Properties

Label 810.4.e.z.271.2
Level $810$
Weight $4$
Character 810.271
Analytic conductor $47.792$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [810,4,Mod(271,810)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(810, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("810.271"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,-8,-10,0,-1,32,0,40,-33] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{401})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 101x^{2} + 100x + 10000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 271.2
Root \(-4.75625 - 8.23806i\) of defining polynomial
Character \(\chi\) \(=\) 810.271
Dual form 810.4.e.z.541.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(-2.00000 + 3.46410i) q^{4} +(-2.50000 + 4.33013i) q^{5} +(14.7687 + 25.5802i) q^{7} +8.00000 q^{8} +10.0000 q^{10} +(-23.2687 - 40.3026i) q^{11} +(-46.0375 + 79.7392i) q^{13} +(29.5375 - 51.1604i) q^{14} +(-8.00000 - 13.8564i) q^{16} -4.53748 q^{17} +87.5375 q^{19} +(-10.0000 - 17.3205i) q^{20} +(-46.5375 + 80.6053i) q^{22} +(-80.3437 + 139.159i) q^{23} +(-12.5000 - 21.6506i) q^{25} +184.150 q^{26} -118.150 q^{28} +(120.881 + 209.372i) q^{29} +(1.34369 - 2.32734i) q^{31} +(-16.0000 + 27.7128i) q^{32} +(4.53748 + 7.85914i) q^{34} -147.687 q^{35} -20.6124 q^{37} +(-87.5375 - 151.619i) q^{38} +(-20.0000 + 34.6410i) q^{40} +(250.612 - 434.073i) q^{41} +(-147.344 - 255.207i) q^{43} +186.150 q^{44} +321.375 q^{46} +(-239.494 - 414.815i) q^{47} +(-264.731 + 458.528i) q^{49} +(-25.0000 + 43.3013i) q^{50} +(-184.150 - 318.957i) q^{52} -243.075 q^{53} +232.687 q^{55} +(118.150 + 204.642i) q^{56} +(241.762 - 418.745i) q^{58} +(191.850 - 332.294i) q^{59} +(-66.3062 - 114.846i) q^{61} -5.37477 q^{62} +64.0000 q^{64} +(-230.187 - 398.696i) q^{65} +(-291.306 + 504.557i) q^{67} +(9.07495 - 15.7183i) q^{68} +(147.687 + 255.802i) q^{70} -566.775 q^{71} -839.388 q^{73} +(20.6124 + 35.7018i) q^{74} +(-175.075 + 303.239i) q^{76} +(687.300 - 1190.44i) q^{77} +(-225.888 - 391.249i) q^{79} +80.0000 q^{80} -1002.45 q^{82} +(150.525 + 260.716i) q^{83} +(11.3437 - 19.6478i) q^{85} +(-294.687 + 510.414i) q^{86} +(-186.150 - 322.421i) q^{88} +739.349 q^{89} -2719.66 q^{91} +(-321.375 - 556.637i) q^{92} +(-478.987 + 829.630i) q^{94} +(-218.844 + 379.048i) q^{95} +(573.069 + 992.584i) q^{97} +1058.93 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 8 q^{4} - 10 q^{5} - q^{7} + 32 q^{8} + 40 q^{10} - 33 q^{11} - 64 q^{13} - 2 q^{14} - 32 q^{16} + 102 q^{17} + 230 q^{19} - 40 q^{20} - 66 q^{22} - 21 q^{23} - 50 q^{25} + 256 q^{26} + 8 q^{28}+ \cdots + 4476 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.353553 0.612372i
\(3\) 0 0
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) −2.50000 + 4.33013i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 14.7687 + 25.5802i 0.797437 + 1.38120i 0.921280 + 0.388899i \(0.127145\pi\)
−0.123843 + 0.992302i \(0.539522\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) 10.0000 0.316228
\(11\) −23.2687 40.3026i −0.637799 1.10470i −0.985915 0.167249i \(-0.946512\pi\)
0.348116 0.937452i \(-0.386822\pi\)
\(12\) 0 0
\(13\) −46.0375 + 79.7392i −0.982192 + 1.70121i −0.328388 + 0.944543i \(0.606505\pi\)
−0.653804 + 0.756664i \(0.726828\pi\)
\(14\) 29.5375 51.1604i 0.563873 0.976657i
\(15\) 0 0
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −4.53748 −0.0647353 −0.0323676 0.999476i \(-0.510305\pi\)
−0.0323676 + 0.999476i \(0.510305\pi\)
\(18\) 0 0
\(19\) 87.5375 1.05697 0.528486 0.848942i \(-0.322760\pi\)
0.528486 + 0.848942i \(0.322760\pi\)
\(20\) −10.0000 17.3205i −0.111803 0.193649i
\(21\) 0 0
\(22\) −46.5375 + 80.6053i −0.450992 + 0.781141i
\(23\) −80.3437 + 139.159i −0.728383 + 1.26160i 0.229183 + 0.973383i \(0.426395\pi\)
−0.957566 + 0.288214i \(0.906939\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 184.150 1.38903
\(27\) 0 0
\(28\) −118.150 −0.797437
\(29\) 120.881 + 209.372i 0.774037 + 1.34067i 0.935334 + 0.353765i \(0.115099\pi\)
−0.161297 + 0.986906i \(0.551568\pi\)
\(30\) 0 0
\(31\) 1.34369 2.32734i 0.00778497 0.0134840i −0.862107 0.506727i \(-0.830855\pi\)
0.869892 + 0.493243i \(0.164189\pi\)
\(32\) −16.0000 + 27.7128i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 4.53748 + 7.85914i 0.0228874 + 0.0396421i
\(35\) −147.687 −0.713249
\(36\) 0 0
\(37\) −20.6124 −0.0915855 −0.0457927 0.998951i \(-0.514581\pi\)
−0.0457927 + 0.998951i \(0.514581\pi\)
\(38\) −87.5375 151.619i −0.373696 0.647261i
\(39\) 0 0
\(40\) −20.0000 + 34.6410i −0.0790569 + 0.136931i
\(41\) 250.612 434.073i 0.954612 1.65344i 0.219358 0.975644i \(-0.429604\pi\)
0.735254 0.677792i \(-0.237063\pi\)
\(42\) 0 0
\(43\) −147.344 255.207i −0.522551 0.905085i −0.999656 0.0262387i \(-0.991647\pi\)
0.477104 0.878847i \(-0.341686\pi\)
\(44\) 186.150 0.637799
\(45\) 0 0
\(46\) 321.375 1.03009
\(47\) −239.494 414.815i −0.743271 1.28738i −0.950998 0.309196i \(-0.899940\pi\)
0.207727 0.978187i \(-0.433393\pi\)
\(48\) 0 0
\(49\) −264.731 + 458.528i −0.771811 + 1.33682i
\(50\) −25.0000 + 43.3013i −0.0707107 + 0.122474i
\(51\) 0 0
\(52\) −184.150 318.957i −0.491096 0.850603i
\(53\) −243.075 −0.629979 −0.314990 0.949095i \(-0.602001\pi\)
−0.314990 + 0.949095i \(0.602001\pi\)
\(54\) 0 0
\(55\) 232.687 0.570465
\(56\) 118.150 + 204.642i 0.281937 + 0.488328i
\(57\) 0 0
\(58\) 241.762 418.745i 0.547327 0.947998i
\(59\) 191.850 332.294i 0.423335 0.733237i −0.572928 0.819605i \(-0.694193\pi\)
0.996263 + 0.0863679i \(0.0275261\pi\)
\(60\) 0 0
\(61\) −66.3062 114.846i −0.139174 0.241057i 0.788010 0.615663i \(-0.211112\pi\)
−0.927184 + 0.374605i \(0.877778\pi\)
\(62\) −5.37477 −0.0110096
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −230.187 398.696i −0.439250 0.760803i
\(66\) 0 0
\(67\) −291.306 + 504.557i −0.531175 + 0.920022i 0.468163 + 0.883642i \(0.344916\pi\)
−0.999338 + 0.0363799i \(0.988417\pi\)
