 0.780583
\(664\) −291739. −0.0256788
\(665\) −1.11118e6 −0.0974388
\(666\) 1.05908e6 0.0925215
\(667\) −8.61654e6 −0.749926
\(668\) 5.04857e6 0.437751
\(669\) −2.74952e6 −0.237516
\(670\) 1.08669e6 0.0935229
\(671\) 5.63760e6 0.483379
\(672\) 647177. 0.0552841
\(673\) −3.75732e6 −0.319772 −0.159886 0.987135i \(-0.551113\pi\)
−0.159886 + 0.987135i \(0.551113\pi\)
\(674\) −914511. −0.0775424
\(675\) −1.07154e7 −0.905213
\(676\) 8.05129e6 0.677640
\(677\) −1.18521e7 −0.993859 −0.496930 0.867791i \(-0.665539\pi\)
−0.496930 + 0.867791i \(0.665539\pi\)
\(678\) 2.26255e6 0.189027
\(679\) 1.08143e7 0.900171
\(680\) −347977. −0.0288588
\(681\) 8.35244e6 0.690153
\(682\) 287189. 0.0236432
\(683\) −9.53794e6 −0.782353 −0.391177 0.920316i \(-0.627932\pi\)
−0.391177 + 0.920316i \(0.627932\pi\)
\(684\) 8.53378e6 0.697431
\(685\) −265164. −0.0215918
\(686\) 8.48928e6 0.688748
\(687\) −270136. −0.0218368
\(688\) 4.38219e6 0.352956
\(689\) 3.45586e7 2.77337
\(690\) −489570. −0.0391465
\(691\) −9.79155e6 −0.780111 −0.390055 0.920791i \(-0.627544\pi\)
−0.390055 + 0.920791i \(0.627544\pi\)
\(692\) −1.05193e7 −0.835064
\(693\) 1.66497e6 0.131696
\(694\) −1.42458e7 −1.12277
\(695\) −1.98796e6 −0.156115
\(696\) −1.46735e6 −0.114818
\(697\) 1.92006e6 0.149704
\(698\) −1.29511e7 −1.00617
\(699\) 7.46638e6 0.577985
\(700\) 3.79277e6 0.292558
\(701\) 2.40504e6 0.184853 0.0924265 0.995720i \(-0.470538\pi\)
0.0924265 + 0.995720i \(0.470538\pi\)
\(702\) −1.29199e7 −0.989504
\(703\) 4.63315e6 0.353580
\(704\) 511224. 0.0388759
\(705\) 1.05808e6 0.0801763
\(706\) 1.48651e7 1.12242
\(707\) 3.49600e6 0.263040
\(708\) −990498. −0.0742627
\(709\) 1.55342e7 1.16057 0.580287 0.814412i \(-0.302941\pi\)
0.580287 + 0.814412i \(0.302941\pi\)
\(710\) −693829. −0.0516543
\(711\) −6.29434e6 −0.466956
\(712\) −8.67646e6 −0.641420
\(713\) −1.78818e6 −0.131731
\(714\) 2.88756e6 0.211975
\(715\) 555591. 0.0406434
\(716\) −8.73288e6 −0.636612
\(717\) −1.65677e6 −0.120355
\(718\) −6.27704e6 −0.454406
\(719\) 1.97199e7 1.42260 0.711301 0.702888i \(-0.248106\pi\)
0.711301 + 0.702888i \(0.248106\pi\)
\(720\) 212751. 0.0152946
\(721\) 6.89277e6 0.493805
\(722\) 2.74283e7 1.95819
\(723\) −2.44929e6 −0.174259
\(724\) 1.99160e6 0.141207
\(725\) −8.59938e6 −0.607606
\(726\) 4.81304e6 0.338905
\(727\) −820427. −0.0575710 −0.0287855 0.999586i \(-0.509164\pi\)
−0.0287855 + 0.999586i \(0.509164\pi\)
\(728\) 4.57306e6 0.319800
\(729\) 4.52341e6 0.315244
\(730\) −1.07356e6 −0.0745621
\(731\) 1.95523e7 1.35333
\(732\) −5.97776e6 −0.412345
\(733\) 2.82300e6 0.194066 0.0970332 0.995281i \(-0.469065\pi\)
0.0970332 + 0.995281i \(0.469065\pi\)
