Properties

Label 816.2.cj.c.209.3
Level $816$
Weight $2$
Character 816.209
Analytic conductor $6.516$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [816,2,Mod(65,816)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(816, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 0, 8, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("816.65"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 816.cj (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,8,0,0,0,16,0,-8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.51579280494\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 209.3
Character \(\chi\) \(=\) 816.209
Dual form 816.2.cj.c.449.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.706330 - 1.58149i) q^{3} +(3.00087 + 0.596910i) q^{5} +(0.464975 + 2.33759i) q^{7} +(-2.00219 - 2.23410i) q^{9} +(0.172899 - 0.258762i) q^{11} +(1.45541 + 1.45541i) q^{13} +(3.06361 - 4.32421i) q^{15} +(2.58814 - 3.20960i) q^{17} +(-0.427451 - 1.03196i) q^{19} +(4.02529 + 0.915758i) q^{21} +(4.71932 + 3.15335i) q^{23} +(4.02951 + 1.66908i) q^{25} +(-4.94741 + 1.58843i) q^{27} +(-1.62296 + 8.15918i) q^{29} +(5.25259 - 3.50967i) q^{31} +(-0.287105 - 0.456210i) q^{33} +7.29234i q^{35} +(-6.02262 - 9.01349i) q^{37} +(3.32972 - 1.27371i) q^{39} +(-5.42232 + 1.07857i) q^{41} +(1.13048 - 2.72921i) q^{43} +(-4.67476 - 7.89938i) q^{45} +(-4.50710 + 4.50710i) q^{47} +(1.21904 - 0.504943i) q^{49} +(-3.24785 - 6.36015i) q^{51} +(5.31572 - 2.20184i) q^{53} +(0.673306 - 0.673306i) q^{55} +(-1.93395 - 0.0528956i) q^{57} +(-0.337607 + 0.815054i) q^{59} +(-3.27882 + 0.652199i) q^{61} +(4.29144 - 5.71911i) q^{63} +(3.49876 + 5.23626i) q^{65} -2.49028i q^{67} +(8.32038 - 5.23624i) q^{69} +(0.997325 - 0.666391i) q^{71} +(-0.197828 + 0.994547i) q^{73} +(5.48579 - 5.19369i) q^{75} +(0.685274 + 0.283850i) q^{77} +(-11.0957 - 7.41392i) q^{79} +(-0.982433 + 8.94622i) q^{81} +(-1.56322 - 3.77396i) q^{83} +(9.68252 - 8.08669i) q^{85} +(11.7573 + 8.32976i) q^{87} +(-0.687749 - 0.687749i) q^{89} +(-2.72543 + 4.07889i) q^{91} +(-1.84043 - 10.7859i) q^{93} +(-0.666738 - 3.35192i) q^{95} +(-6.12098 - 1.21754i) q^{97} +(-0.924280 + 0.131817i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{3} + 16 q^{7} - 8 q^{9} - 16 q^{13} - 16 q^{15} + 16 q^{19} + 16 q^{21} + 16 q^{25} + 8 q^{27} - 16 q^{31} + 16 q^{37} + 24 q^{39} - 16 q^{43} - 40 q^{45} - 48 q^{49} + 40 q^{51} + 48 q^{55}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/816\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(545\) \(613\)
\(\chi(n)\) \(e\left(\frac{5}{16}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.706330 1.58149i 0.407800 0.913071i
\(4\) 0 0
\(5\) 3.00087 + 0.596910i 1.34203 + 0.266946i 0.813300 0.581845i \(-0.197669\pi\)
0.528729 + 0.848791i \(0.322669\pi\)
\(6\) 0 0
\(7\) 0.464975 + 2.33759i 0.175744 + 0.883525i 0.963535 + 0.267582i \(0.0862248\pi\)
−0.787791 + 0.615943i \(0.788775\pi\)
\(8\) 0 0
\(9\) −2.00219 2.23410i −0.667398 0.744701i
\(10\) 0 0
\(11\) 0.172899 0.258762i 0.0521312 0.0780198i −0.804488 0.593968i \(-0.797560\pi\)
0.856620 + 0.515949i \(0.172560\pi\)
\(12\) 0 0
\(13\) 1.45541 + 1.45541i 0.403659 + 0.403659i 0.879520 0.475861i \(-0.157864\pi\)
−0.475861 + 0.879520i \(0.657864\pi\)
\(14\) 0 0
\(15\) 3.06361 4.32421i 0.791020 1.11651i
\(16\) 0 0
\(17\) 2.58814 3.20960i 0.627717 0.778442i
\(18\) 0 0
\(19\) −0.427451 1.03196i −0.0980640 0.236747i 0.867233 0.497903i \(-0.165896\pi\)
−0.965297 + 0.261156i \(0.915896\pi\)
\(20\) 0 0
\(21\) 4.02529 + 0.915758i 0.878390 + 0.199835i
\(22\) 0 0
\(23\) 4.71932 + 3.15335i 0.984047 + 0.657519i 0.939880 0.341505i \(-0.110937\pi\)
0.0441670 + 0.999024i \(0.485937\pi\)
\(24\) 0 0
\(25\) 4.02951 + 1.66908i 0.805902 + 0.333816i
\(26\) 0 0
\(27\) −4.94741 + 1.58843i −0.952130 + 0.305693i
\(28\) 0 0
\(29\) −1.62296 + 8.15918i −0.301376 + 1.51512i 0.472242 + 0.881469i \(0.343445\pi\)
−0.773618 + 0.633652i \(0.781555\pi\)
\(30\) 0 0
\(31\) 5.25259 3.50967i 0.943394 0.630355i 0.0141803 0.999899i \(-0.495486\pi\)
0.929213 + 0.369544i \(0.120486\pi\)
\(32\) 0 0
\(33\) −0.287105 0.456210i −0.0499785 0.0794159i
\(34\) 0 0
\(35\) 7.29234i 1.23263i
\(36\) 0 0
\(37\) −6.02262 9.01349i −0.990113 1.48181i −0.872419 0.488758i \(-0.837450\pi\)
−0.117694 0.993050i \(-0.537550\pi\)
\(38\) 0 0
\(39\) 3.32972 1.27371i 0.533182 0.203957i
\(40\) 0 0
\(41\) −5.42232 + 1.07857i −0.846824 + 0.168444i −0.599386 0.800460i \(-0.704589\pi\)
−0.247438 + 0.968904i \(0.579589\pi\)
\(42\) 0 0
\(43\) 1.13048 2.72921i 0.172396 0.416201i −0.813939 0.580950i \(-0.802681\pi\)
0.986336 + 0.164749i \(0.0526813\pi\)
\(44\) 0 0
\(45\) −4.67476 7.89938i −0.696873 1.17757i
\(46\) 0 0
\(47\) −4.50710 + 4.50710i −0.657428 + 0.657428i −0.954771 0.297343i \(-0.903900\pi\)
0.297343 + 0.954771i \(0.403900\pi\)
\(48\) 0 0
\(49\) 1.21904 0.504943i 0.174148 0.0721347i
\(50\) 0 0
\(51\) −3.24785 6.36015i −0.454790 0.890599i
\(52\) 0 0
\(53\) 5.31572 2.20184i 0.730170 0.302447i 0.0135484 0.999908i \(-0.495687\pi\)
0.716622 + 0.697462i \(0.245687\pi\)
\(54\) 0 0
\(55\) 0.673306 0.673306i 0.0907886 0.0907886i
\(56\) 0 0
\(57\) −1.93395 0.0528956i −0.256158 0.00700620i
\(58\) 0 0
\(59\) −0.337607 + 0.815054i −0.0439526 + 0.106111i −0.944331 0.328996i \(-0.893290\pi\)
0.900379 + 0.435107i \(0.143290\pi\)
\(60\) 0 0
\(61\) −3.27882 + 0.652199i −0.419810 + 0.0835055i −0.400475 0.916308i \(-0.631155\pi\)
−0.0193351 + 0.999813i \(0.506155\pi\)
\(62\) 0 0
\(63\) 4.29144 5.71911i 0.540671 0.720540i
\(64\) 0 0
\(65\) 3.49876 + 5.23626i 0.433967 + 0.649478i
\(66\) 0 0
\(67\) 2.49028i 0.304236i −0.988362 0.152118i \(-0.951391\pi\)
0.988362 0.152118i \(-0.0486095\pi\)
\(68\) 0 0
\(69\) 8.32038 5.23624i 1.00166 0.630369i
\(70\) 0 0
\(71\) 0.997325 0.666391i 0.118361 0.0790861i −0.494981 0.868904i \(-0.664825\pi\)