\(68\) 9.07495 15.7183i 0.0161838 0.0280312i
\(69\) 0 0
\(70\) 147.687 + 255.802i 0.252172 + 0.436774i
\(71\) −566.775 −0.947378 −0.473689 0.880692i \(-0.657078\pi\)
−0.473689 + 0.880692i \(0.657078\pi\)
\(72\) 0 0
\(73\) −839.388 −1.34579 −0.672896 0.739737i \(-0.734950\pi\)
−0.672896 + 0.739737i \(0.734950\pi\)
\(74\) 20.6124 + 35.7018i 0.0323804 + 0.0560844i
\(75\) 0 0
\(76\) −175.075 + 303.239i −0.264243 + 0.457682i
\(77\) 687.300 1190.44i 1.01721 1.76186i
\(78\) 0 0
\(79\) −225.888 391.249i −0.321700 0.557202i 0.659139 0.752022i \(-0.270921\pi\)
−0.980839 + 0.194820i \(0.937588\pi\)
\(80\) 80.0000 0.111803
\(81\) 0 0
\(82\) −1002.45 −1.35003
\(83\) 150.525 + 260.716i 0.199063 + 0.344787i 0.948225 0.317600i \(-0.102877\pi\)
−0.749162 + 0.662387i \(0.769543\pi\)
\(84\) 0 0
\(85\) 11.3437 19.6478i 0.0144752 0.0250719i
\(86\) −294.687 + 510.414i −0.369500 + 0.639992i
\(87\) 0 0
\(88\) −186.150 322.421i −0.225496 0.390571i
\(89\) 739.349 0.880571 0.440286 0.897858i \(-0.354877\pi\)
0.440286 + 0.897858i \(0.354877\pi\)
\(90\) 0 0
\(91\) −2719.66 −3.13295
\(92\) −321.375 556.637i −0.364192 0.630799i
\(93\) 0 0
\(94\) −478.987 + 829.630i −0.525572 + 0.910317i
\(95\) −218.844 + 379.048i −0.236346 + 0.409364i
\(96\) 0 0
\(97\) 573.069 + 992.584i 0.599859 + 1.03899i 0.992841 + 0.119440i \(0.0381099\pi\)
−0.392983 + 0.919546i \(0.628557\pi\)
\(98\) 1058.93 1.09151
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 255.731 + 442.940i 0.251943 + 0.436378i 0.964061 0.265682i \(-0.0855972\pi\)
−0.712118 + 0.702060i \(0.752264\pi\)
\(102\) 0 0
\(103\) −210.756 + 365.040i −0.201616 + 0.349208i −0.949049 0.315128i \(-0.897952\pi\)
0.747434 + 0.664337i \(0.231286\pi\)
\(104\) −368.300 + 637.914i −0.347257 + 0.601467i
\(105\) 0 0
\(106\) 243.075 + 421.018i 0.222731 + 0.385782i
\(107\) −1639.50 −1.48127 −0.740637 0.671905i \(-0.765476\pi\)
−0.740637 + 0.671905i \(0.765476\pi\)
\(108\) 0 0
\(109\) −690.475 −0.606748 −0.303374 0.952872i \(-0.598113\pi\)
−0.303374 + 0.952872i \(0.598113\pi\)
\(110\) −232.687 403.026i −0.201690 0.349337i
\(111\) 0 0
\(112\) 236.300 409.283i 0.199359 0.345300i
\(113\) −485.119 + 840.250i −0.403860 + 0.699505i −0.994188 0.107658i \(-0.965665\pi\)
0.590328 + 0.807163i \(0.298998\pi\)
\(114\) 0 0
\(115\) −401.718 695.797i −0.325743 0.564203i
\(116\) −967.049 −0.774037
\(117\) 0 0
\(118\) −767.400 −0.598686
\(119\) −67.0128 116.070i −0.0516223 0.0894124i
\(120\) 0 0
\(121\) −417.368 + 722.903i −0.313575 + 0.543128i
\(122\) −132.612 + 229.691i −0.0984112 + 0.170453i
\(123\) 0 0
\(124\) 5.37477 + 9.30937i 0.00389249 + 0.00674198i
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 805.024 0.562475 0.281237 0.959638i \(-0.409255\pi\)
0.281237 + 0.959638i \(0.409255\pi\)
\(128\) −64.0000 110.851i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −460.375 + 797.392i −0.310596 + 0.537969i
\(131\) −107.344 + 185.925i −0.0715928 + 0.124002i −0.899600 0.436716i \(-0.856142\pi\)
0.828007 + 0.560718i \(0.189475\pi\)
\(132\) 0 0
\(133\) 1292.82 + 2239.23i 0.842869 + 1.45989i
\(134\) 1165.22 0.751195
\(135\) 0 0
\(136\) −36.2998 −0.0228874
\(137\) −183.899 318.523i −0.114683 0.198637i 0.802970 0.596020i \(-0.203252\pi\)
−0.917653 + 0.397383i \(0.869919\pi\)
\(138\) 0 0
\(139\) 713.655 1236.09i 0.435478 0.754270i −0.561856 0.827235i \(-0.689913\pi\)
0.997335 + 0.0729645i \(0.0232460\pi\)
\(140\) 295.375 511.604i 0.178312 0.308846i
\(141\) 0 0
\(142\) 566.775 + 981.683i 0.334949 + 0.580148i
\(143\) 4284.94 2.50576
\(144\) 0 0
\(145\) −1208.81 −0.692320
\(146\) 839.388 + 1453.86i 0.475810 + 0.824126i
\(147\) 0 0
\(148\) 41.2249 71.4036i 0.0228964 0.0396577i
\(149\) 878.868 1522.24i 0.483219 0.836961i −0.516595 0.856230i \(-0.672801\pi\)
0.999814 + 0.0192693i \(0.00613398\pi\)
\(150\) 0 0
\(151\) 268.888 + 465.727i 0.144912 + 0.250995i 0.929340 0.369225i \(-0.120377\pi\)
−0.784428 + 0.620220i \(0.787043\pi\)
\(152\) 700.300 0.373696
\(153\) 0 0
\(154\) −2749.20 −1.43855
\(155\) 6.71846 + 11.6367i 0.00348155 + 0.00603021i
\(156\) 0 0
\(157\) −335.894 + 581.785i −0.170747 + 0.295742i −0.938681 0.344786i \(-0.887951\pi\)
0.767934 + 0.640529i \(0.221285\pi\)
\(158\) −451.775 + 782.497i −0.227477 + 0.394001i
\(159\) 0 0
\(160\) −80.0000 138.564i −0.0395285 0.0684653i
\(161\) −4746.30 −2.32336
\(162\) 0 0
\(163\) −2501.42 −1.20200 −0.601002 0.799248i \(-0.705232\pi\)
−0.601002 + 0.799248i \(0.705232\pi\)
\(164\) 1002.45 + 1736.29i 0.477306 + 0.826718i
\(165\) 0 0
\(166\) 301.049 521.433i 0.140759 0.243801i
\(167\) −375.824 + 650.947i −0.174145 + 0.301628i −0.939865 0.341546i \(-0.889049\pi\)
0.765720 + 0.643174i \(0.222383\pi\)
\(168\) 0 0
\(169\) −3140.40 5439.33i −1.42940 2.47580i
\(170\) −45.3748 −0.0204711
\(171\) 0 0
\(172\) 1178.75 0.522551
\(173\) −1187.14 2056.18i −0.521713 0.903634i −0.999681 0.0252563i \(-0.991960\pi\)
0.477968 0.878377i \(-0.341374\pi\)
\(174\) 0 0
\(175\) 369.218 639.505i 0.159487 0.276240i
\(176\) −372.300 + 644.842i −0.159450 + 0.276175i
\(177\) 0 0
\(178\) −739.349 1280.59i −0.311329 0.539238i
\(179\) −2424.52 −1.01239 −0.506194 0.862420i \(-0.668948\pi\)
−0.506194 + 0.862420i \(0.668948\pi\)
\(180\) 0 0
\(181\) 1179.46 0.484357 0.242179 0.970232i \(-0.422138\pi\)
0.242179 + 0.970232i \(0.422138\pi\)
\(182\) 2719.66 + 4710.59i 1.10766 + 1.91853i
\(183\) 0 0
\(184\) −642.750 + 1113.27i −0.257522 + 0.446042i
\(185\) 51.5311 89.2544i 0.0204791 0.0354709i
\(186\) 0 0
\(187\) 105.581 + 182.872i 0.0412881 + 0.0715131i
\(188\) 1915.95 0.743271
\(189\) 0 0
\(190\) 875.375 0.334244
\(191\) 172.238 + 298.324i 0.0652496 + 0.113016i 0.896805 0.442427i \(-0.145882\pi\)
−0.831555 + 0.555442i \(0.812549\pi\)
\(192\) 0 0
\(193\) −970.919 + 1681.68i −0.362115 + 0.627202i −0.988309 0.152466i \(-0.951279\pi\)
0.626193 + 0.779668i \(0.284612\pi\)
\(194\) 1146.14 1985.17i 0.424164 0.734674i
\(195\) 0 0