\(734\) 9.36460e6 0.641577
\(735\) −431867. −0.0294871
\(736\) −3.18314e6 −0.216601
\(737\) −7.12316e6 −0.483063
\(738\) −1.17391e6 −0.0793402
\(739\) 7.61633e6 0.513020 0.256510 0.966542i \(-0.417427\pi\)
0.256510 + 0.966542i \(0.417427\pi\)
\(740\) 115506. 0.00775401
\(741\) −2.36304e7 −1.58097
\(742\) 1.12949e7 0.753136
\(743\) −2.55640e7 −1.69886 −0.849429 0.527703i \(-0.823053\pi\)
−0.849429 + 0.527703i \(0.823053\pi\)
\(744\) −304517. −0.0201688
\(745\) −760156. −0.0501778
\(746\) −1.42199e7 −0.935511
\(747\) 795833. 0.0521820
\(748\) 2.28097e6 0.149061
\(749\) −3.21372e6 −0.209317
\(750\) −980759. −0.0636663
\(751\) 1.63616e7 1.05858 0.529292 0.848440i \(-0.322458\pi\)
0.529292 + 0.848440i \(0.322458\pi\)
\(752\) 6.87953e6 0.443623
\(753\) −1.78003e6 −0.114404
\(754\) −1.03685e7 −0.664185
\(755\) −188182. −0.0120146
\(756\) −4.22268e6 −0.268710
\(757\) 1.40629e7 0.891940 0.445970 0.895048i \(-0.352859\pi\)
0.445970 + 0.895048i \(0.352859\pi\)
\(758\) −471360. −0.0297975
\(759\) 3.20910e6 0.202199
\(760\) 930719. 0.0584500
\(761\) −7.75942e6 −0.485699 −0.242850 0.970064i \(-0.578082\pi\)
−0.242850 + 0.970064i \(0.578082\pi\)
\(762\) 6.17645e6 0.385347
\(763\) 1.86766e7 1.16141
\(764\) 7.37275e6 0.456979
\(765\) 949244. 0.0586441
\(766\) −1.03838e7 −0.639418
\(767\) −6.99902e6 −0.429585
\(768\) −542071. −0.0331629
\(769\) −7.55369e6 −0.460620 −0.230310 0.973117i \(-0.573974\pi\)
−0.230310 + 0.973117i \(0.573974\pi\)
\(770\) 181586. 0.0110371
\(771\) 2.37773e6 0.144055
\(772\) 5.47925e6 0.330886
\(773\) 3.94631e6 0.237543 0.118772 0.992922i \(-0.462104\pi\)
0.118772 + 0.992922i \(0.462104\pi\)
\(774\) −1.19541e7 −0.717242
\(775\) −1.78462e6 −0.106731
\(776\) −9.05799e6 −0.539980
\(777\) −958484. −0.0569551
\(778\) −3.95331e6 −0.234159
\(779\) −5.13550e6 −0.303207
\(780\) −589114. −0.0346707
\(781\) 4.54800e6 0.266804
\(782\) −1.42024e7 −0.830512
\(783\) 9.57411e6 0.558077
\(784\) −2.80796e6 −0.163155
\(785\) 737075. 0.0426911
\(786\) 93366.5 0.00539057
\(787\) 1.43242e6 0.0824393 0.0412197 0.999150i \(-0.486876\pi\)
0.0412197 + 0.999150i \(0.486876\pi\)
\(788\) 51618.2 0.00296133
\(789\) 1.86644e6 0.106739
\(790\) −686479. −0.0391345
\(791\) 5.22528e6 0.296940
\(792\) −1.39456e6 −0.0789997
\(793\) −4.22399e7 −2.38528
\(794\) −1.53023e7 −0.861401
\(795\) −1.45504e6 −0.0816503
\(796\) 1.05632e6 0.0590900
\(797\) 7.99597e6 0.445887 0.222944 0.974831i \(-0.428433\pi\)
0.222944 + 0.974831i \(0.428433\pi\)
\(798\) −7.72321e6 −0.429330
\(799\) 3.06949e7 1.70098
\(800\) −3.17680e6 −0.175495
\(801\) 2.36684e7 1.30343
\(802\) 1.85075e7 1.01604
\(803\) 7.03709e6 0.385127