0.613342 + 0.789818i \(0.289825\pi\)
\(72\) 0 0
\(73\) −0.197828 + 0.994547i −0.0231540 + 0.116403i −0.990634 0.136545i \(-0.956400\pi\)
0.967480 + 0.252948i \(0.0814001\pi\)
\(74\) 0 0
\(75\) 5.48579 5.19369i 0.633444 0.599716i
\(76\) 0 0
\(77\) 0.685274 + 0.283850i 0.0780942 + 0.0323477i
\(78\) 0 0
\(79\) −11.0957 7.41392i −1.24836 0.834131i −0.257147 0.966372i \(-0.582783\pi\)
−0.991218 + 0.132242i \(0.957783\pi\)
\(80\) 0 0
\(81\) −0.982433 + 8.94622i −0.109159 + 0.994024i
\(82\) 0 0
\(83\) −1.56322 3.77396i −0.171586 0.414246i 0.814570 0.580065i \(-0.196973\pi\)
−0.986156 + 0.165820i \(0.946973\pi\)
\(84\) 0 0
\(85\) 9.68252 8.08669i 1.05022 0.877125i
\(86\) 0 0
\(87\) 11.7573 + 8.32976i 1.26051 + 0.893044i
\(88\) 0 0
\(89\) −0.687749 0.687749i −0.0729012 0.0729012i 0.669716 0.742617i \(-0.266416\pi\)
−0.742617 + 0.669716i \(0.766416\pi\)
\(90\) 0 0
\(91\) −2.72543 + 4.07889i −0.285703 + 0.427584i
\(92\) 0 0
\(93\) −1.84043 10.7859i −0.190843 1.11844i
\(94\) 0 0
\(95\) −0.666738 3.35192i −0.0684059 0.343900i
\(96\) 0 0
\(97\) −6.12098 1.21754i −0.621491 0.123622i −0.125706 0.992068i \(-0.540120\pi\)
−0.495785 + 0.868445i \(0.665120\pi\)
\(98\) 0 0
\(99\) −0.924280 + 0.131817i −0.0928937 + 0.0132481i
\(100\) 0 0
\(101\) −3.89961 −0.388026 −0.194013 0.980999i \(-0.562150\pi\)
−0.194013 + 0.980999i \(0.562150\pi\)
\(102\) 0 0
\(103\) 8.34664 0.822419 0.411210 0.911541i \(-0.365106\pi\)
0.411210 + 0.911541i \(0.365106\pi\)
\(104\) 0 0
\(105\) 11.5327 + 5.15080i 1.12548 + 0.502667i
\(106\) 0 0
\(107\) −5.14612 1.02363i −0.497494 0.0989577i −0.0600352 0.998196i \(-0.519121\pi\)
−0.437459 + 0.899239i \(0.644121\pi\)
\(108\) 0 0
\(109\) −0.476511 2.39558i −0.0456415 0.229455i 0.951231 0.308479i \(-0.0998198\pi\)
−0.996873 + 0.0790234i \(0.974820\pi\)
\(110\) 0 0
\(111\) −18.5087 + 3.15819i −1.75676 + 0.299762i
\(112\) 0 0
\(113\) −4.29629 + 6.42985i −0.404161 + 0.604870i −0.976596 0.215080i \(-0.930999\pi\)
0.572435 + 0.819950i \(0.305999\pi\)
\(114\) 0 0
\(115\) 12.2798 + 12.2798i 1.14510 + 1.14510i
\(116\) 0 0
\(117\) 0.337523 6.16557i 0.0312040 0.570007i
\(118\) 0 0
\(119\) 8.70614 + 4.55763i 0.798091 + 0.417797i
\(120\) 0 0
\(121\) 4.17245 + 10.0732i 0.379314 + 0.915745i
\(122\) 0 0
\(123\) −2.12421 + 9.33714i −0.191534 + 0.841902i
\(124\) 0 0
\(125\) −1.62433 1.08534i −0.145284 0.0970757i
\(126\) 0 0
\(127\) −11.7962 4.88615i −1.04674 0.433576i −0.208016 0.978125i \(-0.566701\pi\)
−0.838729 + 0.544550i \(0.816701\pi\)
\(128\) 0 0
\(129\) −3.51772 3.71556i −0.309718 0.327137i
\(130\) 0 0
\(131\) −2.00825 + 10.0962i −0.175462 + 0.882107i 0.788289 + 0.615305i \(0.210967\pi\)
−0.963751 + 0.266802i \(0.914033\pi\)
\(132\) 0 0
\(133\) 2.21354 1.47904i 0.191938 0.128249i
\(134\) 0 0
\(135\) −15.7947 + 1.81350i −1.35939 + 0.156081i
\(136\) 0 0
\(137\) 19.0290i 1.62576i 0.582434 + 0.812878i \(0.302100\pi\)
−0.582434 + 0.812878i \(0.697900\pi\)
\(138\) 0 0
\(139\) −1.03770 1.55303i −0.0880167 0.131726i 0.784849 0.619688i \(-0.212741\pi\)
−0.872865 + 0.487961i \(0.837741\pi\)
\(140\) 0 0
\(141\) 3.94441 + 10.3114i 0.332179 + 0.868378i
\(142\) 0 0
\(143\) 0.628247 0.124966i 0.0525366 0.0104502i
\(144\) 0 0
\(145\) −9.74058 + 23.5158i −0.808911 + 1.95288i
\(146\) 0 0
\(147\) 0.0624850 2.28455i 0.00515367 0.188426i
\(148\) 0 0
\(149\) −5.87087 + 5.87087i −0.480960 + 0.480960i −0.905438 0.424478i \(-0.860458\pi\)
0.424478 + 0.905438i \(0.360458\pi\)
\(150\) 0 0
\(151\) −14.9344 + 6.18603i −1.21534 + 0.503412i −0.895927 0.444202i \(-0.853487\pi\)
−0.319418 + 0.947614i \(0.603487\pi\)
\(152\) 0 0
\(153\) −12.3525 + 0.644061i −0.998643 + 0.0520693i
\(154\) 0 0
\(155\) 17.8573 7.39673i 1.43433 0.594120i
\(156\) 0 0
\(157\) 3.33169 3.33169i 0.265898 0.265898i −0.561547 0.827445i \(-0.689794\pi\)
0.827445 + 0.561547i \(0.189794\pi\)
\(158\) 0 0
\(159\) 0.272471 9.96197i 0.0216083 0.790035i
\(160\) 0 0
\(161\) −5.17687 + 12.4981i −0.407994 + 0.984986i
\(162\) 0 0
\(163\) 3.23758 0.643995i 0.253587 0.0504416i −0.0666598 0.997776i \(-0.521234\pi\)
0.320247 + 0.947334i \(0.396234\pi\)
\(164\) 0 0
\(165\) −0.589248 1.54040i −0.0458729 0.119920i
\(166\) 0 0
\(167\) 3.69262 + 5.52640i 0.285743 + 0.427645i 0.946378 0.323063i \(-0.104712\pi\)
−0.660634 + 0.750708i \(0.729712\pi\)
\(168\) 0 0
\(169\) 8.76354i 0.674118i
\(170\) 0 0
\(171\) −1.44966 + 3.02115i −0.110858 + 0.231033i
\(172\) 0 0
\(173\) 12.5940 8.41505i 0.957505 0.639784i 0.0245198 0.999699i \(-0.492194\pi\)
0.932985 + 0.359915i \(0.117194\pi\)
\(174\) 0 0
\(175\) −2.02799 + 10.1954i −0.153302 + 0.770701i
\(176\) 0 0
\(177\) 1.05054 + 1.10962i 0.0789631 + 0.0834040i
\(178\) 0 0
\(179\) −17.6614 7.31558i −1.32007 0.546792i −0.392266 0.919852i \(-0.628309\pi\)
−0.927807 + 0.373059i \(0.878309\pi\)
\(180\) 0 0
\(181\) −6.27270 4.19128i −0.466246 0.311535i 0.300164 0.953888i \(-0.402959\pi\)
−0.766410 + 0.642352i \(0.777959\pi\)
\(182\) 0 0
\(183\) −1.28449 + 5.64608i −0.0949522 + 0.417370i
\(184\) 0 0
\(185\) −12.6929 30.6433i −0.933197 2.25294i
\(186\) 0 0
\(187\) −0.383034 1.22465i −0.0280103 0.0895554i
\(188\) 0 0
\(189\) −6.01351 10.8264i −0.437419 0.787507i
\(190\) 0 0
\(191\) 11.3186 + 11.3186i 0.818985 + 0.818985i 0.985961 0.166976i \(-0.0534002\pi\)
−0.166976 + 0.985961i \(0.553400\pi\)
\(192\) 0 0
\(193\) −6.02621 + 9.01886i −0.433776 + 0.649192i −0.982381 0.186890i \(-0.940159\pi\)
0.548605 + 0.836082i \(0.315159\pi\)
\(194\) 0 0
\(195\) 10.7523 1.83470i 0.769991 0.131386i
\(196\) 0 0
\(197\) −1.09663 5.51314i −0.0781318 0.392795i −0.999986 0.00525859i \(-0.998326\pi\)
0.921854 0.387536i \(-0.126674\pi\)
\(198\) 0 0
\(199\) 8.28425 + 1.64784i 0.587255 + 0.116812i 0.479770 0.877394i \(-0.340720\pi\)
0.107485 + 0.994207i \(0.465720\pi\)
\(200\) 0 0
\(201\) −3.93835 1.75896i −0.277790 0.124068i