\(196\) −1058.93 1834.11i −0.385906 0.668408i
\(197\) −1780.95 −0.644099 −0.322049 0.946723i \(-0.604372\pi\)
−0.322049 + 0.946723i \(0.604372\pi\)
\(198\) 0 0
\(199\) −808.375 −0.287961 −0.143980 0.989581i \(-0.545990\pi\)
−0.143980 + 0.989581i \(0.545990\pi\)
\(200\) −100.000 173.205i −0.0353553 0.0612372i
\(201\) 0 0
\(202\) 511.463 885.879i 0.178150 0.308566i
\(203\) −3570.52 + 6184.33i −1.23449 + 2.13820i
\(204\) 0 0
\(205\) 1253.06 + 2170.37i 0.426915 + 0.739439i
\(206\) 843.024 0.285127
\(207\) 0 0
\(208\) 1473.20 0.491096
\(209\) −2036.89 3527.99i −0.674136 1.16764i
\(210\) 0 0
\(211\) −611.518 + 1059.18i −0.199520 + 0.345578i −0.948373 0.317158i \(-0.897272\pi\)
0.748853 + 0.662736i \(0.230605\pi\)
\(212\) 486.150 842.036i 0.157495 0.272789i
\(213\) 0 0
\(214\) 1639.50 + 2839.70i 0.523710 + 0.907092i
\(215\) 1473.44 0.467384
\(216\) 0 0
\(217\) 79.3785 0.0248321
\(218\) 690.475 + 1195.94i 0.214518 + 0.371556i
\(219\) 0 0
\(220\) −465.375 + 806.053i −0.142616 + 0.247018i
\(221\) 208.894 361.815i 0.0635825 0.110128i
\(222\) 0 0
\(223\) −530.501 918.855i −0.159305 0.275924i 0.775313 0.631577i \(-0.217592\pi\)
−0.934618 + 0.355653i \(0.884259\pi\)
\(224\) −945.199 −0.281937
\(225\) 0 0
\(226\) 1940.48 0.571144
\(227\) 1786.54 + 3094.37i 0.522364 + 0.904760i 0.999661 + 0.0260187i \(0.00828294\pi\)
−0.477298 + 0.878742i \(0.658384\pi\)
\(228\) 0 0
\(229\) −500.912 + 867.605i −0.144547 + 0.250362i −0.929204 0.369568i \(-0.879506\pi\)
0.784657 + 0.619930i \(0.212839\pi\)
\(230\) −803.437 + 1391.59i −0.230335 + 0.398952i
\(231\) 0 0
\(232\) 967.049 + 1674.98i 0.273663 + 0.473999i
\(233\) −6082.42 −1.71018 −0.855091 0.518477i \(-0.826499\pi\)
−0.855091 + 0.518477i \(0.826499\pi\)
\(234\) 0 0
\(235\) 2394.94 0.664802
\(236\) 767.400 + 1329.18i 0.211667 + 0.366619i
\(237\) 0 0
\(238\) −134.026 + 232.139i −0.0365025 + 0.0632241i
\(239\) −106.199 + 183.942i −0.0287425 + 0.0497835i −0.880039 0.474902i \(-0.842484\pi\)
0.851296 + 0.524685i \(0.175817\pi\)
\(240\) 0 0
\(241\) 1472.22 + 2549.97i 0.393503 + 0.681568i 0.992909 0.118878i \(-0.0379297\pi\)
−0.599406 + 0.800445i \(0.704596\pi\)
\(242\) 1669.47 0.443462
\(243\) 0 0
\(244\) 530.450 0.139174
\(245\) −1323.66 2292.64i −0.345164 0.597842i
\(246\) 0 0
\(247\) −4030.00 + 6980.17i −1.03815 + 1.79813i
\(248\) 10.7495 18.6187i 0.00275240 0.00476730i
\(249\) 0 0
\(250\) −125.000 216.506i −0.0316228 0.0547723i
\(251\) −1130.36 −0.284254 −0.142127 0.989848i \(-0.545394\pi\)
−0.142127 + 0.989848i \(0.545394\pi\)
\(252\) 0 0
\(253\) 7477.99 1.85825
\(254\) −805.024 1394.34i −0.198865 0.344444i
\(255\) 0 0
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) 609.168 1055.11i 0.147856 0.256093i −0.782579 0.622551i \(-0.786096\pi\)
0.930435 + 0.366458i \(0.119430\pi\)
\(258\) 0 0
\(259\) −304.420 527.270i −0.0730336 0.126498i
\(260\) 1841.50 0.439250
\(261\) 0 0
\(262\) 429.375 0.101248
\(263\) −3468.75 6008.05i −0.813279 1.40864i −0.910557 0.413383i \(-0.864347\pi\)
0.0972789 0.995257i \(-0.468986\pi\)
\(264\) 0 0
\(265\) 607.687 1052.55i 0.140868 0.243990i
\(266\) 2585.64 4478.45i 0.595998 1.03230i
\(267\) 0 0
\(268\) −1165.22 2018.23i −0.265587 0.460011i
\(269\) −515.214 −0.116778 −0.0583888 0.998294i \(-0.518596\pi\)
−0.0583888 + 0.998294i \(0.518596\pi\)
\(270\) 0 0
\(271\) −652.411 −0.146240 −0.0731202 0.997323i \(-0.523296\pi\)
−0.0731202 + 0.997323i \(0.523296\pi\)
\(272\) 36.2998 + 62.8731i 0.00809191 + 0.0140156i
\(273\) 0 0
\(274\) −367.799 + 637.046i −0.0810932 + 0.140458i
\(275\) −581.718 + 1007.57i −0.127560 + 0.220940i
\(276\) 0 0
\(277\) −1469.42 2545.12i −0.318733 0.552062i 0.661491 0.749953i \(-0.269924\pi\)
−0.980224 + 0.197891i \(0.936591\pi\)
\(278\) −2854.62 −0.615859
\(279\) 0 0
\(280\) −1181.50 −0.252172
\(281\) 2675.89 + 4634.77i 0.568078 + 0.983941i 0.996756 + 0.0804830i \(0.0256463\pi\)
−0.428678 + 0.903458i \(0.641020\pi\)
\(282\) 0 0
\(283\) −739.974 + 1281.67i −0.155431 + 0.269214i −0.933216 0.359316i \(-0.883010\pi\)
0.777785 + 0.628530i \(0.216343\pi\)
\(284\) 1133.55 1963.37i 0.236844 0.410227i
\(285\) 0 0
\(286\) −4284.94 7421.73i −0.885922 1.53446i
\(287\) 14804.9 3.04497
\(288\) 0 0
\(289\) −4892.41 −0.995809
\(290\) 1208.81 + 2093.72i 0.244772 + 0.423957i
\(291\) 0 0
\(292\) 1678.78 2907.72i 0.336448 0.582745i
\(293\) −2589.45 + 4485.06i −0.516305 + 0.894266i 0.483516 + 0.875335i \(0.339359\pi\)
−0.999821 + 0.0189305i \(0.993974\pi\)
\(294\) 0 0
\(295\) 959.250 + 1661.47i 0.189321 + 0.327914i
\(296\) −164.899 −0.0323804
\(297\) 0 0
\(298\) −3515.47 −0.683376
\(299\) −7397.64 12813.1i −1.43082 2.47826i
\(300\) 0 0
\(301\) 4352.16 7538.16i 0.833403 1.44350i
\(302\) 537.775 931.454i 0.102468 0.177481i
\(303\) 0 0
\(304\) −700.300 1212.95i −0.132122 0.228841i
\(305\) 663.062 0.124481
\(306\) 0 0
\(307\) 10306.0 1.91594 0.957970 0.286868i \(-0.0926141\pi\)
0.957970 + 0.286868i \(0.0926141\pi\)
\(308\) 2749.20 + 4761.75i 0.508604 + 0.880929i
\(309\) 0 0
\(310\) 13.4369 23.2734i 0.00246182 0.00426400i
\(311\) 1031.32 1786.30i 0.188042 0.325698i −0.756556 0.653929i \(-0.773119\pi\)
0.944597 + 0.328232i \(0.106453\pi\)
\(312\) 0 0
\(313\) −4623.98 8008.97i −0.835025 1.44631i −0.894010 0.448046i \(-0.852120\pi\)
0.0589856 0.998259i \(-0.481213\pi\)
\(314\) 1343.58 0.241473
\(315\) 0 0
\(316\) 1807.10 0.321700
\(317\) 305.174 + 528.576i 0.0540702 + 0.0936524i 0.891794 0.452442i \(-0.149447\pi\)
−0.837723 + 0.546095i \(0.816114\pi\)
\(318\) 0 0
\(319\) 5625.50 9743.66i 0.987360 1.71016i
\(320\) −160.000 + 277.128i −0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) 4746.30 + 8220.83i 0.821432 + 1.42276i
\(323\) −397.199 −0.0684234
\(324\) 0 0
\(325\) 2301.87 0.392877
\(326\) 2501.42 + 4332.59i 0.424973 + 0.736074i
\(327\) 0 0
\(328\) 2004.90 3472.59i 0.337506 0.584578i
\(329\) 7074.04 12252.6i 1.18542 2.05321i
\(330\) 0 0
