Properties

Label 810.4.e.bf.541.2
Level $810$
Weight $4$
Character 810.541
Analytic conductor $47.792$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [810,4,Mod(271,810)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("810.271"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(810, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,-8,10,0,26,-32,0,40,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 810.541
Dual form 810.4.e.bf.271.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(2.50000 + 4.33013i) q^{5} +(7.36603 - 12.7583i) q^{7} -8.00000 q^{8} +10.0000 q^{10} +(-18.5263 + 32.0885i) q^{11} +(3.26795 + 5.66025i) q^{13} +(-14.7321 - 25.5167i) q^{14} +(-8.00000 + 13.8564i) q^{16} -46.7987 q^{17} +8.71281 q^{19} +(10.0000 - 17.3205i) q^{20} +(37.0526 + 64.1769i) q^{22} +(-49.0526 - 84.9615i) q^{23} +(-12.5000 + 21.6506i) q^{25} +13.0718 q^{26} -58.9282 q^{28} +(-107.847 + 186.796i) q^{29} +(-9.55256 - 16.5455i) q^{31} +(16.0000 + 27.7128i) q^{32} +(-46.7987 + 81.0577i) q^{34} +73.6603 q^{35} -369.181 q^{37} +(8.71281 - 15.0910i) q^{38} +(-20.0000 - 34.6410i) q^{40} +(-91.5788 - 158.619i) q^{41} +(33.6199 - 58.2314i) q^{43} +148.210 q^{44} -196.210 q^{46} +(-58.3224 + 101.017i) q^{47} +(62.9833 + 109.090i) q^{49} +(25.0000 + 43.3013i) q^{50} +(13.0718 - 22.6410i) q^{52} -51.5551 q^{53} -185.263 q^{55} +(-58.9282 + 102.067i) q^{56} +(215.694 + 373.592i) q^{58} +(292.903 + 507.323i) q^{59} +(164.746 - 285.349i) q^{61} -38.2102 q^{62} +64.0000 q^{64} +(-16.3397 + 28.3013i) q^{65} +(-191.004 - 330.828i) q^{67} +(93.5974 + 162.115i) q^{68} +(73.6603 - 127.583i) q^{70} -332.065 q^{71} -817.458 q^{73} +(-369.181 + 639.440i) q^{74} +(-17.4256 - 30.1821i) q^{76} +(272.930 + 472.729i) q^{77} +(-311.865 + 540.167i) q^{79} -80.0000 q^{80} -366.315 q^{82} +(-505.804 + 876.079i) q^{83} +(-116.997 - 202.644i) q^{85} +(-67.2398 - 116.463i) q^{86} +(148.210 - 256.708i) q^{88} +670.765 q^{89} +96.2872 q^{91} +(-196.210 + 339.846i) q^{92} +(116.645 + 202.035i) q^{94} +(21.7820 + 37.7276i) q^{95} +(259.357 - 449.220i) q^{97} +251.933 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{4} + 10 q^{5} + 26 q^{7} - 32 q^{8} + 40 q^{10} - 36 q^{11} + 20 q^{13} - 52 q^{14} - 32 q^{16} + 180 q^{17} - 76 q^{19} + 40 q^{20} + 72 q^{22} - 120 q^{23} - 50 q^{25} + 80 q^{26}+ \cdots + 1368 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.353553 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 7.36603 12.7583i 0.397728 0.688885i −0.595717 0.803194i \(-0.703132\pi\)
0.993445 + 0.114309i \(0.0364654\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 10.0000 0.316228
\(11\) −18.5263 + 32.0885i −0.507808 + 0.879549i 0.492152 + 0.870510i \(0.336211\pi\)
−0.999959 + 0.00903901i \(0.997123\pi\)
\(12\) 0 0
\(13\) 3.26795 + 5.66025i 0.0697205 + 0.120759i 0.898778 0.438404i \(-0.144456\pi\)