\(202\) 0 0
\(203\) −19.8274 −1.39161
\(204\) 0 0
\(205\) −16.9155 −1.18143
\(206\) 0 0
\(207\) −2.40409 16.8571i −0.167096 1.17165i
\(208\) 0 0
\(209\) −0.340938 0.0678168i −0.0235832 0.00469098i
\(210\) 0 0
\(211\) 2.32730 + 11.7002i 0.160218 + 0.805472i 0.974393 + 0.224852i \(0.0721898\pi\)
−0.814175 + 0.580620i \(0.802810\pi\)
\(212\) 0 0
\(213\) −0.349447 2.04795i −0.0239437 0.140323i
\(214\) 0 0
\(215\) 5.02150 7.51521i 0.342464 0.512533i
\(216\) 0 0
\(217\) 10.6465 + 10.6465i 0.722731 + 0.722731i
\(218\) 0 0
\(219\) 1.43313 + 1.01534i 0.0968420 + 0.0686103i
\(220\) 0 0
\(221\) 8.43812 0.904474i 0.567609 0.0608415i
\(222\) 0 0
\(223\) 2.08637 + 5.03695i 0.139714 + 0.337299i 0.978213 0.207604i \(-0.0665665\pi\)
−0.838499 + 0.544903i \(0.816566\pi\)
\(224\) 0 0
\(225\) −4.33897 12.3442i −0.289265 0.822944i
\(226\) 0 0
\(227\) −20.1039 13.4330i −1.33434 0.891579i −0.335614 0.942000i \(-0.608944\pi\)
−0.998728 + 0.0504205i \(0.983944\pi\)
\(228\) 0 0
\(229\) −6.34884 2.62978i −0.419543 0.173781i 0.162917 0.986640i \(-0.447910\pi\)
−0.582460 + 0.812859i \(0.697910\pi\)
\(230\) 0 0
\(231\) 0.932934 0.883259i 0.0613826 0.0581142i
\(232\) 0 0
\(233\) −1.91961 + 9.65051i −0.125758 + 0.632226i 0.865567 + 0.500792i \(0.166958\pi\)
−0.991325 + 0.131434i \(0.958042\pi\)
\(234\) 0 0
\(235\) −16.2155 + 10.8349i −1.05779 + 0.706789i
\(236\) 0 0
\(237\) −19.5622 + 12.3110i −1.27070 + 0.799687i
\(238\) 0 0
\(239\) 15.3938i 0.995745i 0.867250 + 0.497872i \(0.165885\pi\)
−0.867250 + 0.497872i \(0.834115\pi\)
\(240\) 0 0
\(241\) 8.31553 + 12.4451i 0.535650 + 0.801657i 0.996302 0.0859240i \(-0.0273842\pi\)
−0.460652 + 0.887581i \(0.652384\pi\)
\(242\) 0 0
\(243\) 13.4544 + 7.87269i 0.863100 + 0.505033i
\(244\) 0 0
\(245\) 3.95958 0.787610i 0.252968 0.0503185i
\(246\) 0 0
\(247\) 0.879808 2.12405i 0.0559809 0.135150i
\(248\) 0 0
\(249\) −7.07261 0.193444i −0.448209 0.0122590i
\(250\) 0 0
\(251\) 18.8524 18.8524i 1.18995 1.18995i 0.212869 0.977081i \(-0.431719\pi\)
0.977081 0.212869i \(-0.0682809\pi\)
\(252\) 0 0
\(253\) 1.63194 0.675970i 0.102599 0.0424979i
\(254\) 0 0
\(255\) −5.94993 21.0246i −0.372599 1.31661i
\(256\) 0 0
\(257\) 2.18812 0.906350i 0.136491 0.0565366i −0.313392 0.949624i \(-0.601465\pi\)
0.449884 + 0.893087i \(0.351465\pi\)
\(258\) 0 0
\(259\) 18.2695 18.2695i 1.13521 1.13521i
\(260\) 0 0
\(261\) 21.4779 12.7104i 1.32945 0.786754i
\(262\) 0 0
\(263\) −12.1218 + 29.2646i −0.747461 + 1.80453i −0.175055 + 0.984559i \(0.556010\pi\)
−0.572405 + 0.819971i \(0.693990\pi\)
\(264\) 0 0
\(265\) 17.2661 3.43444i 1.06065 0.210976i
\(266\) 0 0
\(267\) −1.57344 + 0.601887i −0.0962931 + 0.0368349i
\(268\) 0 0
\(269\) 10.6861 + 15.9929i 0.651546 + 0.975107i 0.999296 + 0.0375200i \(0.0119458\pi\)
−0.347750 + 0.937587i \(0.613054\pi\)
\(270\) 0 0
\(271\) 14.1909i 0.862033i −0.902344 0.431017i \(-0.858155\pi\)
0.902344 0.431017i \(-0.141845\pi\)
\(272\) 0 0
\(273\) 4.52566 + 7.19127i 0.273905 + 0.435236i
\(274\) 0 0
\(275\) 1.12859 0.754103i 0.0680568 0.0454741i
\(276\) 0 0
\(277\) −3.04146 + 15.2905i −0.182744 + 0.918715i 0.775191 + 0.631727i \(0.217654\pi\)
−0.957934 + 0.286987i \(0.907346\pi\)
\(278\) 0 0
\(279\) −18.3577 4.70779i −1.09905 0.281848i
\(280\) 0 0
\(281\) 2.87379 + 1.19036i 0.171436 + 0.0710112i 0.466751 0.884389i \(-0.345424\pi\)
−0.295315 + 0.955400i \(0.595424\pi\)
\(282\) 0 0
\(283\) 6.70804 + 4.48217i 0.398752 + 0.266437i 0.738738 0.673993i \(-0.235422\pi\)
−0.339986 + 0.940431i \(0.610422\pi\)
\(284\) 0 0
\(285\) −5.77195 1.31313i −0.341901 0.0777829i
\(286\) 0 0
\(287\) −5.04249 12.1736i −0.297649 0.718587i
\(288\) 0 0
\(289\) −3.60303 16.6138i −0.211943 0.977282i
\(290\) 0 0
\(291\) −6.24895 + 8.82025i −0.366320 + 0.517052i
\(292\) 0 0
\(293\) −8.86520 8.86520i −0.517910 0.517910i 0.399028 0.916939i \(-0.369348\pi\)
−0.916939 + 0.399028i \(0.869348\pi\)
\(294\) 0 0
\(295\) −1.49963 + 2.24435i −0.0873117 + 0.130671i
\(296\) 0 0
\(297\) −0.444380 + 1.55484i −0.0257855 + 0.0902211i
\(298\) 0 0
\(299\) 2.27914 + 11.4580i 0.131806 + 0.662634i
\(300\) 0 0
\(301\) 6.90542 + 1.37357i 0.398022 + 0.0791714i
\(302\) 0 0
\(303\) −2.75441 + 6.16718i −0.158237 + 0.354295i
\(304\) 0 0
\(305\) −10.2286 −0.585689
\(306\) 0 0
\(307\) −18.0205 −1.02849 −0.514243 0.857645i \(-0.671927\pi\)
−0.514243 + 0.857645i \(0.671927\pi\)
\(308\) 0 0
\(309\) 5.89549 13.2001i 0.335383 0.750927i
\(310\) 0 0
\(311\) −10.5180 2.09217i −0.596424 0.118636i −0.112358 0.993668i \(-0.535840\pi\)
−0.484065 + 0.875032i \(0.660840\pi\)
\(312\) 0 0
\(313\) −3.99371 20.0777i −0.225738 1.13486i −0.912846 0.408305i \(-0.866120\pi\)
0.687108 0.726556i \(-0.258880\pi\)
\(314\) 0 0
\(315\) 16.2918 14.6007i 0.917941 0.822656i
\(316\) 0 0
\(317\) 4.70443 7.04068i 0.264227 0.395444i −0.675505 0.737356i \(-0.736074\pi\)
0.939732 + 0.341911i \(0.111074\pi\)
\(318\) 0 0
\(319\) 1.83068 + 1.83068i 0.102498 + 0.102498i
\(320\) 0 0
\(321\) −5.25371 + 7.41549i −0.293233 + 0.413892i
\(322\) 0 0
\(323\) −4.41847 1.29891i −0.245850 0.0722732i
\(324\) 0 0
\(325\) 3.43541 + 8.29381i 0.190562 + 0.460058i
\(326\) 0 0
\(327\) −4.12515 0.938477i −0.228121 0.0518979i
\(328\) 0 0
\(329\) −12.6314 8.44005i −0.696393 0.465315i
\(330\) 0 0
\(331\) −13.8877 5.75246i −0.763335 0.316184i −0.0331656 0.999450i \(-0.510559\pi\)
−0.730169 + 0.683266i \(0.760559\pi\)
\(332\) 0 0
\(333\) −8.07860 + 31.5019i −0.442705 + 1.72629i
\(334\) 0 0
\(335\) 1.48647 7.47301i 0.0812148 0.408294i
\(336\) 0 0
\(337\) −22.9447 + 15.3312i −1.24988 + 0.835143i −0.991399 0.130873i \(-0.958222\pi\)
−0.258481 + 0.966016i \(0.583222\pi\)
\(338\) 0 0
\(339\) 7.13412 + 11.3361i 0.387472 + 0.615694i
\(340\) 0 0
\(341\) 1.96599i 0.106465i
\(342\) 0 0
\(343\) 11.0161 + 16.4868i 0.594815 + 0.890204i
\(344\) 0 0
\(345\) 28.0939 10.7467i 1.51253 0.578585i