\(331\) 1044.63 + 1809.36i 0.173469 + 0.300457i 0.939630 0.342191i \(-0.111169\pi\)
−0.766162 + 0.642648i \(0.777836\pi\)
\(332\) −1204.20 −0.199063
\(333\) 0 0
\(334\) 1503.30 0.246278
\(335\) −1456.53 2522.79i −0.237549 0.411446i
\(336\) 0 0
\(337\) 4713.18 8163.46i 0.761849 1.31956i −0.180047 0.983658i \(-0.557625\pi\)
0.941896 0.335904i \(-0.109042\pi\)
\(338\) −6280.80 + 10878.7i −1.01074 + 1.75065i
\(339\) 0 0
\(340\) 45.3748 + 78.5914i 0.00723762 + 0.0125359i
\(341\) −125.064 −0.0198610
\(342\) 0 0
\(343\) −5507.63 −0.867009
\(344\) −1178.75 2041.65i −0.184750 0.319996i
\(345\) 0 0
\(346\) −2374.27 + 4112.36i −0.368907 + 0.638965i
\(347\) 610.612 1057.61i 0.0944651 0.163618i −0.814920 0.579573i \(-0.803219\pi\)
0.909385 + 0.415955i \(0.136553\pi\)
\(348\) 0 0
\(349\) 2094.14 + 3627.16i 0.321195 + 0.556325i 0.980735 0.195344i \(-0.0625823\pi\)
−0.659540 + 0.751669i \(0.729249\pi\)
\(350\) −1476.87 −0.225549
\(351\) 0 0
\(352\) 1489.20 0.225496
\(353\) 2234.68 + 3870.58i 0.336941 + 0.583599i 0.983856 0.178964i \(-0.0572744\pi\)
−0.646915 + 0.762562i \(0.723941\pi\)
\(354\) 0 0
\(355\) 1416.94 2454.21i 0.211840 0.366918i
\(356\) −1478.70 + 2561.18i −0.220143 + 0.381299i
\(357\) 0 0
\(358\) 2424.52 + 4199.40i 0.357933 + 0.619958i
\(359\) −643.572 −0.0946140 −0.0473070 0.998880i \(-0.515064\pi\)
−0.0473070 + 0.998880i \(0.515064\pi\)
\(360\) 0 0
\(361\) 803.810 0.117191
\(362\) −1179.46 2042.89i −0.171246 0.296607i
\(363\) 0 0
\(364\) 5439.32 9421.18i 0.783236 1.35661i
\(365\) 2098.47 3634.65i 0.300928 0.521223i
\(366\) 0 0
\(367\) 2967.37 + 5139.63i 0.422058 + 0.731026i 0.996141 0.0877712i \(-0.0279744\pi\)
−0.574082 + 0.818798i \(0.694641\pi\)
\(368\) 2571.00 0.364192
\(369\) 0 0
\(370\) −206.124 −0.0289619
\(371\) −3589.91 6217.91i −0.502369 0.870128i
\(372\) 0 0
\(373\) 3093.91 5358.81i 0.429482 0.743884i −0.567345 0.823480i \(-0.692030\pi\)
0.996827 + 0.0795955i \(0.0253629\pi\)
\(374\) 211.163 365.745i 0.0291951 0.0505674i
\(375\) 0 0
\(376\) −1915.95 3318.52i −0.262786 0.455159i
\(377\) −22260.3 −3.04101
\(378\) 0 0
\(379\) 10428.5 1.41340 0.706699 0.707515i \(-0.250184\pi\)
0.706699 + 0.707515i \(0.250184\pi\)
\(380\) −875.375 1516.19i −0.118173 0.204682i
\(381\) 0 0
\(382\) 344.475 596.649i 0.0461385 0.0799142i
\(383\) 5123.34 8873.89i 0.683526 1.18390i −0.290372 0.956914i \(-0.593779\pi\)
0.973898 0.226988i \(-0.0728877\pi\)
\(384\) 0 0
\(385\) 3436.50 + 5952.19i 0.454910 + 0.787927i
\(386\) 3883.67 0.512108
\(387\) 0 0
\(388\) −4584.55 −0.599859
\(389\) 4254.24 + 7368.56i 0.554495 + 0.960413i 0.997943 + 0.0641131i \(0.0204218\pi\)
−0.443448 + 0.896300i \(0.646245\pi\)
\(390\) 0 0
\(391\) 364.558 631.432i 0.0471521 0.0816698i
\(392\) −2117.85 + 3668.22i −0.272876 + 0.472636i
\(393\) 0 0
\(394\) 1780.95 + 3084.70i 0.227723 + 0.394428i
\(395\) 2258.88 0.287738
\(396\) 0 0
\(397\) 3775.96 0.477356 0.238678 0.971099i \(-0.423286\pi\)
0.238678 + 0.971099i \(0.423286\pi\)
\(398\) 808.375 + 1400.15i 0.101809 + 0.176339i
\(399\) 0 0
\(400\) −200.000 + 346.410i −0.0250000 + 0.0433013i
\(401\) −3778.01 + 6543.70i −0.470486 + 0.814905i −0.999430 0.0337512i \(-0.989255\pi\)
0.528945 + 0.848656i \(0.322588\pi\)
\(402\) 0 0
\(403\) 123.720 + 214.290i 0.0152927 + 0.0264877i
\(404\) −2045.85 −0.251943
\(405\) 0 0
\(406\) 14282.1 1.74583
\(407\) 479.625 + 830.735i 0.0584131 + 0.101174i
\(408\) 0 0
\(409\) −4481.61 + 7762.37i −0.541812 + 0.938446i 0.456988 + 0.889473i \(0.348928\pi\)
−0.998800 + 0.0489735i \(0.984405\pi\)
\(410\) 2506.12 4340.73i 0.301875 0.522862i
\(411\) 0 0
\(412\) −843.024 1460.16i −0.100808 0.174604i
\(413\) 11333.5 1.35033
\(414\) 0 0
\(415\) −1505.25 −0.178047
\(416\) −1473.20 2551.66i −0.173629 0.300734i
\(417\) 0 0
\(418\) −4073.77 + 7055.98i −0.476686 + 0.825644i
\(419\) 7076.90 12257.6i 0.825130 1.42917i −0.0766901 0.997055i \(-0.524435\pi\)
0.901820 0.432112i \(-0.142231\pi\)
\(420\) 0 0
\(421\) 7363.64 + 12754.2i 0.852451 + 1.47649i 0.878990 + 0.476841i \(0.158218\pi\)
−0.0265387 + 0.999648i \(0.508449\pi\)
\(422\) 2446.07 0.282163
\(423\) 0 0
\(424\) −1944.60 −0.222731
\(425\) 56.7185 + 98.2392i 0.00647353 + 0.0112125i
\(426\) 0 0
\(427\) 1958.52 3392.25i 0.221966 0.384456i
\(428\) 3279.00 5679.39i 0.370319 0.641411i
\(429\) 0 0
\(430\) −1473.44 2552.07i −0.165245 0.286213i
\(431\) 3048.98 0.340752 0.170376 0.985379i \(-0.445502\pi\)
0.170376 + 0.985379i \(0.445502\pi\)
\(432\) 0 0
\(433\) 17218.4 1.91100 0.955500 0.294990i \(-0.0953164\pi\)
0.955500 + 0.294990i \(0.0953164\pi\)
\(434\) −79.3785 137.488i −0.00877947 0.0152065i
\(435\) 0 0
\(436\) 1380.95 2391.88i 0.151687 0.262730i
\(437\) −7033.08 + 12181.7i −0.769881 + 1.33347i
\(438\) 0 0
\(439\) −833.953 1444.45i −0.0906660 0.157038i 0.817126 0.576460i \(-0.195566\pi\)
−0.907792 + 0.419422i \(0.862233\pi\)
\(440\) 1861.50 0.201690
\(441\) 0 0
\(442\) −835.576 −0.0899192
\(443\) 4611.60 + 7987.53i 0.494591 + 0.856657i 0.999981 0.00623459i \(-0.00198454\pi\)
−0.505390 + 0.862891i \(0.668651\pi\)
\(444\) 0 0
\(445\) −1848.37 + 3201.48i −0.196902 + 0.341044i
\(446\) −1061.00 + 1837.71i −0.112646 + 0.195108i
\(447\) 0 0
\(448\) 945.199 + 1637.13i 0.0996796 + 0.172650i
\(449\) −2636.18 −0.277080 −0.138540 0.990357i \(-0.544241\pi\)
−0.138540 + 0.990357i \(0.544241\pi\)
\(450\) 0 0
\(451\) −23325.7 −2.43540
\(452\) −1940.48 3361.00i −0.201930 0.349753i
\(453\) 0 0
\(454\) 3573.07 6188.74i 0.369367 0.639762i
\(455\) 6799.15 11776.5i 0.700548 1.21338i
\(456\) 0 0
\(457\) 1929.84 + 3342.58i 0.197536 + 0.342142i 0.947729 0.319077i \(-0.103373\pi\)
−0.750193 + 0.661219i \(0.770039\pi\)
\(458\) 2003.65 0.204420
\(459\) 0 0
\(460\) 3213.75 0.325743
\(461\) 3307.54 + 5728.82i 0.334159 + 0.578780i 0.983323 0.181868i \(-0.0582144\pi\)
−0.649164 + 0.760649i \(0.724881\pi\)
\(462\) 0 0
\(463\) 8785.87 15217.6i 0.881887 1.52747i 0.0326470 0.999467i \(-0.489606\pi\)