\(804\) 7.55296e6 0.412076
\(805\) −1.13065e6 −0.0614946
\(806\) −2.15177e6 −0.116670
\(807\) −5.33226e6 −0.288222
\(808\) −2.92822e6 −0.157788
\(809\) 2.49957e7 1.34275 0.671374 0.741119i \(-0.265705\pi\)
0.671374 + 0.741119i \(0.265705\pi\)
\(810\) −263810. −0.0141279
\(811\) −1.69765e7 −0.906351 −0.453176 0.891421i \(-0.649709\pi\)
−0.453176 + 0.891421i \(0.649709\pi\)
\(812\) −3.38879e6 −0.180366
\(813\) −674197. −0.0357734
\(814\) −757135. −0.0400509
\(815\) 495991. 0.0261565
\(816\) −2.41859e6 −0.127156
\(817\) −5.22957e7 −2.74101
\(818\) 4.72422e6 0.246858
\(819\) −1.24748e7 −0.649866
\(820\) −128030. −0.00664932
\(821\) 2.16143e7 1.11914 0.559568 0.828784i \(-0.310967\pi\)
0.559568 + 0.828784i \(0.310967\pi\)
\(822\) −1.84301e6 −0.0951365
\(823\) 119310. 0.00614011 0.00307005 0.999995i \(-0.499023\pi\)
0.00307005 + 0.999995i \(0.499023\pi\)
\(824\) −5.77333e6 −0.296216
\(825\) 3.20271e6 0.163826
\(826\) −2.28752e6 −0.116658
\(827\) −3.27087e7 −1.66303 −0.831514 0.555504i \(-0.812526\pi\)
−0.831514 + 0.555504i \(0.812526\pi\)
\(828\) 8.68325e6 0.440156
\(829\) 1.61893e7 0.818165 0.409083 0.912497i \(-0.365849\pi\)
0.409083 + 0.912497i \(0.365849\pi\)
\(830\) 86795.9 0.00437325
\(831\) 6.19120e6 0.311009
\(832\) −3.83036e6 −0.191837
\(833\) −1.25285e7 −0.625584
\(834\) −1.38172e7 −0.687867
\(835\) −1.50201e6 −0.0745515
\(836\) −6.10079e6 −0.301905
\(837\) 1.98690e6 0.0980310
\(838\) 1.92755e7 0.948191
\(839\) −1.54062e7 −0.755600 −0.377800 0.925887i \(-0.623319\pi\)
−0.377800 + 0.925887i \(0.623319\pi\)
\(840\) −192543. −0.00941519
\(841\) −1.28277e7 −0.625402
\(842\) −1.86409e7 −0.906124
\(843\) 1.49533e7 0.724717
\(844\) 1.19370e7 0.576820
\(845\) −2.39535e6 −0.115406
\(846\) −1.87666e7 −0.901487
\(847\) 1.11155e7 0.532381
\(848\) −9.46054e6 −0.451779
\(849\) 622553. 0.0296420
\(850\) −1.41741e7 −0.672898
\(851\) 4.71430e6 0.223148
\(852\) −4.82242e6 −0.227597
\(853\) −2.77221e7 −1.30453 −0.652263 0.757993i \(-0.726180\pi\)
−0.652263 + 0.757993i \(0.726180\pi\)
\(854\) −1.38054e7 −0.647747
\(855\) −2.53890e6 −0.118776
\(856\) 2.69179e6 0.125561
\(857\) −1.84328e6 −0.0857314 −0.0428657 0.999081i \(-0.513649\pi\)
−0.0428657 + 0.999081i \(0.513649\pi\)
\(858\) 3.86160e6 0.179081
\(859\) −3.78226e6 −0.174891 −0.0874456 0.996169i \(-0.527870\pi\)
−0.0874456 + 0.996169i \(0.527870\pi\)
\(860\) −1.30375e6 −0.0601104
\(861\) 1.06241e6 0.0488408
\(862\) 9.21250e6 0.422289
\(863\) −6.83390e6 −0.312350 −0.156175 0.987729i \(-0.549916\pi\)
−0.156175 + 0.987729i \(0.549916\pi\)
\(864\) 3.53688e6 0.161189
\(865\) 3.12960e6 0.142216
\(866\) 1.95034e7 0.883720
\(867\) 952907. 0.0430529