\(346\) 0 0
\(347\) 16.6581 3.31350i 0.894252 0.177878i 0.273488 0.961875i \(-0.411823\pi\)
0.620764 + 0.783997i \(0.286823\pi\)
\(348\) 0 0
\(349\) 13.5795 32.7838i 0.726894 1.75488i 0.0742177 0.997242i \(-0.476354\pi\)
0.652677 0.757636i \(-0.273646\pi\)
\(350\) 0 0
\(351\) −9.51236 4.88872i −0.507732 0.260940i
\(352\) 0 0
\(353\) 16.3117 16.3117i 0.868187 0.868187i −0.124085 0.992272i \(-0.539600\pi\)
0.992272 + 0.124085i \(0.0395995\pi\)
\(354\) 0 0
\(355\) 3.39062 1.40444i 0.179955 0.0745399i
\(356\) 0 0
\(357\) 13.3572 10.5494i 0.706940 0.558336i
\(358\) 0 0
\(359\) 14.5670 6.03383i 0.768814 0.318453i 0.0364222 0.999336i \(-0.488404\pi\)
0.732392 + 0.680883i \(0.238404\pi\)
\(360\) 0 0
\(361\) 12.5528 12.5528i 0.660674 0.660674i
\(362\) 0 0
\(363\) 18.8777 + 0.516327i 0.990825 + 0.0271002i
\(364\) 0 0
\(365\) −1.18731 + 2.86642i −0.0621466 + 0.150035i
\(366\) 0 0
\(367\) −17.1344 + 3.40824i −0.894408 + 0.177909i −0.620834 0.783942i \(-0.713206\pi\)
−0.273574 + 0.961851i \(0.588206\pi\)
\(368\) 0 0
\(369\) 13.2662 + 9.95452i 0.690609 + 0.518212i
\(370\) 0 0
\(371\) 7.61868 + 11.4022i 0.395542 + 0.591971i
\(372\) 0 0
\(373\) 9.88473i 0.511812i 0.966702 + 0.255906i \(0.0823738\pi\)
−0.966702 + 0.255906i \(0.917626\pi\)
\(374\) 0 0
\(375\) −2.86376 + 1.80224i −0.147884 + 0.0930672i
\(376\) 0 0
\(377\) −14.2371 + 9.51290i −0.733246 + 0.489939i
\(378\) 0 0
\(379\) 4.33652 21.8012i 0.222752 1.11985i −0.693872 0.720099i \(-0.744096\pi\)
0.916624 0.399751i \(-0.130904\pi\)
\(380\) 0 0
\(381\) −16.0594 + 15.2043i −0.822748 + 0.778940i
\(382\) 0 0
\(383\) 17.3935 + 7.20462i 0.888765 + 0.368139i 0.779890 0.625917i \(-0.215275\pi\)
0.108875 + 0.994055i \(0.465275\pi\)
\(384\) 0 0
\(385\) 1.88698 + 1.26084i 0.0961696 + 0.0642585i
\(386\) 0 0
\(387\) −8.36078 + 2.93881i −0.425002 + 0.149388i
\(388\) 0 0
\(389\) 4.70975 + 11.3703i 0.238794 + 0.576499i 0.997159 0.0753313i \(-0.0240014\pi\)
−0.758365 + 0.651830i \(0.774001\pi\)
\(390\) 0 0
\(391\) 22.3353 6.98581i 1.12954 0.353287i
\(392\) 0 0
\(393\) 14.5485 + 10.3073i 0.733873 + 0.519933i
\(394\) 0 0
\(395\) −28.8713 28.8713i −1.45267 1.45267i
\(396\) 0 0
\(397\) −3.63413 + 5.43887i −0.182392 + 0.272969i −0.911387 0.411550i \(-0.864988\pi\)
0.728995 + 0.684519i \(0.239988\pi\)
\(398\) 0 0
\(399\) −0.775590 4.54537i −0.0388281 0.227553i
\(400\) 0 0
\(401\) −1.04712 5.26423i −0.0522907 0.262883i 0.945792 0.324772i \(-0.105288\pi\)
−0.998083 + 0.0618889i \(0.980288\pi\)
\(402\) 0 0
\(403\) 12.7527 + 2.53667i 0.635259 + 0.126361i
\(404\) 0 0
\(405\) −8.28824 + 26.2600i −0.411846 + 1.30487i
\(406\) 0 0
\(407\) −3.37366 −0.167226
\(408\) 0 0
\(409\) 29.6457 1.46589 0.732943 0.680290i \(-0.238146\pi\)
0.732943 + 0.680290i \(0.238146\pi\)
\(410\) 0 0
\(411\) 30.0941 + 13.4407i 1.48443 + 0.662983i
\(412\) 0 0
\(413\) −2.06224 0.410205i −0.101476 0.0201849i
\(414\) 0 0
\(415\) −2.43832 12.2583i −0.119692 0.601734i
\(416\) 0 0
\(417\) −3.18906 + 0.544158i −0.156169 + 0.0266475i
\(418\) 0 0
\(419\) −15.8338 + 23.6969i −0.773530 + 1.15767i 0.210137 + 0.977672i \(0.432609\pi\)
−0.983667 + 0.179998i \(0.942391\pi\)
\(420\) 0 0
\(421\) −10.1384 10.1384i −0.494115 0.494115i 0.415485 0.909600i \(-0.363612\pi\)
−0.909600 + 0.415485i \(0.863612\pi\)
\(422\) 0 0
\(423\) 19.0934 + 1.04523i 0.928353 + 0.0508210i
\(424\) 0 0
\(425\) 15.7860 8.61329i 0.765734 0.417806i
\(426\) 0 0
\(427\) −3.04914 7.36128i −0.147558 0.356237i
\(428\) 0 0
\(429\) 0.246118 1.08183i 0.0118827 0.0522313i
\(430\) 0 0
\(431\) 14.2217 + 9.50263i 0.685035 + 0.457726i 0.848759 0.528781i \(-0.177351\pi\)
−0.163724 + 0.986506i \(0.552351\pi\)
\(432\) 0 0
\(433\) −24.9557 10.3370i −1.19929 0.496763i −0.308522 0.951217i \(-0.599835\pi\)
−0.890770 + 0.454454i \(0.849835\pi\)
\(434\) 0 0
\(435\) 30.3099 + 32.0146i 1.45325 + 1.53498i
\(436\) 0 0
\(437\) 1.23685 6.21805i 0.0591664 0.297450i
\(438\) 0 0
\(439\) 3.58289 2.39401i 0.171002 0.114260i −0.467124 0.884192i \(-0.654710\pi\)
0.638126 + 0.769932i \(0.279710\pi\)
\(440\) 0 0
\(441\) −3.56885 1.71247i −0.169945 0.0815460i
\(442\) 0 0
\(443\) 18.4676i 0.877421i −0.898628 0.438711i \(-0.855435\pi\)
0.898628 0.438711i \(-0.144565\pi\)
\(444\) 0 0
\(445\) −1.65332 2.47437i −0.0783748 0.117296i
\(446\) 0 0
\(447\) 5.13792 + 13.4315i 0.243015 + 0.635287i
\(448\) 0 0
\(449\) 34.5644 6.87529i 1.63120 0.324465i 0.707243 0.706971i \(-0.249939\pi\)
0.923953 + 0.382506i \(0.124939\pi\)
\(450\) 0 0
\(451\) −0.658424 + 1.58958i −0.0310040 + 0.0748502i
\(452\) 0 0
\(453\) −0.765501 + 27.9879i −0.0359664 + 1.31499i
\(454\) 0 0
\(455\) −10.6134 + 10.6134i −0.497563 + 0.497563i
\(456\) 0 0
\(457\) −7.09930 + 2.94063i −0.332091 + 0.137557i −0.542498 0.840057i \(-0.682521\pi\)
0.210406 + 0.977614i \(0.432521\pi\)
\(458\) 0 0
\(459\) −7.70640 + 19.9903i −0.359704 + 0.933066i
\(460\) 0 0
\(461\) 28.6159 11.8531i 1.33278 0.552054i 0.401330 0.915933i \(-0.368548\pi\)
0.931446 + 0.363879i \(0.118548\pi\)
\(462\) 0 0
\(463\) 13.2795 13.2795i 0.617149 0.617149i −0.327650 0.944799i \(-0.606257\pi\)
0.944799 + 0.327650i \(0.106257\pi\)
\(464\) 0 0
\(465\) 0.915321 33.4656i 0.0424470 1.55193i
\(466\) 0 0
\(467\) −4.24049 + 10.2375i −0.196227 + 0.473733i −0.991113 0.133026i \(-0.957531\pi\)
0.794886 + 0.606759i \(0.207531\pi\)
\(468\) 0 0
\(469\) 5.82126 1.15792i 0.268801 0.0534678i
\(470\) 0 0
\(471\) −2.91575 7.62229i −0.134351 0.351217i
\(472\) 0 0
\(473\) −0.510759 0.764404i −0.0234847 0.0351473i
\(474\) 0 0
\(475\) 4.87173i 0.223531i
\(476\) 0 0
\(477\) −15.5623 7.46735i −0.712547 0.341906i
\(478\) 0 0
\(479\) 33.4090 22.3232i 1.52650 1.01997i 0.542855 0.839826i \(-0.317343\pi\)
0.983640 0.180145i \(-0.0576569\pi\)
\(480\) 0 0
\(481\) 4.35295 21.8838i 0.198478 0.997814i
\(482\) 0 0
\(483\) 16.1089 + 17.0149i 0.732982 + 0.774205i