0.849240 0.528007i \(-0.177060\pi\)
\(464\) 1934.10 3349.96i 0.193509 0.335168i
\(465\) 0 0
\(466\) 6082.42 + 10535.1i 0.604641 + 1.04727i
\(467\) −10076.8 −0.998502 −0.499251 0.866457i \(-0.666391\pi\)
−0.499251 + 0.866457i \(0.666391\pi\)
\(468\) 0 0
\(469\) −17208.9 −1.69431
\(470\) −2394.94 4148.15i −0.235043 0.407106i
\(471\) 0 0
\(472\) 1534.80 2658.35i 0.149671 0.259239i
\(473\) −6857.00 + 11876.7i −0.666565 + 1.15452i
\(474\) 0 0
\(475\) −1094.22 1895.24i −0.105697 0.183073i
\(476\) 536.102 0.0516223
\(477\) 0 0
\(478\) 424.797 0.0406480
\(479\) −8972.89 15541.5i −0.855912 1.48248i −0.875797 0.482680i \(-0.839663\pi\)
0.0198851 0.999802i \(-0.493670\pi\)
\(480\) 0 0
\(481\) 948.944 1643.62i 0.0899545 0.155806i
\(482\) 2944.45 5099.93i 0.278249 0.481941i
\(483\) 0 0
\(484\) −1669.47 2891.61i −0.156788 0.271564i
\(485\) −5730.69 −0.536530
\(486\) 0 0
\(487\) 17356.9 1.61502 0.807511 0.589853i \(-0.200814\pi\)
0.807511 + 0.589853i \(0.200814\pi\)
\(488\) −530.450 918.766i −0.0492056 0.0852266i
\(489\) 0 0
\(490\) −2647.31 + 4585.28i −0.244068 + 0.422738i
\(491\) −4196.59 + 7268.70i −0.385722 + 0.668089i −0.991869 0.127263i \(-0.959381\pi\)
0.606147 + 0.795352i \(0.292714\pi\)
\(492\) 0 0
\(493\) −548.495 950.022i −0.0501075 0.0867887i
\(494\) 16120.0 1.46817
\(495\) 0 0
\(496\) −42.9981 −0.00389249
\(497\) −8370.55 14498.2i −0.755474 1.30852i
\(498\) 0 0
\(499\) −8210.57 + 14221.1i −0.736585 + 1.27580i 0.217440 + 0.976074i \(0.430229\pi\)
−0.954025 + 0.299728i \(0.903104\pi\)
\(500\) −250.000 + 433.013i −0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) 1130.36 + 1957.84i 0.100499 + 0.174069i
\(503\) −16014.9 −1.41962 −0.709808 0.704395i \(-0.751218\pi\)
−0.709808 + 0.704395i \(0.751218\pi\)
\(504\) 0 0
\(505\) −2557.31 −0.225344
\(506\) −7477.99 12952.3i −0.656990 1.13794i
\(507\) 0 0
\(508\) −1610.05 + 2788.68i −0.140619 + 0.243559i
\(509\) −6847.96 + 11861.0i −0.596327 + 1.03287i 0.397031 + 0.917805i \(0.370041\pi\)
−0.993358 + 0.115064i \(0.963293\pi\)
\(510\) 0 0
\(511\) −12396.7 21471.7i −1.07318 1.85881i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −2436.67 −0.209099
\(515\) −1053.78 1825.20i −0.0901652 0.156171i
\(516\) 0 0
\(517\) −11145.4 + 19304.4i −0.948115 + 1.64218i
\(518\) −608.839 + 1054.54i −0.0516426 + 0.0894476i
\(519\) 0 0
\(520\) −1841.50 3189.57i −0.155298 0.268984i
\(521\) −5887.12 −0.495047 −0.247523 0.968882i \(-0.579617\pi\)
−0.247523 + 0.968882i \(0.579617\pi\)
\(522\) 0 0
\(523\) 8544.57 0.714394 0.357197 0.934029i \(-0.383733\pi\)
0.357197 + 0.934029i \(0.383733\pi\)
\(524\) −429.375 743.699i −0.0357964 0.0620012i
\(525\) 0 0
\(526\) −6937.50 + 12016.1i −0.575075 + 0.996059i
\(527\) −6.09697 + 10.5603i −0.000503962 + 0.000872888i
\(528\) 0 0
\(529\) −6826.72 11824.2i −0.561085 0.971827i
\(530\) −2430.75 −0.199217
\(531\) 0 0
\(532\) −10342.5 −0.842869
\(533\) 23075.1 + 39967.3i 1.87522 + 3.24798i
\(534\) 0 0
\(535\) 4098.75 7099.24i 0.331223 0.573695i
\(536\) −2330.45 + 4036.46i −0.187799 + 0.325277i
\(537\) 0 0
\(538\) 515.214 + 892.377i 0.0412871 + 0.0715113i
\(539\) 24639.8 1.96904
\(540\) 0 0
\(541\) 10236.5 0.813499 0.406749 0.913540i \(-0.366662\pi\)
0.406749 + 0.913540i \(0.366662\pi\)
\(542\) 652.411 + 1130.01i 0.0517038 + 0.0895536i
\(543\) 0 0
\(544\) 72.5996 125.746i 0.00572184 0.00991052i
\(545\) 1726.19 2989.85i 0.135673 0.234993i
\(546\) 0 0
\(547\) 2392.66 + 4144.20i 0.187025 + 0.323937i 0.944257 0.329209i \(-0.106782\pi\)
−0.757232 + 0.653146i \(0.773449\pi\)
\(548\) 1471.20 0.114683
\(549\) 0 0
\(550\) 2326.87 0.180397
\(551\) 10581.6 + 18327.9i 0.818136 + 1.41705i
\(552\) 0 0
\(553\) 6672.15 11556.5i 0.513072 0.888666i
\(554\) −2938.85 + 5090.23i −0.225379 + 0.390367i
\(555\) 0 0
\(556\) 2854.62 + 4944.35i 0.217739 + 0.377135i
\(557\) 2031.75 0.154557 0.0772783 0.997010i \(-0.475377\pi\)
0.0772783 + 0.997010i \(0.475377\pi\)
\(558\) 0 0
\(559\) 27133.3 2.05298
\(560\) 1181.50 + 2046.42i 0.0891562 + 0.154423i
\(561\) 0 0
\(562\) 5351.77 9269.54i 0.401692 0.695751i
\(563\) −6081.18 + 10532.9i −0.455224 + 0.788472i −0.998701 0.0509524i \(-0.983774\pi\)
0.543477 + 0.839424i \(0.317108\pi\)
\(564\) 0 0
\(565\) −2425.59 4201.25i −0.180612 0.312828i
\(566\) 2959.90 0.219812
\(567\) 0 0
\(568\) −4534.20 −0.334949
\(569\) −72.3766 125.360i −0.00533249 0.00923614i 0.863347 0.504611i \(-0.168364\pi\)
−0.868679 + 0.495375i \(0.835031\pi\)
\(570\) 0 0
\(571\) 3739.64 6477.24i 0.274079 0.474718i −0.695823 0.718213i \(-0.744960\pi\)
0.969902 + 0.243494i \(0.0782937\pi\)
\(572\) −8569.87 + 14843.5i −0.626441 + 1.08503i
\(573\) 0 0
\(574\) −14804.9 25642.9i −1.07656 1.86466i
\(575\) 4017.18 0.291353
\(576\) 0 0
\(577\) −6562.94 −0.473516 −0.236758 0.971569i \(-0.576085\pi\)
−0.236758 + 0.971569i \(0.576085\pi\)
\(578\) 4892.41 + 8473.90i 0.352072 + 0.609806i
\(579\) 0 0
\(580\) 2417.62 4187.45i 0.173080 0.299783i
\(581\) −4446.12 + 7700.90i −0.317480 + 0.549892i
\(582\) 0 0
\(583\) 5656.05 + 9796.56i 0.401800 + 0.695938i
\(584\) −6715.10 −0.475810
\(585\) 0 0
\(586\) 10357.8 0.730165
\(587\) −2113.95 3661.46i −0.148640 0.257453i 0.782085 0.623172i \(-0.214156\pi\)
−0.930725 + 0.365719i \(0.880823\pi\)
\(588\) 0 0
\(589\) 117.623 203.730i 0.00822850 0.0142522i
\(590\) 1918.50 3322.94i 0.133870 0.231870i
\(591\) 0 0
\(592\) 164.899 + 285.614i 0.0114482 + 0.0198288i
\(593\) −28746.9 −1.99071 −0.995356 0.0962641i \(-0.969311\pi\)
−0.995356 + 0.0962641i \(0.969311\pi\)
\(594\) 0 0
\(595\) 670.128 0.0461724
\(596\) 3515.47 + 6088.98i 0.241610 + 0.418480i
\(597\) 0 0
\(598\) −14795.3 + 25626.2i −1.01175 + 1.75240i
\(599\) 10857.4 18805.7i 0.740607 1.28277i −0.211613 0.977354i \(-0.567872\pi\)
0.952219 0.305415i \(-0.0987951\pi\)
\(600\) 0 0
\(601\) −3027.91 5244.49i −0.205509 0.355952i 0.744786 0.667304i \(-0.232552\pi\)
−0.950295 + 0.311351i \(0.899218\pi\)
\(602\) −17408.6 −1.17861