−0.829058 + 0.559163i \(0.811123\pi\)
\(14\) −14.7321 25.5167i −0.281236 0.487115i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −46.7987 −0.667668 −0.333834 0.942632i \(-0.608342\pi\)
−0.333834 + 0.942632i \(0.608342\pi\)
\(18\) 0 0
\(19\) 8.71281 0.105203 0.0526015 0.998616i \(-0.483249\pi\)
0.0526015 + 0.998616i \(0.483249\pi\)
\(20\) 10.0000 17.3205i 0.111803 0.193649i
\(21\) 0 0
\(22\) 37.0526 + 64.1769i 0.359074 + 0.621935i
\(23\) −49.0526 84.9615i −0.444703 0.770248i 0.553329 0.832963i \(-0.313357\pi\)
−0.998031 + 0.0627151i \(0.980024\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 13.0718 0.0985996
\(27\) 0 0
\(28\) −58.9282 −0.397728
\(29\) −107.847 + 186.796i −0.690574 + 1.19611i 0.281076 + 0.959685i \(0.409309\pi\)
−0.971650 + 0.236424i \(0.924025\pi\)
\(30\) 0 0
\(31\) −9.55256 16.5455i −0.0553448 0.0958601i 0.837026 0.547164i \(-0.184292\pi\)
−0.892370 + 0.451304i \(0.850959\pi\)
\(32\) 16.0000 + 27.7128i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −46.7987 + 81.0577i −0.236056 + 0.408861i
\(35\) 73.6603 0.355739
\(36\) 0 0
\(37\) −369.181 −1.64035 −0.820175 0.572113i \(-0.806124\pi\)
−0.820175 + 0.572113i \(0.806124\pi\)
\(38\) 8.71281 15.0910i 0.0371949 0.0644234i
\(39\) 0 0
\(40\) −20.0000 34.6410i −0.0790569 0.136931i
\(41\) −91.5788 158.619i −0.348834 0.604199i 0.637208 0.770692i \(-0.280089\pi\)
−0.986043 + 0.166493i \(0.946756\pi\)
\(42\) 0 0
\(43\) 33.6199 58.2314i 0.119232 0.206516i −0.800231 0.599691i \(-0.795290\pi\)
0.919464 + 0.393175i \(0.128623\pi\)
\(44\) 148.210 0.507808
\(45\) 0 0
\(46\) −196.210 −0.628905
\(47\) −58.3224 + 101.017i −0.181004 + 0.313508i −0.942223 0.334987i \(-0.891268\pi\)
0.761219 + 0.648495i \(0.224601\pi\)
\(48\) 0 0
\(49\) 62.9833 + 109.090i 0.183625 + 0.318048i
\(50\) 25.0000 + 43.3013i 0.0707107 + 0.122474i
\(51\) 0 0
\(52\) 13.0718 22.6410i 0.0348602 0.0603797i
\(53\) −51.5551 −0.133616 −0.0668079 0.997766i \(-0.521281\pi\)
−0.0668079 + 0.997766i \(0.521281\pi\)
\(54\) 0 0
\(55\) −185.263 −0.454197
\(56\) −58.9282 + 102.067i −0.140618 + 0.243558i
\(57\) 0 0
\(58\) 215.694 + 373.592i 0.488310 + 0.845777i
\(59\) 292.903 + 507.323i 0.646318 + 1.11945i 0.983996 + 0.178193i \(0.0570252\pi\)
−0.337678 + 0.941262i \(0.609641\pi\)
\(60\) 0 0
\(61\) 164.746 285.349i 0.345796 0.598937i −0.639702 0.768623i \(-0.720942\pi\)
0.985498 + 0.169686i \(0.0542754\pi\)
\(62\) −38.2102 −0.0782694
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −16.3397 + 28.3013i −0.0311799 + 0.0540052i
\(66\) 0 0
\(67\) −191.004 330.828i −0.348281 0.603240i 0.637663 0.770315i \(-0.279901\pi\)
−0.985944 + 0.167075i \(0.946568\pi\)
\(68\) 93.5974 + 162.115i 0.166917 + 0.289109i
\(69\) 0 0
\(70\) 73.6603 127.583i 0.125773 0.217845i
\(71\) −332.065 −0.555055 −0.277527 0.960718i \(-0.589515\pi\)