\(484\) 0 0
\(485\) −17.6415 7.30734i −0.801058 0.331809i
\(486\) 0 0
\(487\) 33.7348 + 22.5409i 1.52867 + 1.02143i 0.983038 + 0.183400i \(0.0587105\pi\)
0.545632 + 0.838025i \(0.316290\pi\)
\(488\) 0 0
\(489\) 1.26833 5.57506i 0.0573560 0.252113i
\(490\) 0 0
\(491\) −12.9778 31.3311i −0.585679 1.41395i −0.887597 0.460620i \(-0.847627\pi\)
0.301918 0.953334i \(-0.402373\pi\)
\(492\) 0 0
\(493\) 21.9872 + 26.3262i 0.990254 + 1.18567i
\(494\) 0 0
\(495\) −2.85233 0.156145i −0.128203 0.00701821i
\(496\) 0 0
\(497\) 2.02148 + 2.02148i 0.0906757 + 0.0906757i
\(498\) 0 0
\(499\) −0.488815 + 0.731563i −0.0218824 + 0.0327493i −0.842250 0.539088i \(-0.818769\pi\)
0.820367 + 0.571837i \(0.193769\pi\)
\(500\) 0 0
\(501\) 11.3481 1.93636i 0.506997 0.0865104i
\(502\) 0 0
\(503\) −0.915226 4.60115i −0.0408079 0.205155i 0.955002 0.296598i \(-0.0958522\pi\)
−0.995810 + 0.0914427i \(0.970852\pi\)
\(504\) 0 0
\(505\) −11.7022 2.32772i −0.520742 0.103582i
\(506\) 0 0
\(507\) −13.8594 6.18995i −0.615518 0.274905i
\(508\) 0 0
\(509\) −23.4235 −1.03823 −0.519114 0.854705i \(-0.673738\pi\)
−0.519114 + 0.854705i \(0.673738\pi\)
\(510\) 0 0
\(511\) −2.41683 −0.106914
\(512\) 0 0
\(513\) 3.75397 + 4.42655i 0.165742 + 0.195437i
\(514\) 0 0
\(515\) 25.0472 + 4.98219i 1.10371 + 0.219542i
\(516\) 0 0
\(517\) 0.386992 + 1.94554i 0.0170199 + 0.0855649i
\(518\) 0 0
\(519\) −4.41275 25.8611i −0.193698 1.13517i
\(520\) 0 0
\(521\) 1.87377 2.80429i 0.0820913 0.122858i −0.788152 0.615481i \(-0.788962\pi\)
0.870243 + 0.492623i \(0.163962\pi\)
\(522\) 0 0
\(523\) −29.9264 29.9264i −1.30859 1.30859i −0.922433 0.386158i \(-0.873802\pi\)
−0.386158 0.922433i \(-0.626198\pi\)
\(524\) 0 0
\(525\) 14.6915 + 10.4086i 0.641188 + 0.454268i
\(526\) 0 0
\(527\) 2.32983 25.9422i 0.101489 1.13006i
\(528\) 0 0
\(529\) 3.52667 + 8.51414i 0.153334 + 0.370180i
\(530\) 0 0
\(531\) 2.49687 0.877650i 0.108355 0.0380868i
\(532\) 0 0
\(533\) −9.46148 6.32196i −0.409822 0.273834i
\(534\) 0 0
\(535\) −14.8318 6.14353i −0.641235 0.265608i
\(536\) 0 0
\(537\) −24.0443 + 22.7640i −1.03759 + 0.982339i
\(538\) 0 0
\(539\) 0.0801111 0.402746i 0.00345063 0.0173475i
\(540\) 0 0
\(541\) 26.5506 17.7405i 1.14150 0.762725i 0.166743 0.986000i \(-0.446675\pi\)
0.974755 + 0.223275i \(0.0716749\pi\)
\(542\) 0 0
\(543\) −11.0590 + 6.95975i −0.474589 + 0.298671i
\(544\) 0 0
\(545\) 7.47326i 0.320119i
\(546\) 0 0
\(547\) −2.57308 3.85088i −0.110017 0.164652i 0.772376 0.635166i \(-0.219068\pi\)
−0.882392 + 0.470514i \(0.844068\pi\)
\(548\) 0 0
\(549\) 8.02192 + 6.01940i 0.342367 + 0.256902i
\(550\) 0 0
\(551\) 9.11366 1.81282i 0.388255 0.0772287i
\(552\) 0 0
\(553\) 12.1715 29.3845i 0.517583 1.24956i
\(554\) 0 0
\(555\) −57.4272 1.57070i −2.43765 0.0666724i
\(556\) 0 0
\(557\) 11.8460 11.8460i 0.501933 0.501933i −0.410105 0.912038i \(-0.634508\pi\)
0.912038 + 0.410105i \(0.134508\pi\)
\(558\) 0 0
\(559\) 5.61745 2.32682i 0.237593 0.0984141i
\(560\) 0 0
\(561\) −2.20732 0.259245i −0.0931930 0.0109453i
\(562\) 0 0
\(563\) 12.3385 5.11078i 0.520006 0.215394i −0.107214 0.994236i \(-0.534193\pi\)
0.627220 + 0.778842i \(0.284193\pi\)
\(564\) 0 0
\(565\) −16.7306 + 16.7306i −0.703863 + 0.703863i
\(566\) 0 0
\(567\) −21.3694 + 1.86325i −0.897430 + 0.0782490i
\(568\) 0 0
\(569\) −14.8059 + 35.7445i −0.620694 + 1.49849i 0.230195 + 0.973144i \(0.426064\pi\)
−0.850890 + 0.525345i \(0.823936\pi\)
\(570\) 0 0
\(571\) −19.3864 + 3.85620i −0.811297 + 0.161377i −0.583270 0.812278i \(-0.698227\pi\)
−0.228026 + 0.973655i \(0.573227\pi\)
\(572\) 0 0
\(573\) 25.8949 9.90553i 1.08177 0.413810i
\(574\) 0 0
\(575\) 13.7534 + 20.5834i 0.573555 + 0.858386i
\(576\) 0 0
\(577\) 34.4403i 1.43377i −0.697192 0.716884i \(-0.745568\pi\)
0.697192 0.716884i \(-0.254432\pi\)
\(578\) 0 0
\(579\) 10.0067 + 15.9007i 0.415864 + 0.660809i
\(580\) 0 0
\(581\) 8.09510 5.40897i 0.335841 0.224402i
\(582\) 0 0
\(583\) 0.349331 1.75621i 0.0144678 0.0727346i
\(584\) 0 0
\(585\) 4.69315 18.3006i 0.194038 0.756636i
\(586\) 0 0
\(587\) 7.71494 + 3.19563i 0.318430 + 0.131898i 0.536173 0.844108i \(-0.319870\pi\)
−0.217743 + 0.976006i \(0.569870\pi\)
\(588\) 0 0
\(589\) −5.86706 3.92024i −0.241748 0.161531i
\(590\) 0 0
\(591\) −9.49354 2.15979i −0.390512 0.0888419i
\(592\) 0 0
\(593\) 0.0555800 + 0.134182i 0.00228240 + 0.00551019i 0.925017 0.379927i \(-0.124051\pi\)
−0.922734 + 0.385437i \(0.874051\pi\)
\(594\) 0 0
\(595\) 23.4055 + 18.8736i 0.959531 + 0.773743i
\(596\) 0 0
\(597\) 8.45745 11.9375i 0.346140 0.488569i
\(598\) 0 0
\(599\) −19.5023 19.5023i −0.796842 0.796842i 0.185754 0.982596i \(-0.440527\pi\)
−0.982596 + 0.185754i \(0.940527\pi\)
\(600\) 0 0
\(601\) −17.1815 + 25.7140i −0.700849 + 1.04889i 0.294786 + 0.955563i \(0.404752\pi\)
−0.995635 + 0.0933313i \(0.970248\pi\)
\(602\) 0 0
\(603\) −5.56355 + 4.98603i −0.226565 + 0.203047i
\(604\) 0 0
\(605\) 6.50820 + 32.7189i 0.264596 + 1.33021i
\(606\) 0 0
\(607\) 9.07485 + 1.80510i 0.368337 + 0.0732668i 0.375788 0.926705i \(-0.377372\pi\)
−0.00745155 + 0.999972i \(0.502372\pi\)
\(608\) 0 0
\(609\) −14.0047 + 31.3568i −0.567500 + 1.27064i
\(610\) 0 0
\(611\) −13.1194 −0.530754
\(612\) 0 0
\(613\) −19.1051 −0.771649 −0.385824 0.922572i \(-0.626083\pi\)
−0.385824 + 0.922572i \(0.626083\pi\)
\(614\) 0 0
\(615\) −11.9479 + 26.7516i −0.481786 + 1.07873i
\(616\) 0 0
\(617\) −11.8884 2.36475i −0.478610 0.0952014i −0.0501108 0.998744i \(-0.515957\pi\)
−0.428499 + 0.903542i \(0.640957\pi\)
\(618\) 0 0
\(619\) −7.99128 40.1749i −0.321197 1.61476i −0.717441 0.696619i \(-0.754687\pi\)
0.396244 0.918145i \(-0.370313\pi\)
\(620\) 0 0
\(621\) −28.3573 8.10463i −1.13794 0.325228i
\(622\) 0 0
\(623\) 1.28789 1.92746i 0.0515981 0.0772220i
\(624\) 0 0
\(625\) −19.6468 19.6468i −0.785872 0.785872i
\(626\) 0 0
\(627\) −0.348066 + 0.491287i −0.0139004 + 0.0196201i