\(603\) 0 0
\(604\) −2151.10 −0.144912
\(605\) −2086.84 3614.52i −0.140235 0.242894i
\(606\) 0 0
\(607\) −9129.98 + 15813.6i −0.610502 + 1.05742i 0.380654 + 0.924717i \(0.375699\pi\)
−0.991156 + 0.132702i \(0.957635\pi\)
\(608\) −1400.60 + 2425.91i −0.0934240 + 0.161815i
\(609\) 0 0
\(610\) −663.062 1148.46i −0.0440108 0.0762290i
\(611\) 44102.7 2.92014
\(612\) 0 0
\(613\) −16207.4 −1.06788 −0.533941 0.845521i \(-0.679290\pi\)
−0.533941 + 0.845521i \(0.679290\pi\)
\(614\) −10306.0 17850.5i −0.677387 1.17327i
\(615\) 0 0
\(616\) 5498.40 9523.51i 0.359638 0.622911i
\(617\) 7001.56 12127.1i 0.456843 0.791276i −0.541949 0.840411i \(-0.682313\pi\)
0.998792 + 0.0491358i \(0.0156467\pi\)
\(618\) 0 0
\(619\) 134.842 + 233.553i 0.00875565 + 0.0151652i 0.870370 0.492398i \(-0.163880\pi\)
−0.861614 + 0.507563i \(0.830546\pi\)
\(620\) −53.7477 −0.00348155
\(621\) 0 0
\(622\) −4125.29 −0.265931
\(623\) 10919.3 + 18912.7i 0.702200 + 1.21625i
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) −9247.96 + 16017.9i −0.590452 + 1.02269i
\(627\) 0 0
\(628\) −1343.58 2327.14i −0.0853734 0.147871i
\(629\) 93.5284 0.00592881
\(630\) 0 0
\(631\) −21240.2 −1.34003 −0.670016 0.742347i \(-0.733713\pi\)
−0.670016 + 0.742347i \(0.733713\pi\)
\(632\) −1807.10 3129.99i −0.113738 0.197001i
\(633\) 0 0
\(634\) 610.347 1057.15i 0.0382334 0.0662222i
\(635\) −2012.56 + 3485.86i −0.125773 + 0.217846i
\(636\) 0 0
\(637\) −24375.1 42218.9i −1.51613 2.62602i
\(638\) −22502.0 −1.39634
\(639\) 0 0
\(640\) 640.000 0.0395285
\(641\) −9605.43 16637.1i −0.591875 1.02516i −0.993980 0.109563i \(-0.965055\pi\)
0.402105 0.915593i \(-0.368279\pi\)
\(642\) 0 0
\(643\) −3865.54 + 6695.31i −0.237079 + 0.410633i −0.959875 0.280429i \(-0.909523\pi\)
0.722796 + 0.691062i \(0.242857\pi\)
\(644\) 9492.60 16441.7i 0.580840 1.00604i
\(645\) 0 0
\(646\) 397.199 + 687.969i 0.0241913 + 0.0419006i
\(647\) 23347.4 1.41867 0.709337 0.704870i \(-0.248995\pi\)
0.709337 + 0.704870i \(0.248995\pi\)
\(648\) 0 0
\(649\) −17856.4 −1.08001
\(650\) −2301.87 3986.96i −0.138903 0.240587i
\(651\) 0 0
\(652\) 5002.85 8665.19i 0.300501 0.520483i
\(653\) −3833.85 + 6640.43i −0.229755 + 0.397948i −0.957736 0.287650i \(-0.907126\pi\)
0.727980 + 0.685598i \(0.240459\pi\)
\(654\) 0 0
\(655\) −536.718 929.624i −0.0320173 0.0554556i
\(656\) −8019.60 −0.477306
\(657\) 0 0
\(658\) −28296.1 −1.67644
\(659\) 7336.80 + 12707.7i 0.433689 + 0.751171i 0.997188 0.0749456i \(-0.0238783\pi\)
−0.563499 + 0.826117i \(0.690545\pi\)
\(660\) 0 0
\(661\) −12723.5 + 22037.7i −0.748691 + 1.29677i 0.199759 + 0.979845i \(0.435984\pi\)
−0.948450 + 0.316926i \(0.897349\pi\)
\(662\) 2089.26 3618.71i 0.122661 0.212455i
\(663\) 0 0
\(664\) 1204.20 + 2085.73i 0.0703794 + 0.121901i
\(665\) −12928.2 −0.753885
\(666\) 0 0
\(667\) −38848.2 −2.25518
\(668\) −1503.30 2603.79i −0.0870724 0.150814i
\(669\) 0 0
\(670\) −2913.06 + 5045.57i −0.167972 + 0.290936i
\(671\) −3085.72 + 5344.63i −0.177531 + 0.307492i
\(672\) 0 0
\(673\) 6119.73 + 10599.7i 0.350518 + 0.607114i 0.986340 0.164721i \(-0.0526724\pi\)
−0.635823 + 0.771835i \(0.719339\pi\)
\(674\) −18852.7 −1.07742
\(675\) 0 0
\(676\) 25123.2 1.42940
\(677\) 5228.77 + 9056.49i 0.296836 + 0.514135i 0.975410 0.220397i \(-0.0707352\pi\)
−0.678574 + 0.734532i \(0.737402\pi\)
\(678\) 0 0
\(679\) −16927.0 + 29318.4i −0.956699 + 1.65705i
\(680\) 90.7495 157.183i 0.00511777 0.00886424i
\(681\) 0 0
\(682\) 125.064 + 216.617i 0.00702192 + 0.0121623i
\(683\) 304.720 0.0170714 0.00853572 0.999964i \(-0.497283\pi\)
0.00853572 + 0.999964i \(0.497283\pi\)
\(684\) 0 0
\(685\) 1838.99 0.102576
\(686\) 5507.63 + 9539.50i 0.306534 + 0.530933i
\(687\) 0 0
\(688\) −2357.50 + 4083.31i −0.130638 + 0.226271i
\(689\) 11190.6 19382.6i 0.618761 1.07173i
\(690\) 0 0
\(691\) 7468.88 + 12936.5i 0.411186 + 0.712196i 0.995020 0.0996778i \(-0.0317812\pi\)
−0.583833 + 0.811873i \(0.698448\pi\)
\(692\) 9497.10 0.521713
\(693\) 0 0
\(694\) −2442.45 −0.133594
\(695\) 3568.28 + 6180.44i 0.194752 + 0.337320i
\(696\) 0 0
\(697\) −1137.15 + 1969.60i −0.0617971 + 0.107036i
\(698\) 4188.29 7254.33i 0.227119 0.393381i
\(699\) 0 0
\(700\) 1476.87 + 2558.02i 0.0797437 + 0.138120i
\(701\) 13752.9 0.741000 0.370500 0.928832i \(-0.379186\pi\)
0.370500 + 0.928832i \(0.379186\pi\)
\(702\) 0 0
\(703\) −1804.36 −0.0968033
\(704\) −1489.20 2579.37i −0.0797249 0.138088i
\(705\) 0 0
\(706\) 4469.36 7741.17i 0.238253 0.412667i
\(707\) −7553.66 + 13083.3i −0.401817 + 0.695967i
\(708\) 0 0
\(709\) 15612.7 + 27042.1i 0.827008 + 1.43242i 0.900375 + 0.435115i \(0.143292\pi\)
−0.0733670 + 0.997305i \(0.523374\pi\)
\(710\) −5667.75 −0.299587
\(711\) 0 0
\(712\) 5914.79 0.311329
\(713\) 215.914 + 373.974i 0.0113409 + 0.0196430i
\(714\) 0 0
\(715\) −10712.3 + 18554.3i −0.560306 + 0.970478i
\(716\) 4849.05 8398.79i 0.253097 0.438377i
\(717\) 0 0
\(718\) 643.572 + 1114.70i 0.0334511 + 0.0579390i
\(719\) 13945.5 0.723337 0.361669 0.932307i \(-0.382207\pi\)
0.361669 + 0.932307i \(0.382207\pi\)
\(720\) 0 0
\(721\) −12450.4 −0.643103
\(722\) −803.810 1392.24i −0.0414331 0.0717642i
\(723\) 0 0
\(724\) −2358.92 + 4085.77i −0.121089 + 0.209733i
\(725\) 3022.03 5234.31i 0.154807 0.268134i
\(726\) 0 0
\(727\) 18792.6 + 32549.7i 0.958704 + 1.66052i 0.725655 + 0.688058i \(0.241537\pi\)
0.233048 + 0.972465i \(0.425130\pi\)
\(728\) −21757.3 −1.10766
\(729\) 0 0
\(730\) −8393.88 −0.425577
\(731\) 668.569 + 1157.99i 0.0338275 + 0.0585909i
\(732\) 0 0
\(733\) −1424.35 + 2467.05i −0.0717729 + 0.124314i −0.899678 0.436553i \(-0.856199\pi\)
0.827905 + 0.560868i \(0.189532\pi\)
\(734\) 5934.74 10279.3i 0.298440 0.516914i
\(735\) 0 0
\(736\) −2571.00 4453.10i −0.128761 0.223021i
\(737\) 27113.3 1.35513
\(738\) 0 0
\(739\) 1828.99 0.0910428 0.0455214 0.998963i \(-0.485505\pi\)
0.0455214 + 0.998963i \(0.485505\pi\)
\(740\) 206.124 + 357.018i 0.0102396 + 0.0177355i