−0.277527 + 0.960718i \(0.589515\pi\)
\(72\) 0 0
\(73\) −817.458 −1.31063 −0.655316 0.755355i \(-0.727465\pi\)
−0.655316 + 0.755355i \(0.727465\pi\)
\(74\) −369.181 + 639.440i −0.579951 + 1.00450i
\(75\) 0 0
\(76\) −17.4256 30.1821i −0.0263007 0.0455542i
\(77\) 272.930 + 472.729i 0.403939 + 0.699642i
\(78\) 0 0
\(79\) −311.865 + 540.167i −0.444147 + 0.769285i −0.997992 0.0633347i \(-0.979826\pi\)
0.553846 + 0.832619i \(0.313160\pi\)
\(80\) −80.0000 −0.111803
\(81\) 0 0
\(82\) −366.315 −0.493326
\(83\) −505.804 + 876.079i −0.668907 + 1.15858i 0.309304 + 0.950963i \(0.399904\pi\)
−0.978210 + 0.207617i \(0.933429\pi\)
\(84\) 0 0
\(85\) −116.997 202.644i −0.149295 0.258587i
\(86\) −67.2398 116.463i −0.0843099 0.146029i
\(87\) 0 0
\(88\) 148.210 256.708i 0.179537 0.310967i
\(89\) 670.765 0.798887 0.399444 0.916758i \(-0.369203\pi\)
0.399444 + 0.916758i \(0.369203\pi\)
\(90\) 0 0
\(91\) 96.2872 0.110919
\(92\) −196.210 + 339.846i −0.222351 + 0.385124i
\(93\) 0 0
\(94\) 116.645 + 202.035i 0.127989 + 0.221684i
\(95\) 21.7820 + 37.7276i 0.0235241 + 0.0407449i
\(96\) 0 0
\(97\) 259.357 449.220i 0.271482 0.470220i −0.697760 0.716332i \(-0.745820\pi\)
0.969241 + 0.246112i \(0.0791530\pi\)
\(98\) 251.933 0.259685
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) −746.418 + 1292.83i −0.735360 + 1.27368i 0.219205 + 0.975679i \(0.429654\pi\)
−0.954565 + 0.298003i \(0.903680\pi\)
\(102\) 0 0
\(103\) 149.904 + 259.641i 0.143403 + 0.248380i 0.928776 0.370642i \(-0.120862\pi\)
−0.785373 + 0.619022i \(0.787529\pi\)
\(104\) −26.1436 45.2820i −0.0246499 0.0426949i
\(105\) 0 0
\(106\) −51.5551 + 89.2961i −0.0472404 + 0.0818227i
\(107\) −2130.22 −1.92463 −0.962317 0.271929i \(-0.912339\pi\)
−0.962317 + 0.271929i \(0.912339\pi\)
\(108\) 0 0
\(109\) −1288.88 −1.13259 −0.566296 0.824202i \(-0.691624\pi\)
−0.566296 + 0.824202i \(0.691624\pi\)
\(110\) −185.263 + 320.885i −0.160583 + 0.278138i
\(111\) 0 0
\(112\) 117.856 + 204.133i 0.0994320 + 0.172221i
\(113\) 564.934 + 978.494i 0.470305 + 0.814593i 0.999423 0.0339555i \(-0.0108104\pi\)
−0.529118 + 0.848548i \(0.677477\pi\)
\(114\) 0 0
\(115\) 245.263 424.808i 0.198877 0.344465i
\(116\) 862.774 0.690574
\(117\) 0 0
\(118\) 1171.61 0.914031
\(119\) −344.720 + 597.073i −0.265550 + 0.459946i
\(120\) 0 0
\(121\) −20.9461 36.2796i −0.0157371 0.0272574i
\(122\) −329.492 570.697i −0.244515 0.423512i
\(123\) 0 0
\(124\) −38.2102 + 66.1821i −0.0276724 + 0.0479300i
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −1147.80 −0.801977 −0.400989 0.916083i \(-0.631333\pi\)
−0.400989 + 0.916083i \(0.631333\pi\)
\(128\) 64.0000 110.851i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 32.6795 + 56.6025i 0.0220475 + 0.0381875i
\(131\) 1221.48 + 2115.67i 0.814666 + 1.41104i 0.909568 + 0.415556i \(0.136413\pi\)
−0.0949022 + 0.995487i \(0.530254\pi\)
\(132\) 0 0