\(628\) 0 0
\(629\) −44.5171 3.99801i −1.77501 0.159411i
\(630\) 0 0
\(631\) −2.60197 6.28172i −0.103583 0.250071i 0.863588 0.504198i \(-0.168212\pi\)
−0.967171 + 0.254127i \(0.918212\pi\)
\(632\) 0 0
\(633\) 20.1475 + 4.58357i 0.800790 + 0.182181i
\(634\) 0 0
\(635\) −32.4823 21.7040i −1.28902 0.861296i
\(636\) 0 0
\(637\) 2.50911 + 1.03931i 0.0994145 + 0.0411788i
\(638\) 0 0
\(639\) −3.48562 0.893882i −0.137889 0.0353614i
\(640\) 0 0
\(641\) 3.06190 15.3932i 0.120938 0.607995i −0.872014 0.489480i \(-0.837187\pi\)
0.992952 0.118515i \(-0.0378134\pi\)
\(642\) 0 0
\(643\) −32.5931 + 21.7780i −1.28535 + 0.858842i −0.995173 0.0981314i \(-0.968713\pi\)
−0.290175 + 0.956974i \(0.593713\pi\)
\(644\) 0 0
\(645\) −8.33836 13.2497i −0.328323 0.521705i
\(646\) 0 0
\(647\) 26.5289i 1.04296i 0.853264 + 0.521479i \(0.174619\pi\)
−0.853264 + 0.521479i \(0.825381\pi\)
\(648\) 0 0
\(649\) 0.152533 + 0.228282i 0.00598746 + 0.00896087i
\(650\) 0 0
\(651\) 24.3572 9.31733i 0.954634 0.365175i
\(652\) 0 0
\(653\) −31.6152 + 6.28866i −1.23720 + 0.246094i −0.769992 0.638054i \(-0.779740\pi\)
−0.467207 + 0.884148i \(0.654740\pi\)
\(654\) 0 0
\(655\) −12.0530 + 29.0985i −0.470950 + 1.13697i
\(656\) 0 0
\(657\) 2.61801 1.54931i 0.102138 0.0604443i
\(658\) 0 0
\(659\) 31.2044 31.2044i 1.21555 1.21555i 0.246379 0.969174i \(-0.420759\pi\)
0.969174 0.246379i \(-0.0792407\pi\)
\(660\) 0 0
\(661\) 1.00677 0.417016i 0.0391587 0.0162201i −0.363018 0.931782i \(-0.618254\pi\)
0.402177 + 0.915562i \(0.368254\pi\)
\(662\) 0 0
\(663\) 4.52968 13.9836i 0.175918 0.543079i
\(664\) 0 0
\(665\) 7.52539 3.11712i 0.291822 0.120877i
\(666\) 0 0
\(667\) −33.3880 + 33.3880i −1.29279 + 1.29279i
\(668\) 0 0
\(669\) 9.43953 + 0.258182i 0.364953 + 0.00998188i
\(670\) 0 0
\(671\) −0.398142 + 0.961201i −0.0153701 + 0.0371067i
\(672\) 0 0
\(673\) 30.1550 5.99820i 1.16239 0.231214i 0.424048 0.905640i \(-0.360609\pi\)
0.738342 + 0.674426i \(0.235609\pi\)
\(674\) 0 0
\(675\) −22.5869 1.85703i −0.869369 0.0714772i
\(676\) 0 0
\(677\) −6.61301 9.89706i −0.254158 0.380375i 0.682347 0.731029i \(-0.260959\pi\)
−0.936505 + 0.350654i \(0.885959\pi\)
\(678\) 0 0
\(679\) 14.8744i 0.570829i
\(680\) 0 0
\(681\) −35.4441 + 22.3059i −1.35822 + 0.854764i
\(682\) 0 0
\(683\) −31.5197 + 21.0608i −1.20607 + 0.805869i −0.985529 0.169509i \(-0.945782\pi\)
−0.220540 + 0.975378i \(0.570782\pi\)
\(684\) 0 0
\(685\) −11.3586 + 57.1035i −0.433989 + 2.18181i
\(686\) 0 0
\(687\) −8.64333 + 8.18311i −0.329764 + 0.312205i
\(688\) 0 0
\(689\) 10.9412 + 4.53198i 0.416826 + 0.172655i
\(690\) 0 0
\(691\) 11.3597 + 7.59031i 0.432143 + 0.288749i 0.752555 0.658529i \(-0.228821\pi\)
−0.320412 + 0.947278i \(0.603821\pi\)
\(692\) 0 0
\(693\) −0.737902 2.09929i −0.0280306 0.0797456i
\(694\) 0 0
\(695\) −2.18699 5.27985i −0.0829571 0.200276i
\(696\) 0 0
\(697\) −10.5720 + 20.1949i −0.400442 + 0.764938i
\(698\) 0 0
\(699\) 13.9063 + 9.85228i 0.525983 + 0.372647i
\(700\) 0 0
\(701\) −19.2749 19.2749i −0.728005 0.728005i 0.242217 0.970222i \(-0.422125\pi\)
−0.970222 + 0.242217i \(0.922125\pi\)
\(702\) 0 0
\(703\) −6.72717 + 10.0679i −0.253720 + 0.379719i
\(704\) 0 0
\(705\) 5.68168 + 33.2976i 0.213984 + 1.25406i
\(706\) 0 0
\(707\) −1.81322 9.11568i −0.0681932 0.342831i
\(708\) 0 0
\(709\) 29.7252 + 5.91272i 1.11635 + 0.222057i 0.718592 0.695432i \(-0.244787\pi\)
0.397762 + 0.917488i \(0.369787\pi\)
\(710\) 0 0
\(711\) 5.65232 + 39.6331i 0.211978 + 1.48636i
\(712\) 0 0
\(713\) 35.8559 1.34281
\(714\) 0 0
\(715\) 1.95988 0.0732953
\(716\) 0 0
\(717\) 24.3451 + 10.8731i 0.909186 + 0.406065i
\(718\) 0 0
\(719\) 0.877852 + 0.174616i 0.0327384 + 0.00651206i 0.211432 0.977393i \(-0.432187\pi\)
−0.178694 + 0.983905i \(0.557187\pi\)
\(720\) 0 0
\(721\) 3.88098 + 19.5110i 0.144535 + 0.726628i
\(722\) 0 0
\(723\) 25.5552 4.36056i 0.950408 0.162171i
\(724\) 0 0
\(725\) −20.1580 + 30.1686i −0.748651 + 1.12043i
\(726\) 0 0
\(727\) 30.4698 + 30.4698i 1.13006 + 1.13006i 0.990166 + 0.139898i \(0.0446774\pi\)
0.139898 + 0.990166i \(0.455323\pi\)
\(728\) 0 0
\(729\) 21.9538 15.7172i 0.813104 0.582119i
\(730\) 0 0
\(731\) −5.83384 10.6920i −0.215772 0.395457i
\(732\) 0 0
\(733\) 2.03359 + 4.90952i 0.0751123 + 0.181337i 0.956976 0.290168i \(-0.0937110\pi\)
−0.881864 + 0.471505i \(0.843711\pi\)
\(734\) 0 0
\(735\) 1.55118 6.81833i 0.0572161 0.251498i
\(736\) 0 0
\(737\) −0.644391 0.430569i −0.0237365 0.0158602i
\(738\) 0 0
\(739\) 24.1993 + 10.0237i 0.890186 + 0.368727i 0.780438 0.625233i \(-0.214996\pi\)
0.109747 + 0.993960i \(0.464996\pi\)
\(740\) 0 0
\(741\) −2.73771 2.89168i −0.100572 0.106229i
\(742\) 0 0
\(743\) 1.23104 6.18886i 0.0451625 0.227047i −0.951612 0.307303i \(-0.900574\pi\)
0.996774 + 0.0802553i \(0.0255736\pi\)
\(744\) 0 0
\(745\) −21.1221 + 14.1133i −0.773853 + 0.517072i
\(746\) 0 0
\(747\) −5.30153 + 11.0486i −0.193973 + 0.404247i
\(748\) 0 0
\(749\) 12.5055i 0.456940i
\(750\) 0 0
\(751\) −15.1572 22.6843i −0.553093 0.827762i 0.444594 0.895732i \(-0.353348\pi\)
−0.997687 + 0.0679697i \(0.978348\pi\)
\(752\) 0 0
\(753\) −16.4987 43.1307i −0.601248 1.57177i
\(754\) 0 0
\(755\) −48.5087 + 9.64897i −1.76541 + 0.351162i
\(756\) 0 0
\(757\) −5.39949 + 13.0355i −0.196248 + 0.473784i −0.991116 0.132997i \(-0.957540\pi\)
0.794868 + 0.606782i \(0.207540\pi\)
\(758\) 0 0
\(759\) 0.0836491 3.05834i 0.00303627 0.111011i
\(760\) 0 0
\(761\) 31.4843 31.4843i 1.14131 1.14131i 0.153094 0.988212i \(-0.451076\pi\)
0.988212 0.153094i \(-0.0489239\pi\)
\(762\) 0 0
\(763\) 5.37832 2.22777i 0.194708 0.0806508i
\(764\) 0 0
\(765\) −37.4528 5.44061i −1.35411 0.196706i
\(766\) 0 0
\(767\) −1.67760 + 0.694885i −0.0605746 + 0.0250908i
\(768\) 0 0
\(769\) −16.1543 + 16.1543i −0.582537 + 0.582537i −0.935600 0.353062i \(-0.885140\pi\)
0.353062 + 0.935600i \(0.385140\pi\)
