Learn more

Refine search


Results (1-50 of 138 matches)

Next   displayed columns for results
Label Char Prim Dim $A$ Field CM Minimal twist Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
82.2.a.a 82.a 1.a $1$ $0.655$ \(\Q\) None 82.2.a.a \(-1\) \(-2\) \(-2\) \(-4\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}+q^{4}-2q^{5}+2q^{6}-4q^{7}+\cdots\)
82.2.a.b 82.a 1.a $2$ $0.655$ \(\Q(\sqrt{2}) \) None 82.2.a.b \(2\) \(0\) \(0\) \(-4\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta q^{3}+q^{4}-2\beta q^{5}+\beta q^{6}+\cdots\)
82.2.b.a 82.b 41.b $2$ $0.655$ \(\Q(\sqrt{-2}) \) None 82.2.b.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+\beta q^{3}+q^{4}-\beta q^{6}+3\beta q^{7}+\cdots\)
82.2.b.b 82.b 41.b $2$ $0.655$ \(\Q(\sqrt{-1}) \) None 82.2.b.b \(2\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+\beta q^{3}+q^{4}-2 q^{5}+\beta q^{6}+\cdots\)
82.2.c.a 82.c 41.c $2$ $0.655$ \(\Q(\sqrt{-1}) \) None 82.2.c.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{2}+(i-1)q^{3}-q^{4}+2 i q^{5}+\cdots\)
82.2.c.b 82.c 41.c $2$ $0.655$ \(\Q(\sqrt{-1}) \) None 82.2.c.b \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{2}-q^{4}-2 i q^{5}+(-3 i+3)q^{7}+\cdots\)
82.2.c.c 82.c 41.c $2$ $0.655$ \(\Q(\sqrt{-1}) \) None 82.2.c.c \(0\) \(4\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{2}+(-2 i+2)q^{3}-q^{4}+2 i q^{5}+\cdots\)
82.2.d.a 82.d 41.d $4$ $0.655$ \(\Q(\zeta_{10})\) None 82.2.d.a \(-1\) \(6\) \(4\) \(-8\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+\zeta_{10}-\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\)
82.2.d.b 82.d 41.d $4$ $0.655$ \(\Q(\zeta_{10})\) None 82.2.d.b \(1\) \(2\) \(2\) \(4\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}+(-\zeta_{10}^{2}+\cdots)q^{3}+\cdots\)
82.2.d.c 82.d 41.d $8$ $0.655$ 8.0.123765625.1 None 82.2.d.c \(-2\) \(-10\) \(-10\) \(4\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{2}q^{2}+(-2-\beta _{3}+\beta _{4}-\beta _{7})q^{3}+\cdots\)
82.2.f.a 82.f 41.f $8$ $0.655$ 8.0.1816890625.4 None 82.2.f.a \(-2\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{5}q^{2}+(\beta _{2}+\beta _{7})q^{3}-\beta _{3}q^{4}+(-\beta _{2}+\cdots)q^{5}+\cdots\)
82.2.f.b 82.f 41.f $8$ $0.655$ 8.0.346890625.1 None 82.2.f.b \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(1-\beta _{2}+\beta _{3}+\beta _{4})q^{2}+(-\beta _{3}-\beta _{4}+\cdots)q^{3}+\cdots\)
82.2.g.a 82.g 41.g $8$ $0.655$ \(\Q(\zeta_{20})\) None 82.2.g.a \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{20}]$ \(q-\zeta_{20}^{3}q^{2}+(-\zeta_{20}+\zeta_{20}^{3}-\zeta_{20}^{5}+\cdots)q^{3}+\cdots\)
82.2.g.b 82.g 41.g $16$ $0.655$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 82.2.g.b \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{20}]$ \(q-\beta _{12}q^{2}+(-2+\beta _{3}-\beta _{4}+\beta _{5}+\beta _{7}+\cdots)q^{3}+\cdots\)
82.3.e.a 82.e 41.e $4$ $2.234$ \(\Q(\zeta_{8})\) None 82.3.e.a \(4\) \(0\) \(16\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+(1+\zeta_{8}^{2})q^{2}+(2\zeta_{8}-2\zeta_{8}^{2})q^{3}+2\zeta_{8}^{2}q^{4}+\cdots\)