\(133\) 64.1788 111.161i 0.0418422 0.0724728i
\(134\) −764.015 −0.492544
\(135\) 0 0
\(136\) 374.390 0.236056
\(137\) 281.958 488.365i 0.175834 0.304554i −0.764615 0.644487i \(-0.777071\pi\)
0.940450 + 0.339933i \(0.110404\pi\)
\(138\) 0 0
\(139\) 515.208 + 892.366i 0.314384 + 0.544529i 0.979306 0.202384i \(-0.0648688\pi\)
−0.664923 + 0.746912i \(0.731535\pi\)
\(140\) −147.321 255.167i −0.0889347 0.154039i
\(141\) 0 0
\(142\) −332.065 + 575.154i −0.196242 + 0.339900i
\(143\) −242.172 −0.141618
\(144\) 0 0
\(145\) −1078.47 −0.617668
\(146\) −817.458 + 1415.88i −0.463379 + 0.802595i
\(147\) 0 0
\(148\) 738.361 + 1278.88i 0.410087 + 0.710292i
\(149\) 505.892 + 876.231i 0.278150 + 0.481769i 0.970925 0.239384i \(-0.0769456\pi\)
−0.692775 + 0.721154i \(0.743612\pi\)
\(150\) 0 0
\(151\) 1634.59 2831.20i 0.880935 1.52582i 0.0306324 0.999531i \(-0.490248\pi\)
0.850303 0.526294i \(-0.176419\pi\)
\(152\) −69.7025 −0.0371949
\(153\) 0 0
\(154\) 1091.72 0.571255
\(155\) 47.7628 82.7276i 0.0247510 0.0428699i
\(156\) 0 0
\(157\) 1327.35 + 2299.04i 0.674740 + 1.16868i 0.976545 + 0.215314i \(0.0690774\pi\)
−0.301805 + 0.953370i \(0.597589\pi\)
\(158\) 623.731 + 1080.33i 0.314059 + 0.543966i
\(159\) 0 0
\(160\) −80.0000 + 138.564i −0.0395285 + 0.0684653i
\(161\) −1445.29 −0.707483
\(162\) 0 0
\(163\) 2159.78 1.03783 0.518917 0.854825i \(-0.326335\pi\)
0.518917 + 0.854825i \(0.326335\pi\)
\(164\) −366.315 + 634.477i −0.174417 + 0.302099i
\(165\) 0 0
\(166\) 1011.61 + 1752.16i 0.472988 + 0.819240i
\(167\) 392.919 + 680.555i 0.182066 + 0.315347i 0.942584 0.333970i \(-0.108388\pi\)
−0.760518 + 0.649317i \(0.775055\pi\)
\(168\) 0 0
\(169\) 1077.14 1865.66i 0.490278 0.849187i
\(170\) −467.987 −0.211135
\(171\) 0 0
\(172\) −268.959 −0.119232
\(173\) 107.476 186.154i 0.0472326 0.0818092i −0.841443 0.540347i \(-0.818293\pi\)
0.888675 + 0.458537i \(0.151626\pi\)
\(174\) 0 0
\(175\) 184.151 + 318.958i 0.0795456 + 0.137777i
\(176\) −296.420 513.415i −0.126952 0.219887i
\(177\) 0 0
\(178\) 670.765 1161.80i 0.282449 0.489217i
\(179\) 56.5853 0.0236279 0.0118139 0.999930i \(-0.496239\pi\)
0.0118139 + 0.999930i \(0.496239\pi\)
\(180\) 0 0
\(181\) −28.3570 −0.0116451 −0.00582253 0.999983i \(-0.501853\pi\)
−0.00582253 + 0.999983i \(0.501853\pi\)
\(182\) 96.2872 166.774i 0.0392158 0.0679238i
\(183\) 0 0
\(184\) 392.420 + 679.692i 0.157226 + 0.272324i
\(185\) −922.952 1598.60i −0.366793 0.635305i
\(186\) 0 0
\(187\) 867.006 1501.70i 0.339047 0.587246i
\(188\) 466.579 0.181004
\(189\) 0 0
\(190\) 87.1281 0.0332681
\(191\) 634.172 1098.42i 0.240247 0.416119i −0.720538 0.693416i \(-0.756105\pi\)
0.960784 + 0.277296i \(0.0894383\pi\)
\(192\) 0 0
\(193\) −1668.84 2890.52i −0.622415 1.07805i −0.989035 0.147683i \(-0.952818\pi\)
0.366620 0.930371i \(-0.380515\pi\)
\(194\) −518.714 898.439i −0.191967 0.332496i