\(770\) 0 0
\(771\) 0.112158 4.10067i 0.00403927 0.147682i
\(772\) 0 0
\(773\) −3.98178 + 9.61286i −0.143215 + 0.345751i −0.979169 0.203049i \(-0.934915\pi\)
0.835954 + 0.548799i \(0.184915\pi\)
\(774\) 0 0
\(775\) 27.0233 5.37527i 0.970705 0.193085i
\(776\) 0 0
\(777\) −15.9886 41.7972i −0.573588 1.49946i
\(778\) 0 0
\(779\) 3.43081 + 5.13457i 0.122922 + 0.183965i
\(780\) 0 0
\(781\) 0.373289i 0.0133573i
\(782\) 0 0
\(783\) −4.93080 42.9448i −0.176212 1.53472i
\(784\) 0 0
\(785\) 11.9867 8.00924i 0.427823 0.285862i
\(786\) 0 0
\(787\) −7.55680 + 37.9906i −0.269371 + 1.35422i 0.574865 + 0.818248i \(0.305054\pi\)
−0.844236 + 0.535971i \(0.819946\pi\)
\(788\) 0 0
\(789\) 37.7195 + 39.8409i 1.34285 + 1.41837i
\(790\) 0 0
\(791\) −17.0280 7.05323i −0.605446 0.250784i
\(792\) 0 0
\(793\) −5.72127 3.82283i −0.203168 0.135753i
\(794\) 0 0
\(795\) 6.76404 29.7319i 0.239896 1.05448i
\(796\) 0 0
\(797\) −10.9971 26.5493i −0.389537 0.940426i −0.990038 0.140802i \(-0.955032\pi\)
0.600501 0.799624i \(-0.294968\pi\)
\(798\) 0 0
\(799\) 2.80096 + 26.1310i 0.0990908 + 0.924448i
\(800\) 0 0
\(801\) −0.159495 + 2.91351i −0.00563547 + 0.102944i
\(802\) 0 0
\(803\) 0.223147 + 0.223147i 0.00787469 + 0.00787469i
\(804\) 0 0
\(805\) −22.9953 + 34.4149i −0.810478 + 1.21297i
\(806\) 0 0
\(807\) 32.8406 5.60368i 1.15604 0.197259i
\(808\) 0 0
\(809\) −8.48221 42.6430i −0.298219 1.49925i −0.781569 0.623819i \(-0.785580\pi\)
0.483350 0.875427i \(-0.339420\pi\)
\(810\) 0 0
\(811\) 33.1881 + 6.60153i 1.16539 + 0.231811i 0.739624 0.673020i \(-0.235003\pi\)
0.425770 + 0.904832i \(0.360003\pi\)
\(812\) 0 0
\(813\) −22.4426 10.0234i −0.787098 0.351537i
\(814\) 0 0
\(815\) 10.1000 0.353786
\(816\) 0 0
\(817\) −3.29966 −0.115440
\(818\) 0 0
\(819\) 14.5695 2.07785i 0.509100 0.0726059i
\(820\) 0 0
\(821\) 22.3951 + 4.45467i 0.781595 + 0.155469i 0.569732 0.821830i \(-0.307047\pi\)
0.211863 + 0.977299i \(0.432047\pi\)
\(822\) 0 0
\(823\) 1.56241 + 7.85479i 0.0544624 + 0.273801i 0.998415 0.0562801i \(-0.0179240\pi\)
−0.943953 + 0.330081i \(0.892924\pi\)
\(824\) 0 0
\(825\) −0.395442 2.31750i −0.0137675 0.0806851i
\(826\) 0 0
\(827\) −7.25454 + 10.8572i −0.252265 + 0.377541i −0.935890 0.352292i \(-0.885402\pi\)
0.683625 + 0.729833i \(0.260402\pi\)
\(828\) 0 0
\(829\) 24.5541 + 24.5541i 0.852800 + 0.852800i 0.990477 0.137678i \(-0.0439638\pi\)
−0.137678 + 0.990477i \(0.543964\pi\)
\(830\) 0 0
\(831\) 22.0334 + 15.6101i 0.764329 + 0.541510i
\(832\) 0 0
\(833\) 1.53439 5.21949i 0.0531633 0.180845i
\(834\) 0 0
\(835\) 7.78231 + 18.7881i 0.269318 + 0.650191i
\(836\) 0 0
\(837\) −20.4119 + 25.7072i −0.705538 + 0.888569i
\(838\) 0 0
\(839\) 26.1126 + 17.4479i 0.901507 + 0.602368i 0.917601 0.397503i \(-0.130123\pi\)
−0.0160941 + 0.999870i \(0.505123\pi\)
\(840\) 0 0
\(841\) −37.1456 15.3862i −1.28088 0.530560i
\(842\) 0 0
\(843\) 3.91239 3.70407i 0.134750 0.127575i
\(844\) 0 0
\(845\) 5.23104 26.2982i 0.179953 0.904686i
\(846\) 0 0
\(847\) −21.6069 + 14.4373i −0.742422 + 0.496070i
\(848\) 0 0
\(849\) 11.8266 7.44278i 0.405887 0.255436i
\(850\) 0 0
\(851\) 61.5290i 2.10919i
\(852\) 0 0
\(853\) 14.9568 + 22.3845i 0.512112 + 0.766430i 0.993950 0.109830i \(-0.0350307\pi\)
−0.481838 + 0.876260i \(0.660031\pi\)
\(854\) 0 0
\(855\) −6.15359 + 8.20076i −0.210448 + 0.280460i
\(856\) 0 0
\(857\) −17.9881 + 3.57805i −0.614462 + 0.122224i −0.492502 0.870311i \(-0.663918\pi\)
−0.121959 + 0.992535i \(0.538918\pi\)
\(858\) 0 0
\(859\) −3.04555 + 7.35261i −0.103913 + 0.250868i −0.967281 0.253706i \(-0.918350\pi\)
0.863368 + 0.504574i \(0.168350\pi\)
\(860\) 0 0
\(861\) −22.8141 0.623991i −0.777503 0.0212656i
\(862\) 0 0
\(863\) −1.39363 + 1.39363i −0.0474397 + 0.0474397i −0.730429 0.682989i \(-0.760680\pi\)
0.682989 + 0.730429i \(0.260680\pi\)
\(864\) 0 0
\(865\) 42.8160 17.7350i 1.45579 0.603007i
\(866\) 0 0
\(867\) −28.8194 6.03668i −0.978759 0.205016i
\(868\) 0 0
\(869\) −3.83688 + 1.58929i −0.130157 + 0.0539130i
\(870\) 0 0
\(871\) 3.62439 3.62439i 0.122808 0.122808i
\(872\) 0 0
\(873\) 9.53528 + 16.1126i 0.322720 + 0.545330i
\(874\) 0 0
\(875\) 1.78181 4.30166i 0.0602360 0.145423i
\(876\) 0 0
\(877\) −2.25554 + 0.448655i −0.0761643 + 0.0151500i −0.233025 0.972471i \(-0.574863\pi\)
0.156861 + 0.987621i \(0.449863\pi\)
\(878\) 0 0
\(879\) −20.2819 + 7.75843i −0.684093 + 0.261685i
\(880\) 0 0
\(881\) 12.3943 + 18.5493i 0.417573 + 0.624942i 0.979308 0.202375i \(-0.0648659\pi\)
−0.561735 + 0.827317i \(0.689866\pi\)
\(882\) 0 0
\(883\) 36.1867i 1.21778i −0.793255 0.608890i \(-0.791615\pi\)
0.793255 0.608890i \(-0.208385\pi\)
\(884\) 0 0
\(885\) 2.49018 + 3.95689i 0.0837063 + 0.133009i
\(886\) 0 0
\(887\) 3.25224 2.17308i 0.109200 0.0729648i −0.499771 0.866157i \(-0.666583\pi\)
0.608971 + 0.793193i \(0.291583\pi\)
\(888\) 0 0
\(889\) 5.93686 29.8466i 0.199116 1.00102i
\(890\) 0 0
\(891\) 2.14508 + 1.80101i 0.0718630 + 0.0603362i
\(892\) 0 0
\(893\) 6.57770 + 2.72457i 0.220114 + 0.0911743i
\(894\) 0 0
\(895\) −48.6327 32.4954i −1.62561 1.08620i
\(896\) 0 0
\(897\) 19.7305 + 4.48871i 0.658782 + 0.149874i
\(898\) 0 0
\(899\) 20.1113 + 48.5529i 0.670748 + 1.61933i
\(900\) 0 0
\(901\) 6.69081 22.7600i 0.222903 0.758246i
\(902\) 0 0
\(903\) 7.04979 9.95062i 0.234602 0.331136i
\(904\) 0 0
\(905\) −16.3217 16.3217i −0.542552 0.542552i
\(906\) 0 0
\(907\) 16.6035 24.8490i 0.551311 0.825096i −0.446249 0.894909i \(-0.647240\pi\)
0.997560 + 0.0698131i \(0.0222403\pi\)
\(908\) 0 0
\(909\) 7.80778 + 8.71213i 0.258968 + 0.288963i
\(910\) 0 0
\(911\) −3.57313 17.9633i −0.118383 0.595151i −0.993744 0.111682i \(-0.964376\pi\)
0.875361 0.483470i \(-0.160624\pi\)
\(912\) 0 0
\(913\) −1.24684 0.248012i −0.0412643 0.00820799i
\(914\) 0 0
\(915\) −7.22479 + 16.1764i −0.238844 + 0.534776i
\(916\) 0 0
\(917\) −24.5345 −0.810200