\(868\) −703273. −0.0316829
\(869\) 4.49982e6 0.202137
\(870\) 436553. 0.0195542
\(871\) 5.33704e7 2.38372
\(872\) −1.56434e7 −0.696689
\(873\) 2.47092e7 1.09729
\(874\) 3.79866e7 1.68210
\(875\) −2.26503e6 −0.100012
\(876\) −7.46169e6 −0.328532
\(877\) 3.50135e7 1.53722 0.768612 0.639715i \(-0.220948\pi\)
0.768612 + 0.639715i \(0.220948\pi\)
\(878\) 2.58547e7 1.13189
\(879\) 832893. 0.0363594
\(880\) −152095. −0.00662078
\(881\) −1.47812e6 −0.0641608 −0.0320804 0.999485i \(-0.510213\pi\)
−0.0320804 + 0.999485i \(0.510213\pi\)
\(882\) 7.65980e6 0.331548
\(883\) −3.43310e6 −0.148179 −0.0740893 0.997252i \(-0.523605\pi\)
−0.0740893 + 0.997252i \(0.523605\pi\)
\(884\) −1.70902e7 −0.735557
\(885\) 294685. 0.0126474
\(886\) −2.66047e7 −1.13861
\(887\) −3.58183e7 −1.52861 −0.764304 0.644856i \(-0.776917\pi\)
−0.764304 + 0.644856i \(0.776917\pi\)
\(888\) 802819. 0.0341653
\(889\) 1.42643e7 0.605335
\(890\) 2.58135e6 0.109237
\(891\) 1.72926e6 0.0729735
\(892\) 5.31865e6 0.223815
\(893\) −8.20982e7 −3.44512
\(894\) −5.28341e6 −0.221091
\(895\) 2.59813e6 0.108419
\(896\) −1.25189e6 −0.0520952
\(897\) −2.40442e7 −0.997769
\(898\) −1.38750e7 −0.574172
\(899\) 1.59453e6 0.0658013
\(900\) 8.66595e6 0.356623
\(901\) −4.22108e7 −1.73225
\(902\) 839227. 0.0343450
\(903\) 1.08187e7 0.441525
\(904\) −4.37666e6 −0.178124
\(905\) −592523. −0.0240483
\(906\) −1.30794e6 −0.0529381
\(907\) −2.38330e7 −0.961966 −0.480983 0.876730i \(-0.659720\pi\)
−0.480983 + 0.876730i \(0.659720\pi\)
\(908\) −1.61569e7 −0.650343
\(909\) 7.98786e6 0.320642
\(910\) −1.36054e6 −0.0544637
\(911\) 74595.9 0.00297796 0.00148898 0.999999i \(-0.499526\pi\)
0.00148898 + 0.999999i \(0.499526\pi\)
\(912\) 6.46890e6 0.257539
\(913\) −568940. −0.0225886
\(914\) 7.08885e6 0.280679
\(915\) 1.77845e6 0.0702247
\(916\) 522548. 0.0205772
\(917\) 215627. 0.00846797
\(918\) 1.57808e7 0.618047
\(919\) 4.01030e7 1.56635 0.783174 0.621803i \(-0.213600\pi\)
0.783174 + 0.621803i \(0.213600\pi\)
\(920\) 947020. 0.0368884
\(921\) −1.90278e7 −0.739164
\(922\) 2.42147e7 0.938105
\(923\) −3.40760e7 −1.31657
\(924\) 1.26210e6 0.0486312
\(925\) 4.70491e6 0.180799
\(926\) 5.60022e6 0.214624
\(927\) 1.57490e7 0.601941
\(928\) 2.83843e6 0.108195
\(929\) 3.71159e7 1.41098 0.705489 0.708721i \(-0.250727\pi\)
0.705489 + 0.708721i \(0.250727\pi\)
\(930\) 90597.5 0.00343486
\(931\) 3.35093e7 1.26704
\(932\) −1.44429e7 −0.544646
\(933\) 1.93884e7 0.729183
\(934\) −1.66452e7 −0.624340
\(935\) −678614. −0.0253860
\(936\) 1.04488e7 0.389831
\(937\) 3216.86 0.000119697 0 5.98485e−5 1.00000i \(-0.499981\pi\)
5.98485e−5 1.00000i \(0.499981\pi\)
\(938\) 1.74433e7 0.647324