\(195\) 0 0
\(196\) 251.933 436.361i 0.0918124 0.159024i
\(197\) −1107.59 −0.400571 −0.200285 0.979738i \(-0.564187\pi\)
−0.200285 + 0.979738i \(0.564187\pi\)
\(198\) 0 0
\(199\) −2702.45 −0.962672 −0.481336 0.876536i \(-0.659848\pi\)
−0.481336 + 0.876536i \(0.659848\pi\)
\(200\) 100.000 173.205i 0.0353553 0.0612372i
\(201\) 0 0
\(202\) 1492.84 + 2585.67i 0.519978 + 0.900629i
\(203\) 1588.80 + 2751.89i 0.549321 + 0.951452i
\(204\) 0 0
\(205\) 457.894 793.096i 0.156004 0.270206i
\(206\) 599.615 0.202802
\(207\) 0 0
\(208\) −104.574 −0.0348602
\(209\) −161.416 + 279.581i −0.0534229 + 0.0925311i
\(210\) 0 0
\(211\) −1453.90 2518.23i −0.474363 0.821621i 0.525206 0.850975i \(-0.323988\pi\)
−0.999569 + 0.0293539i \(0.990655\pi\)
\(212\) 103.110 + 178.592i 0.0334040 + 0.0578574i
\(213\) 0 0
\(214\) −2130.22 + 3689.65i −0.680461 + 1.17859i
\(215\) 336.199 0.106645
\(216\) 0 0
\(217\) −281.458 −0.0880488
\(218\) −1288.88 + 2232.41i −0.400432 + 0.693568i
\(219\) 0 0
\(220\) 370.526 + 641.769i 0.113549 + 0.196673i
\(221\) −152.936 264.892i −0.0465501 0.0806271i
\(222\) 0 0
\(223\) 25.3431 43.8956i 0.00761033 0.0131815i −0.862195 0.506576i \(-0.830911\pi\)
0.869805 + 0.493395i \(0.164244\pi\)
\(224\) 471.426 0.140618
\(225\) 0 0
\(226\) 2259.74 0.665112
\(227\) 883.571 1530.39i 0.258347 0.447469i −0.707453 0.706761i \(-0.750156\pi\)
0.965799 + 0.259291i \(0.0834890\pi\)
\(228\) 0 0
\(229\) −3362.95 5824.80i −0.970436 1.68084i −0.694240 0.719743i \(-0.744260\pi\)
−0.276196 0.961101i \(-0.589074\pi\)
\(230\) −490.526 849.615i −0.140627 0.243574i
\(231\) 0 0
\(232\) 862.774 1494.37i 0.244155 0.422888i
\(233\) −5993.32 −1.68513 −0.842565 0.538594i \(-0.818956\pi\)
−0.842565 + 0.538594i \(0.818956\pi\)
\(234\) 0 0
\(235\) −583.224 −0.161895
\(236\) 1171.61 2029.29i 0.323159 0.559727i
\(237\) 0 0
\(238\) 689.441 + 1194.15i 0.187772 + 0.325231i
\(239\) 1644.24 + 2847.92i 0.445010 + 0.770780i 0.998053 0.0623731i \(-0.0198669\pi\)
−0.553043 + 0.833153i \(0.686534\pi\)
\(240\) 0 0
\(241\) 167.885 290.786i 0.0448732 0.0777227i −0.842716 0.538358i \(-0.819045\pi\)
0.887590 + 0.460635i \(0.152378\pi\)
\(242\) −83.7842 −0.0222556
\(243\) 0 0
\(244\) −1317.97 −0.345796
\(245\) −314.917 + 545.452i −0.0821196 + 0.142235i
\(246\) 0 0
\(247\) 28.4730 + 49.3167i 0.00733480 + 0.0127042i
\(248\) 76.4205 + 132.364i 0.0195674 + 0.0338917i
\(249\) 0 0
\(250\) −125.000 + 216.506i −0.0316228 + 0.0547723i
\(251\) 360.587 0.0906774 0.0453387 0.998972i \(-0.485563\pi\)
0.0453387 + 0.998972i \(0.485563\pi\)
\(252\) 0 0
\(253\) 3635.05 0.903294
\(254\) −1147.80 + 1988.05i −0.283542 + 0.491109i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) −2911.59 5043.02i −0.706693 1.22403i −0.966077 0.258254i \(-0.916853\pi\)
0.259384 0.965774i \(-0.416480\pi\)
\(258\) 0 0
\(259\) −2719.39 + 4710.13i −0.652413 + 1.13001i