\(741\) 0 0
\(742\) −7179.82 + 12435.8i −0.355228 + 0.615274i
\(743\) −16399.4 + 28404.6i −0.809740 + 1.40251i 0.103304 + 0.994650i \(0.467059\pi\)
−0.913044 + 0.407861i \(0.866275\pi\)
\(744\) 0 0
\(745\) 4394.34 + 7611.22i 0.216102 + 0.374300i
\(746\) −12375.7 −0.607379
\(747\) 0 0
\(748\) −844.651 −0.0412881
\(749\) −24213.3 41938.7i −1.18122 2.04594i
\(750\) 0 0
\(751\) 8112.61 14051.5i 0.394186 0.682749i −0.598811 0.800890i \(-0.704360\pi\)
0.992997 + 0.118141i \(0.0376934\pi\)
\(752\) −3831.90 + 6637.04i −0.185818 + 0.321846i
\(753\) 0 0
\(754\) 22260.3 + 38555.9i 1.07516 + 1.86223i
\(755\) −2688.88 −0.129614
\(756\) 0 0
\(757\) −14461.0 −0.694312 −0.347156 0.937807i \(-0.612853\pi\)
−0.347156 + 0.937807i \(0.612853\pi\)
\(758\) −10428.5 18062.7i −0.499712 0.865526i
\(759\) 0 0
\(760\) −1750.75 + 3032.39i −0.0835610 + 0.144732i
\(761\) −11030.3 + 19105.0i −0.525422 + 0.910058i 0.474139 + 0.880450i \(0.342759\pi\)
−0.999562 + 0.0296081i \(0.990574\pi\)
\(762\) 0 0
\(763\) −10197.4 17662.5i −0.483843 0.838041i
\(764\) −1377.90 −0.0652496
\(765\) 0 0
\(766\) −20493.4 −0.966652
\(767\) 17664.6 + 30596.0i 0.831592 + 1.44036i
\(768\) 0 0
\(769\) 837.871 1451.24i 0.0392905 0.0680532i −0.845711 0.533640i \(-0.820824\pi\)
0.885002 + 0.465587i \(0.154157\pi\)
\(770\) 6873.00 11904.4i 0.321670 0.557148i
\(771\) 0 0
\(772\) −3883.67 6726.72i −0.181058 0.313601i
\(773\) 10878.6 0.506179 0.253089 0.967443i \(-0.418553\pi\)
0.253089 + 0.967443i \(0.418553\pi\)
\(774\) 0 0
\(775\) −67.1846 −0.00311399
\(776\) 4584.55 + 7940.67i 0.212082 + 0.367337i
\(777\) 0 0
\(778\) 8508.48 14737.1i 0.392087 0.679115i
\(779\) 21938.0 37997.7i 1.00900 1.74764i
\(780\) 0 0
\(781\) 13188.1 + 22842.5i 0.604237 + 1.04657i
\(782\) −1458.23 −0.0666831
\(783\) 0 0
\(784\) 8471.40 0.385906
\(785\) −1679.47 2908.93i −0.0763603 0.132260i
\(786\) 0 0
\(787\) 13646.6 23636.6i 0.618105 1.07059i −0.371727 0.928342i \(-0.621234\pi\)
0.989831 0.142246i \(-0.0454326\pi\)
\(788\) 3561.90 6169.39i 0.161025 0.278903i
\(789\) 0 0
\(790\) −2258.88 3912.49i −0.101731 0.176203i
\(791\) −28658.4 −1.28821
\(792\) 0 0
\(793\) 12210.3 0.546784
\(794\) −3775.96 6540.16i −0.168771 0.292319i
\(795\) 0 0
\(796\) 1616.75 2800.29i 0.0719902 0.124691i
\(797\) −19462.7 + 33710.4i −0.865000 + 1.49822i 0.00204738 + 0.999998i \(0.499348\pi\)
−0.867047 + 0.498226i \(0.833985\pi\)
\(798\) 0 0
\(799\) 1086.70 + 1882.21i 0.0481158 + 0.0833391i
\(800\) 800.000 0.0353553
\(801\) 0 0
\(802\) 15112.0 0.665367
\(803\) 19531.5 + 33829.5i 0.858345 + 1.48670i
\(804\) 0 0
\(805\) 11865.7 20552.1i 0.519519 0.899833i
\(806\) 247.441 428.580i 0.0108136 0.0187296i
\(807\) 0 0
\(808\) 2045.85 + 3543.52i 0.0890752 + 0.154283i
\(809\) −22806.9 −0.991159 −0.495579 0.868563i \(-0.665044\pi\)
−0.495579 + 0.868563i \(0.665044\pi\)
\(810\) 0 0
\(811\) −42523.0 −1.84117 −0.920583 0.390547i \(-0.872286\pi\)
−0.920583 + 0.390547i \(0.872286\pi\)
\(812\) −14282.1 24737.3i −0.617246 1.06910i
\(813\) 0 0
\(814\) 959.250 1661.47i 0.0413043 0.0715412i
\(815\) 6253.56 10831.5i 0.268776 0.465534i
\(816\) 0 0
\(817\) −12898.1 22340.2i −0.552322 0.956650i
\(818\) 17926.4 0.766238
\(819\) 0 0
\(820\) −10024.5 −0.426915
\(821\) −16322.2 28270.9i −0.693848 1.20178i −0.970568 0.240829i \(-0.922581\pi\)
0.276720 0.960951i \(-0.410753\pi\)
\(822\) 0 0
\(823\) −2235.91 + 3872.70i −0.0947008 + 0.164027i −0.909484 0.415740i \(-0.863523\pi\)
0.814783 + 0.579766i \(0.196856\pi\)
\(824\) −1686.05 + 2920.32i −0.0712819 + 0.123464i
\(825\) 0 0
\(826\) −11333.5 19630.3i −0.477414 0.826906i
\(827\) 29667.5 1.24745 0.623725 0.781644i \(-0.285619\pi\)
0.623725 + 0.781644i \(0.285619\pi\)
\(828\) 0 0
\(829\) 5130.74 0.214955 0.107478 0.994207i \(-0.465723\pi\)
0.107478 + 0.994207i \(0.465723\pi\)
\(830\) 1505.25 + 2607.16i 0.0629492 + 0.109031i
\(831\) 0 0
\(832\) −2946.40 + 5103.31i −0.122774 + 0.212651i
\(833\) 1201.21 2080.56i 0.0499634 0.0865392i
\(834\) 0 0
\(835\) −1879.12 3254.74i −0.0778799 0.134892i
\(836\) 16295.1 0.674136
\(837\) 0 0
\(838\) −28307.6 −1.16691
\(839\) −12102.9 20962.9i −0.498021 0.862598i 0.501976 0.864881i \(-0.332606\pi\)
−0.999997 + 0.00228364i \(0.999273\pi\)
\(840\) 0 0
\(841\) −17030.0 + 29496.8i −0.698266 + 1.20943i
\(842\) 14727.3 25508.4i 0.602774 1.04404i
\(843\) 0 0
\(844\) −2446.07 4236.72i −0.0997598 0.172789i
\(845\) 31404.0 1.27850
\(846\) 0 0
\(847\) −24656.0 −1.00023
\(848\) 1944.60 + 3368.15i 0.0787474 + 0.136395i
\(849\) 0 0
\(850\) 113.437 196.478i 0.00457748 0.00792842i
\(851\) 1656.08 2868.41i 0.0667093 0.115544i
\(852\) 0 0
\(853\) −10921.6 18916.8i −0.438392 0.759317i 0.559174 0.829051i \(-0.311119\pi\)
−0.997566 + 0.0697332i \(0.977785\pi\)
\(854\) −7834.07 −0.313907
\(855\) 0 0
\(856\) −13116.0 −0.523710
\(857\) −1385.25 2399.33i −0.0552151 0.0956353i 0.837097 0.547055i \(-0.184251\pi\)
−0.892312 + 0.451420i \(0.850918\pi\)
\(858\) 0 0
\(859\) 9219.78 15969.1i 0.366211 0.634295i −0.622759 0.782414i \(-0.713988\pi\)
0.988970 + 0.148118i \(0.0473217\pi\)
\(860\) −2946.87 + 5104.14i −0.116846 + 0.202383i
\(861\) 0 0
\(862\) −3048.98 5280.98i −0.120474 0.208667i
\(863\) 22073.1 0.870659 0.435329 0.900271i \(-0.356632\pi\)
0.435329 + 0.900271i \(0.356632\pi\)
\(864\) 0 0
\(865\) 11871.4 0.466634
\(866\) −17218.4 29823.1i −0.675641 1.17024i
\(867\) 0 0
\(868\) −158.757 + 274.975i −0.00620802 + 0.0107526i
\(869\) −10512.2 + 18207.7i −0.410360 + 0.710765i
\(870\) 0 0
\(871\) −26822.0 46457.1i −1.04343 1.80728i
\(872\) −5523.80 −0.214518
\(873\) 0 0
\(874\) 28132.3 1.08878
\(875\) 1846.09 + 3197.53i 0.0713249 + 0.123538i
\(876\) 0 0
\(877\) 4223.34 7315.03i 0.162613 0.281655i −0.773192 0.634172i \(-0.781341\pi\)
0.935805 + 0.352518i \(0.114674\pi\)
\(878\) −1667.91 + 2888.90i −0.0641106 + 0.111043i
\(879\) 0 0
\(880\) −1861.50 3224.21i −0.0713081 0.123509i
