Defining parameters
Level: | \( N \) | \(=\) | \( 82 = 2 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 82.g (of order \(20\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 41 \) |
Character field: | \(\Q(\zeta_{20})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(21\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(82, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 104 | 24 | 80 |
Cusp forms | 72 | 24 | 48 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(82, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
82.2.g.a | $8$ | $0.655$ | \(\Q(\zeta_{20})\) | None | \(0\) | \(2\) | \(0\) | \(0\) | \(q-\zeta_{20}^{3}q^{2}+(-\zeta_{20}+\zeta_{20}^{3}-\zeta_{20}^{5}+\cdots)q^{3}+\cdots\) |
82.2.g.b | $16$ | $0.655$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-4\) | \(0\) | \(0\) | \(q-\beta _{12}q^{2}+(-2+\beta _{3}-\beta _{4}+\beta _{5}+\beta _{7}+\cdots)q^{3}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(82, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(82, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(41, [\chi])\)\(^{\oplus 2}\)