\(939\) −4.23326e6 −0.156679
\(940\) −2.04674e6 −0.0755515
\(941\) 2.16460e7 0.796899 0.398449 0.917190i \(-0.369548\pi\)
0.398449 + 0.917190i \(0.369548\pi\)
\(942\) 5.12299e6 0.188103
\(943\) −5.22544e6 −0.191357
\(944\) 1.91601e6 0.0699790
\(945\) 1.25630e6 0.0457628
\(946\) 8.54600e6 0.310481
\(947\) 3.47268e6 0.125831 0.0629157 0.998019i \(-0.479960\pi\)
0.0629157 + 0.998019i \(0.479960\pi\)
\(948\) −4.77133e6 −0.172432
\(949\) −5.27255e7 −1.90045
\(950\) 3.79109e7 1.36287
\(951\) −3.02161e6 −0.108340
\(952\) −5.58566e6 −0.199748
\(953\) −3.89396e7 −1.38886 −0.694431 0.719559i \(-0.744344\pi\)
−0.694431 + 0.719559i \(0.744344\pi\)
\(954\) 2.58073e7 0.918061
\(955\) −2.19348e6 −0.0778260
\(956\) 3.20485e6 0.113413
\(957\) −2.86158e6 −0.101001
\(958\) 1.62792e7 0.573086
\(959\) −4.25636e6 −0.149449
\(960\) 161272. 0.00564783
\(961\) −2.82982e7 −0.988441
\(962\) 5.67285e6 0.197635
\(963\) −7.34290e6 −0.255154
\(964\) 4.73788e6 0.164207
\(965\) −1.63014e6 −0.0563517
\(966\) −7.85848e6 −0.270954
\(967\) 3.11491e7 1.07122 0.535610 0.844465i \(-0.320082\pi\)
0.535610 + 0.844465i \(0.320082\pi\)
\(968\) −9.31029e6 −0.319356
\(969\) 2.88628e7 0.987480
\(970\) 2.69486e6 0.0919616
\(971\) 8.35462e6 0.284367 0.142183 0.989840i \(-0.454588\pi\)
0.142183 + 0.989840i \(0.454588\pi\)
\(972\) −1.52627e7 −0.518162
\(973\) −3.19103e7 −1.08056
\(974\) 1.41332e7 0.477357
\(975\) −2.39963e7 −0.808413
\(976\) 1.15633e7 0.388560
\(977\) −4.38829e6 −0.147082 −0.0735409 0.997292i \(-0.523430\pi\)
−0.0735409 + 0.997292i \(0.523430\pi\)
\(978\) 3.44735e6 0.115249
\(979\) −1.69205e7 −0.564232
\(980\) 835400. 0.0277862
\(981\) 4.26734e7 1.41574
\(982\) −1.21434e7 −0.401847
\(983\) 2.17681e7 0.718516 0.359258 0.933238i \(-0.383030\pi\)
0.359258 + 0.933238i \(0.383030\pi\)
\(984\) −889864. −0.0292979
\(985\) −15357.0 −0.000504331 0
\(986\) 1.26644e7 0.414851
\(987\) 1.69841e7 0.554944
\(988\) 4.57103e7 1.48978
\(989\) −5.32117e7 −1.72988
\(990\) 414899. 0.0134541
\(991\) 3.80298e6 0.123010 0.0615050 0.998107i \(-0.480410\pi\)
0.0615050 + 0.998107i \(0.480410\pi\)
\(992\) 589055. 0.0190054
\(993\) 2.89518e7 0.931758
\(994\) −1.11372e7 −0.357528
\(995\) −314268. −0.0100634
\(996\) 603269. 0.0192692
\(997\) −1.98704e7 −0.633095 −0.316547 0.948577i \(-0.602524\pi\)
−0.316547 + 0.948577i \(0.602524\pi\)
\(998\) −1.93127e7 −0.613786
\(999\) −5.23820e6 −0.166061
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 82.6.a.a.1.2 3
3.2 odd 2 738.6.a.d.1.2 3
4.3 odd 2 656.6.a.a.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
82.6.a.a.1.2 3 1.1 even 1 trivial
656.6.a.a.1.2 3 4.3 odd 2
738.6.a.d.1.2 3 3.2 odd 2