\(881\) −16665.8 −0.637325 −0.318663 0.947868i \(-0.603234\pi\)
−0.318663 + 0.947868i \(0.603234\pi\)
\(882\) 0 0
\(883\) 37742.6 1.43844 0.719219 0.694784i \(-0.244500\pi\)
0.719219 + 0.694784i \(0.244500\pi\)
\(884\) 835.576 + 1447.26i 0.0317912 + 0.0550640i
\(885\) 0 0
\(886\) 9223.20 15975.1i 0.349729 0.605748i
\(887\) 9723.59 16841.7i 0.368079 0.637531i −0.621186 0.783663i \(-0.713349\pi\)
0.989265 + 0.146132i \(0.0466823\pi\)
\(888\) 0 0
\(889\) 11889.2 + 20592.7i 0.448538 + 0.776891i
\(890\) 7393.49 0.278461
\(891\) 0 0
\(892\) 4244.01 0.159305
\(893\) −20964.7 36311.9i −0.785617 1.36073i
\(894\) 0 0
\(895\) 6061.31 10498.5i 0.226377 0.392096i
\(896\) 1890.40 3274.27i 0.0704841 0.122082i
\(897\) 0 0
\(898\) 2636.18 + 4565.99i 0.0979625 + 0.169676i
\(899\) 649.708 0.0241034
\(900\) 0 0
\(901\) 1102.95 0.0407819
\(902\) 23325.7 + 40401.4i 0.861045 + 1.49137i
\(903\) 0 0
\(904\) −3880.95 + 6722.00i −0.142786 + 0.247313i
\(905\) −2948.65 + 5107.21i −0.108306 + 0.187591i
\(906\) 0 0
\(907\) −7714.45 13361.8i −0.282419 0.489164i 0.689561 0.724228i \(-0.257804\pi\)
−0.971980 + 0.235063i \(0.924470\pi\)
\(908\) −14292.3 −0.522364
\(909\) 0 0
\(910\) −27196.6 −0.990724
\(911\) −344.095 595.990i −0.0125141 0.0216751i 0.859701 0.510798i \(-0.170650\pi\)
−0.872215 + 0.489123i \(0.837317\pi\)
\(912\) 0 0
\(913\) 7005.04 12133.1i 0.253924 0.439810i
\(914\) 3859.67 6685.15i 0.139679 0.241931i
\(915\) 0 0
\(916\) −2003.65 3470.42i −0.0722734 0.125181i
\(917\) −6341.32 −0.228363
\(918\) 0 0
\(919\) 6809.05 0.244407 0.122203 0.992505i \(-0.461004\pi\)
0.122203 + 0.992505i \(0.461004\pi\)
\(920\) −3213.75 5566.37i −0.115168 0.199476i
\(921\) 0 0
\(922\) 6615.07 11457.6i 0.236286 0.409259i
\(923\) 26092.9 45194.2i 0.930507 1.61169i
\(924\) 0 0
\(925\) 257.655 + 446.272i 0.00915855 + 0.0158631i
\(926\) −35143.5 −1.24718
\(927\) 0 0
\(928\) −7736.39 −0.273663
\(929\) −23841.1 41294.0i −0.841982 1.45835i −0.888217 0.459424i \(-0.848056\pi\)
0.0462352 0.998931i \(-0.485278\pi\)
\(930\) 0 0
\(931\) −23173.9 + 40138.4i −0.815783 + 1.41298i
\(932\) 12164.8 21070.1i 0.427546 0.740531i
\(933\) 0 0
\(934\) 10076.8 + 17453.6i 0.353024 + 0.611455i
\(935\) −1055.81 −0.0369292
\(936\) 0 0
\(937\) −30516.3 −1.06395 −0.531977 0.846759i \(-0.678551\pi\)
−0.531977 + 0.846759i \(0.678551\pi\)
\(938\) 17208.9 + 29806.7i 0.599030 + 1.03755i
\(939\) 0 0
\(940\) −4789.87 + 8296.30i −0.166200 + 0.287868i
\(941\) −15674.4 + 27148.9i −0.543009 + 0.940519i 0.455720 + 0.890123i \(0.349382\pi\)
−0.998729 + 0.0503962i \(0.983952\pi\)
\(942\) 0 0
\(943\) 40270.3 + 69750.1i 1.39065 + 2.40867i
\(944\) −6139.20 −0.211667
\(945\) 0 0
\(946\) 27428.0 0.942666
\(947\) 17299.3 + 29963.3i 0.593614 + 1.02817i 0.993741 + 0.111709i \(0.0356326\pi\)
−0.400127 + 0.916460i \(0.631034\pi\)
\(948\) 0 0
\(949\) 38643.3 66932.1i 1.32183 2.28947i
\(950\) −2188.44 + 3790.48i −0.0747392 + 0.129452i
\(951\) 0 0
\(952\) −536.102 928.557i −0.0182512 0.0316121i
\(953\) −26766.7 −0.909820 −0.454910 0.890537i \(-0.650329\pi\)
−0.454910 + 0.890537i \(0.650329\pi\)
\(954\) 0 0
\(955\) −1722.38 −0.0583610
\(956\) −424.797 735.770i −0.0143713 0.0248917i
\(957\) 0 0
\(958\) −17945.8 + 31083.0i −0.605221 + 1.04827i
\(959\) 5431.93 9408.37i 0.182905 0.316801i
\(960\) 0 0
\(961\) 14891.9 + 25793.5i 0.499879 + 0.865815i
\(962\) −3795.78 −0.127215
\(963\) 0 0
\(964\) −11777.8 −0.393503
\(965\) −4854.59 8408.40i −0.161943 0.280493i
\(966\) 0 0
\(967\) −4382.13 + 7590.08i −0.145729 + 0.252410i −0.929645 0.368457i \(-0.879886\pi\)
0.783916 + 0.620867i \(0.213219\pi\)
\(968\) −3338.95 + 5783.23i −0.110866 + 0.192025i
\(969\) 0 0
\(970\) 5730.69 + 9925.84i 0.189692 + 0.328556i
\(971\) −35417.3 −1.17054 −0.585270 0.810838i \(-0.699012\pi\)
−0.585270 + 0.810838i \(0.699012\pi\)
\(972\) 0 0
\(973\) 42159.2 1.38907
\(974\) −17356.9 30063.0i −0.570996 0.988995i
\(975\) 0 0
\(976\) −1060.90 + 1837.53i −0.0347936 + 0.0602643i
\(977\) 13314.5 23061.4i 0.435997 0.755168i −0.561380 0.827558i \(-0.689729\pi\)
0.997376 + 0.0723900i \(0.0230626\pi\)
\(978\) 0 0
\(979\) −17203.7 29797.7i −0.561628 0.972767i
\(980\) 10589.3 0.345164
\(981\) 0 0
\(982\) 16786.3 0.545493
\(983\) −8404.59 14557.2i −0.272701 0.472332i 0.696852 0.717215i \(-0.254584\pi\)
−0.969552 + 0.244884i \(0.921250\pi\)
\(984\) 0 0
\(985\) 4452.38 7711.74i 0.144025 0.249458i
\(986\) −1096.99 + 1900.04i −0.0354313 + 0.0613689i
\(987\) 0 0
\(988\) −16120.0 27920.7i −0.519075 0.899064i
\(989\) 47352.5 1.52247
\(990\) 0 0
\(991\) 53758.7 1.72321 0.861606 0.507578i \(-0.169459\pi\)
0.861606 + 0.507578i \(0.169459\pi\)
\(992\) 42.9981 + 74.4749i 0.00137620 + 0.00238365i
\(993\) 0 0
\(994\) −16741.1 + 28996.4i −0.534201 + 0.925263i
\(995\) 2020.94 3500.37i 0.0643900 0.111527i
\(996\) 0 0
\(997\) −20787.6 36005.1i −0.660330 1.14372i −0.980529 0.196374i \(-0.937083\pi\)
0.320199 0.947350i \(-0.396250\pi\)
\(998\) 32842.3 1.04169
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.4.e.z.271.2 4
3.2 odd 2 810.4.e.bd.271.2 4
9.2 odd 6 810.4.e.bd.541.2 4
9.4 even 3 270.4.a.n.1.1 yes 2
9.5 odd 6 270.4.a.m.1.1 2
9.7 even 3 inner 810.4.e.z.541.2 4
36.23 even 6 2160.4.a.w.1.2 2
36.31 odd 6 2160.4.a.bb.1.2 2
45.4 even 6 1350.4.a.bf.1.2 2
45.13 odd 12 1350.4.c.bb.649.2 4
45.14 odd 6 1350.4.a.bm.1.2 2
45.22 odd 12 1350.4.c.bb.649.3 4
45.23 even 12 1350.4.c.u.649.4 4
45.32 even 12 1350.4.c.u.649.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.4.a.m.1.1 2 9.5 odd 6
270.4.a.n.1.1 yes 2 9.4 even 3
810.4.e.z.271.2 4 1.1 even 1 trivial
810.4.e.z.541.2 4 9.7 even 3 inner
810.4.e.bd.271.2 4 3.2 odd 2
810.4.e.bd.541.2 4 9.2 odd 6
1350.4.a.bf.1.2 2 45.4 even 6
1350.4.a.bm.1.2 2 45.14 odd 6
1350.4.c.u.649.1 4 45.32 even 12
1350.4.c.u.649.4 4 45.23 even 12
1350.4.c.bb.649.2 4 45.13 odd 12
1350.4.c.bb.649.3 4 45.22 odd 12
2160.4.a.w.1.2 2 36.23 even 6
2160.4.a.bb.1.2 2 36.31 odd 6