82.3.e.b 82.e 41.e $12$ $2.234$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 82.3.e.b \(-12\) \(-12\) \(0\) \(20\) $\mathrm{SU}(2)[C_{8}]$ \(q+(-1-\beta _{3})q^{2}+(-1+\beta _{1}-\beta _{3}+\beta _{5}+\cdots)q^{3}+\cdots\)
82.3.e.c 82.e 41.e $12$ $2.234$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 82.3.e.c \(12\) \(4\) \(-16\) \(-20\) $\mathrm{SU}(2)[C_{8}]$ \(q+(1+\beta _{7})q^{2}+(-\beta _{3}-\beta _{4}+\beta _{7})q^{3}+\cdots\)
82.3.h.a 82.h 41.h $48$ $2.234$ None 82.3.h.a \(12\) \(12\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{40}]$
82.3.h.b 82.h 41.h $64$ $2.234$ None 82.3.h.b \(-16\) \(-4\) \(0\) \(20\) $\mathrm{SU}(2)[C_{40}]$
82.4.a.a 82.a 1.a $1$ $4.838$ \(\Q\) None 82.4.a.a \(2\) \(-4\) \(-18\) \(-2\) $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-4q^{3}+4q^{4}-18q^{5}-8q^{6}+\cdots\)
82.4.a.b 82.a 1.a $1$ $4.838$ \(\Q\) None 82.4.a.b \(2\) \(10\) \(-6\) \(-10\) $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+10q^{3}+4q^{4}-6q^{5}+20q^{6}+\cdots\)
82.4.a.c 82.a 1.a $2$ $4.838$ \(\Q(\sqrt{3}) \) None 82.4.a.c \(-4\) \(2\) \(8\) \(2\) $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1+3\beta )q^{3}+4q^{4}+(4+4\beta )q^{5}+\cdots\)
82.4.a.d 82.a 1.a $3$ $4.838$ 3.3.6452.1 None 82.4.a.d \(-6\) \(-4\) \(-2\) \(-26\) $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1-\beta _{2})q^{3}+4q^{4}+(-2+\cdots)q^{5}+\cdots\)
82.4.a.e 82.a 1.a $3$ $4.838$ 3.3.564.1 None 82.4.a.e \(6\) \(-2\) \(18\) \(36\) $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-2+3\beta _{1}-\beta _{2})q^{3}+4q^{4}+\cdots\)
82.4.b.a 82.b 41.b $4$ $4.838$ \(\Q(\sqrt{-10}, \sqrt{-66})\) None 82.4.b.a \(-8\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2q^{2}+\beta _{1}q^{3}+4q^{4}+(1-\beta _{3})q^{5}+\cdots\)
82.4.b.b 82.b 41.b $6$ $4.838$ 6.0.\(\cdots\).1 None 82.4.b.b \(12\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2q^{2}-\beta _{3}q^{3}+4q^{4}+(-1+\beta _{2}+\cdots)q^{5}+\cdots\)
82.4.c.a 82.c 41.c $10$ $4.838$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 82.4.c.a \(0\) \(4\) \(0\) \(20\) $\mathrm{SU}(2)[C_{4}]$ \(q+2\beta _{4}q^{2}+\beta _{1}q^{3}-4q^{4}+(\beta _{4}-\beta _{9})q^{5}+\cdots\)
82.4.c.b 82.c 41.c $12$ $4.838$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 82.4.c.b \(0\) \(-2\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{4}]$ \(q+2\beta _{3}q^{2}-\beta _{1}q^{3}-4q^{4}+(-3\beta _{3}+\cdots)q^{5}+\cdots\)
82.4.d.a 82.d 41.d $20$ $4.838$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 82.4.d.a \(-10\) \(-4\) \(6\) \(-24\) $\mathrm{SU}(2)[C_{5}]$ \(q+2\beta _{8}q^{2}+(-\beta _{4}+\beta _{5}+\beta _{8})q^{3}+4\beta _{2}q^{4}+\cdots\)
82.4.d.b 82.d 41.d $20$ $4.838$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 82.4.d.b \(10\) \(2\) \(-6\) \(24\) $\mathrm{SU}(2)[C_{5}]$ \(q-2\beta _{6}q^{2}+(1+\beta _{2}-\beta _{3}+\beta _{5})q^{3}+\cdots\)
82.4.f.a 82.f 41.f $16$ $4.838$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 82.4.f.a \(8\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q-2\beta _{8}q^{2}+(-\beta _{1}+\beta _{7}+\beta _{8})q^{3}+(-4+\cdots)q^{4}+\cdots\)