\(918\) 0 0
\(919\) −18.9782 −0.626034 −0.313017 0.949747i \(-0.601340\pi\)
−0.313017 + 0.949747i \(0.601340\pi\)
\(920\) 0 0
\(921\) −12.7284 + 28.4992i −0.419417 + 0.939081i
\(922\) 0 0
\(923\) 2.42140 + 0.481646i 0.0797012 + 0.0158536i
\(924\) 0 0
\(925\) −9.22400 46.3722i −0.303283 1.52471i
\(926\) 0 0
\(927\) −16.7116 18.6473i −0.548881 0.612456i
\(928\) 0 0
\(929\) −16.9777 + 25.4089i −0.557019 + 0.833638i −0.997956 0.0639000i \(-0.979646\pi\)
0.440937 + 0.897538i \(0.354646\pi\)
\(930\) 0 0
\(931\) −1.04216 1.04216i −0.0341554 0.0341554i
\(932\) 0 0
\(933\) −10.7379 + 15.1564i −0.351545 + 0.496197i
\(934\) 0 0
\(935\) −0.418429 3.90366i −0.0136841 0.127663i
\(936\) 0 0
\(937\) 14.2347 + 34.3655i 0.465026 + 1.12267i 0.966308 + 0.257388i \(0.0828618\pi\)
−0.501282 + 0.865284i \(0.667138\pi\)
\(938\) 0 0
\(939\) −34.5735 7.86552i −1.12826 0.256682i
\(940\) 0 0
\(941\) 37.1328 + 24.8113i 1.21049 + 0.808826i 0.986178 0.165690i \(-0.0529851\pi\)
0.224316 + 0.974516i \(0.427985\pi\)
\(942\) 0 0
\(943\) −28.9908 12.0084i −0.944069 0.391046i
\(944\) 0 0
\(945\) −11.5834 36.0782i −0.376807 1.17362i
\(946\) 0 0
\(947\) −6.99454 + 35.1639i −0.227292 + 1.14267i 0.683545 + 0.729908i \(0.260437\pi\)
−0.910837 + 0.412766i \(0.864563\pi\)
\(948\) 0 0
\(949\) −1.73540 + 1.15956i −0.0563334 + 0.0376408i
\(950\) 0 0
\(951\) −7.81186 12.4130i −0.253317 0.402521i
\(952\) 0 0
\(953\) 38.2262i 1.23827i 0.785286 + 0.619134i \(0.212516\pi\)
−0.785286 + 0.619134i \(0.787484\pi\)
\(954\) 0 0
\(955\) 27.2094 + 40.7218i 0.880477 + 1.31773i
\(956\) 0 0
\(957\) 4.18826 1.60213i 0.135387 0.0517894i
\(958\) 0 0
\(959\) −44.4819 + 8.84801i −1.43640 + 0.285717i
\(960\) 0 0
\(961\) 3.40876 8.22947i 0.109960 0.265467i
\(962\) 0 0
\(963\) 8.01664 + 13.5465i 0.258333 + 0.436528i
\(964\) 0 0
\(965\) −23.4673 + 23.4673i −0.755439 + 0.755439i
\(966\) 0 0
\(967\) −17.2448 + 7.14301i −0.554554 + 0.229704i −0.642319 0.766437i \(-0.722028\pi\)
0.0877650 + 0.996141i \(0.472028\pi\)
\(968\) 0 0
\(969\) −5.17511 + 6.07030i −0.166248 + 0.195006i
\(970\) 0 0
\(971\) 12.3249 5.10513i 0.395524 0.163831i −0.176051 0.984381i \(-0.556333\pi\)
0.571575 + 0.820550i \(0.306333\pi\)
\(972\) 0 0
\(973\) 3.14784 3.14784i 0.100915 0.100915i
\(974\) 0 0
\(975\) 15.5431 + 0.425120i 0.497777 + 0.0136147i
\(976\) 0 0
\(977\) −1.38266 + 3.33804i −0.0442352 + 0.106793i −0.944453 0.328647i \(-0.893407\pi\)
0.900218 + 0.435440i \(0.143407\pi\)
\(978\) 0 0
\(979\) −0.296875 + 0.0590521i −0.00948816 + 0.00188731i
\(980\) 0 0
\(981\) −4.39791 + 5.86100i −0.140414 + 0.187127i
\(982\) 0 0
\(983\) 25.6445 + 38.3798i 0.817934 + 1.22412i 0.971747 + 0.236024i \(0.0758445\pi\)
−0.153813 + 0.988100i \(0.549155\pi\)
\(984\) 0 0
\(985\) 17.1988i 0.547999i
\(986\) 0 0
\(987\) −22.2698 + 14.0150i −0.708855 + 0.446101i
\(988\) 0 0
\(989\) 13.9412 9.31524i 0.443306 0.296208i
\(990\) 0 0
\(991\) 1.66369 8.36392i 0.0528488 0.265689i −0.945323 0.326137i \(-0.894253\pi\)
0.998171 + 0.0604481i \(0.0192530\pi\)
\(992\) 0 0
\(993\) −18.9067 + 17.9000i −0.599986 + 0.568040i
\(994\) 0 0
\(995\) 23.8763 + 9.88990i 0.756930 + 0.313531i
\(996\) 0 0
\(997\) −11.0513 7.38423i −0.349998 0.233861i 0.368127 0.929776i \(-0.379999\pi\)
−0.718125 + 0.695915i \(0.754999\pi\)
\(998\) 0 0
\(999\) 44.1137 + 35.0270i 1.39569 + 1.10820i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 816.2.cj.c.209.3 32
3.2 odd 2 inner 816.2.cj.c.209.1 32
4.3 odd 2 51.2.i.a.5.2 32
12.11 even 2 51.2.i.a.5.3 yes 32
17.7 odd 16 inner 816.2.cj.c.449.1 32
51.41 even 16 inner 816.2.cj.c.449.3 32
68.3 even 16 867.2.i.f.827.2 32
68.7 even 16 51.2.i.a.41.3 yes 32
68.11 even 16 867.2.i.c.503.2 32
68.15 odd 8 867.2.i.b.224.2 32
68.19 odd 8 867.2.i.i.224.2 32
68.23 even 16 867.2.i.d.503.2 32
68.27 even 16 867.2.i.h.653.3 32
68.31 even 16 867.2.i.g.827.2 32
68.39 even 16 867.2.i.b.329.3 32
68.43 odd 8 867.2.i.g.65.3 32
68.47 odd 4 867.2.i.c.131.3 32
68.55 odd 4 867.2.i.d.131.3 32
68.59 odd 8 867.2.i.f.65.3 32
68.63 even 16 867.2.i.i.329.3 32
68.67 odd 2 867.2.i.h.158.2 32
204.11 odd 16 867.2.i.c.503.3 32
204.23 odd 16 867.2.i.d.503.3 32
204.47 even 4 867.2.i.c.131.2 32
204.59 even 8 867.2.i.f.65.2 32
204.71 odd 16 867.2.i.f.827.3 32
204.83 even 8 867.2.i.b.224.3 32
204.95 odd 16 867.2.i.h.653.2 32
204.107 odd 16 867.2.i.b.329.2 32
204.131 odd 16 867.2.i.i.329.2 32
204.143 odd 16 51.2.i.a.41.2 yes 32
204.155 even 8 867.2.i.i.224.3 32
204.167 odd 16 867.2.i.g.827.3 32
204.179 even 8 867.2.i.g.65.2 32
204.191 even 4 867.2.i.d.131.2 32
204.203 even 2 867.2.i.h.158.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.5.2 32 4.3 odd 2
51.2.i.a.5.3 yes 32 12.11 even 2
51.2.i.a.41.2 yes 32 204.143 odd 16
51.2.i.a.41.3 yes 32 68.7 even 16
816.2.cj.c.209.1 32 3.2 odd 2 inner
816.2.cj.c.209.3 32 1.1 even 1 trivial
816.2.cj.c.449.1 32 17.7 odd 16 inner
816.2.cj.c.449.3 32 51.41 even 16 inner
867.2.i.b.224.2 32 68.15 odd 8
867.2.i.b.224.3 32 204.83 even 8
867.2.i.b.329.2 32 204.107 odd 16
867.2.i.b.329.3 32 68.39 even 16
867.2.i.c.131.2 32 204.47 even 4
867.2.i.c.131.3 32 68.47 odd 4
867.2.i.c.503.2 32 68.11 even 16
867.2.i.c.503.3 32 204.11 odd 16
867.2.i.d.131.2 32 204.191 even 4
867.2.i.d.131.3 32 68.55 odd 4
867.2.i.d.503.2 32 68.23 even 16
867.2.i.d.503.3 32 204.23 odd 16
867.2.i.f.65.2 32 204.59 even 8
867.2.i.f.65.3 32 68.59 odd 8
867.2.i.f.827.2 32 68.3 even 16
867.2.i.f.827.3 32 204.71 odd 16
867.2.i.g.65.2 32 204.179 even 8
867.2.i.g.65.3 32 68.43 odd 8
867.2.i.g.827.2 32 68.31 even 16
867.2.i.g.827.3 32 204.167 odd 16
867.2.i.h.158.2 32 68.67 odd 2
867.2.i.h.158.3 32 204.203 even 2
867.2.i.h.653.2 32 204.95 odd 16
867.2.i.h.653.3 32 68.27 even 16
867.2.i.i.224.2 32 68.19 odd 8
867.2.i.i.224.3 32 204.155 even 8
867.2.i.i.329.2 32 204.131 odd 16
867.2.i.i.329.3 32 68.63 even 16