Properties

Label 82.2.g
Level $82$
Weight $2$
Character orbit 82.g
Rep. character $\chi_{82}(5,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $24$
Newform subspaces $2$
Sturm bound $21$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 82 = 2 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 82.g (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 41 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 2 \)
Sturm bound: \(21\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(82, [\chi])\).

Total New Old
Modular forms 104 24 80
Cusp forms 72 24 48
Eisenstein series 32 0 32

Trace form

\( 24 q - 2 q^{3} + 6 q^{4} - 4 q^{6} + 4 q^{10} + 10 q^{11} + 2 q^{12} - 16 q^{13} - 20 q^{14} - 44 q^{15} - 6 q^{16} - 10 q^{17} + 6 q^{18} - 20 q^{19} - 14 q^{22} - 12 q^{23} - 6 q^{24} - 6 q^{25} + 16 q^{27}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(82, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
82.2.g.a 82.g 41.g $8$ $0.655$ \(\Q(\zeta_{20})\) None 82.2.g.a \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{20}]$ \(q-\zeta_{20}^{3}q^{2}+(-\zeta_{20}+\zeta_{20}^{3}-\zeta_{20}^{5}+\cdots)q^{3}+\cdots\)
82.2.g.b 82.g 41.g $16$ $0.655$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 82.2.g.b \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{20}]$ \(q-\beta _{12}q^{2}+(-2+\beta _{3}-\beta _{4}+\beta _{5}+\beta _{7}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(82, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(82, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(41, [\chi])\)\(^{\oplus 2}\)