82.4.f.b 82.f 41.f $24$ $4.838$ None 82.4.f.b \(-12\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{10}]$
82.4.g.a 82.g 41.g $40$ $4.838$ None 82.4.g.a \(0\) \(-4\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{20}]$
82.4.g.b 82.g 41.g $48$ $4.838$ None 82.4.g.b \(0\) \(2\) \(0\) \(20\) $\mathrm{SU}(2)[C_{20}]$
82.5.e.a 82.e 41.e $28$ $8.476$ None 82.5.e.a \(-56\) \(16\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
82.5.e.b 82.e 41.e $28$ $8.476$ None 82.5.e.b \(56\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
82.5.h.a 82.h 41.h $112$ $8.476$ None 82.5.h.a \(-56\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{40}]$
82.5.h.b 82.h 41.h $112$ $8.476$ None 82.5.h.b \(56\) \(-16\) \(0\) \(0\) $\mathrm{SU}(2)[C_{40}]$
82.6.a.a 82.a 1.a $3$ $13.151$ 3.3.73428.1 None 82.6.a.a \(12\) \(-28\) \(-26\) \(-158\) $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+(-10+\beta _{1}+\beta _{2})q^{3}+2^{4}q^{4}+\cdots\)
82.6.a.b 82.a 1.a $4$ $13.151$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 82.6.a.b \(-16\) \(8\) \(12\) \(158\) $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+(2-\beta _{1}-\beta _{3})q^{3}+2^{4}q^{4}+\cdots\)
82.6.a.c 82.a 1.a $5$ $13.151$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 82.6.a.c \(-20\) \(-10\) \(-38\) \(-38\) $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+(-2-\beta _{1})q^{3}+2^{4}q^{4}+(-8+\cdots)q^{5}+\cdots\)
82.6.a.d 82.a 1.a $6$ $13.151$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 82.6.a.d \(24\) \(8\) \(124\) \(38\) $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+(1+\beta _{1})q^{3}+2^{4}q^{4}+(21-\beta _{5})q^{5}+\cdots\)
82.6.b.a 82.b 41.b $8$ $13.151$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 82.6.b.a \(32\) \(0\) \(-48\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4q^{2}+\beta _{1}q^{3}+2^{4}q^{4}+(-6-\beta _{2}+\cdots)q^{5}+\cdots\)
82.6.b.b 82.b 41.b $10$ $13.151$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 82.6.b.b \(-40\) \(0\) \(-24\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4q^{2}+\beta _{1}q^{3}+2^{4}q^{4}+(-2-\beta _{3}+\cdots)q^{5}+\cdots\)
82.6.c.a 82.c 41.c $16$ $13.151$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 82.6.c.a \(0\) \(-2\) \(0\) \(-100\) $\mathrm{SU}(2)[C_{4}]$ \(q-4\beta _{2}q^{2}+\beta _{6}q^{3}-2^{4}q^{4}+(-3\beta _{2}+\cdots)q^{5}+\cdots\)
82.6.c.b 82.c 41.c $18$ $13.151$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 82.6.c.b \(0\) \(-20\) \(0\) \(100\) $\mathrm{SU}(2)[C_{4}]$ \(q+4\beta _{2}q^{2}+(-1-\beta _{1}-\beta _{2})q^{3}-2^{4}q^{4}+\cdots\)
82.6.d.a 82.d 41.d $36$ $13.151$ None 82.6.d.a \(-36\) \(20\) \(-98\) \(120\) $\mathrm{SU}(2)[C_{5}]$
82.6.d.b 82.d 41.d $36$ $13.151$ None 82.6.d.b \(36\) \(2\) \(26\) \(-120\) $\mathrm{SU}(2)[C_{5}]$
82.6.f.a 82.f 41.f $32$ $13.151$ None 82.6.f.a \(-32\) \(0\) \(48\) \(0\) $\mathrm{SU}(2)[C_{10}]$
82.6.f.b 82.f 41.f $40$ $13.151$ None 82.6.f.b \(40\) \(0\) \(24\) \(0\) $\mathrm{SU}(2)[C_{10}]$
Next   displayed columns for results