\(260\) 130.718 0.0311799
\(261\) 0 0
\(262\) 4885.92 1.15211
\(263\) 2606.08 4513.87i 0.611019 1.05832i −0.380050 0.924966i \(-0.624093\pi\)
0.991069 0.133350i \(-0.0425734\pi\)
\(264\) 0 0
\(265\) −128.888 223.240i −0.0298774 0.0517492i
\(266\) −128.358 222.322i −0.0295869 0.0512460i
\(267\) 0 0
\(268\) −764.015 + 1323.31i −0.174140 + 0.301620i
\(269\) 4047.57 0.917415 0.458707 0.888587i \(-0.348313\pi\)
0.458707 + 0.888587i \(0.348313\pi\)
\(270\) 0 0
\(271\) 3004.68 0.673510 0.336755 0.941592i \(-0.390671\pi\)
0.336755 + 0.941592i \(0.390671\pi\)
\(272\) 374.390 648.462i 0.0834585 0.144554i
\(273\) 0 0
\(274\) −563.916 976.730i −0.124334 0.215352i
\(275\) −463.157 802.211i −0.101562 0.175910i
\(276\) 0 0
\(277\) 575.161 996.208i 0.124758 0.216088i −0.796880 0.604138i \(-0.793518\pi\)
0.921638 + 0.388050i \(0.126851\pi\)
\(278\) 2060.83 0.444606
\(279\) 0 0
\(280\) −589.282 −0.125773
\(281\) 1240.98 2149.45i 0.263455 0.456317i −0.703703 0.710495i \(-0.748471\pi\)
0.967158 + 0.254177i \(0.0818046\pi\)
\(282\) 0 0
\(283\) −382.137 661.881i −0.0802675 0.139027i 0.823097 0.567900i \(-0.192244\pi\)
−0.903365 + 0.428873i \(0.858911\pi\)
\(284\) 664.131 + 1150.31i 0.138764 + 0.240346i
\(285\) 0 0
\(286\) −242.172 + 419.454i −0.0500696 + 0.0867232i
\(287\) −2698.29 −0.554965
\(288\) 0 0
\(289\) −2722.88 −0.554220
\(290\) −1078.47 + 1867.96i −0.218379 + 0.378243i
\(291\) 0 0
\(292\) 1634.92 + 2831.76i 0.327658 + 0.567521i
\(293\) 1584.80 + 2744.95i 0.315989 + 0.547310i 0.979647 0.200726i \(-0.0643303\pi\)
−0.663658 + 0.748036i \(0.730997\pi\)
\(294\) 0 0
\(295\) −1464.52 + 2536.62i −0.289042 + 0.500635i
\(296\) 2953.45 0.579951
\(297\) 0 0
\(298\) 2023.57 0.393363
\(299\) 320.603 555.300i 0.0620098 0.107404i
\(300\) 0 0
\(301\) −495.290 857.867i −0.0948440 0.164275i
\(302\) −3269.18 5662.39i −0.622915 1.07892i
\(303\) 0 0
\(304\) −69.7025 + 120.728i −0.0131504 + 0.0227771i
\(305\) 1647.46 0.309290
\(306\) 0 0
\(307\) −7582.99 −1.40972 −0.704860 0.709347i \(-0.748990\pi\)
−0.704860 + 0.709347i \(0.748990\pi\)
\(308\) 1091.72 1890.92i 0.201969 0.349821i
\(309\) 0 0
\(310\) −95.5256 165.455i −0.0175016 0.0303136i
\(311\) 1059.58 + 1835.25i 0.193194 + 0.334621i 0.946307 0.323270i \(-0.104782\pi\)
−0.753113 + 0.657891i \(0.771449\pi\)
\(312\) 0 0
\(313\) 2017.20 3493.89i 0.364277 0.630946i −0.624383 0.781118i \(-0.714649\pi\)
0.988660 + 0.150172i \(0.0479828\pi\)
\(314\) 5309.40 0.954226
\(315\) 0 0
\(316\) 2494.92 0.444147
\(317\) −277.935 + 481.397i −0.0492440 + 0.0852932i −0.889597 0.456747i \(-0.849015\pi\)
0.840353 + 0.542040i \(0.182348\pi\)
\(318\) 0 0
\(319\) −3996.00 6921.27i −0.701357 1.21479i
\(320\) 160.000 + 277.128i 0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) −1445.29 + 2503.31i −0.250133 + 0.433243i
\(323\) −407.748 −0.0702406
\(324\) 0 0
\(325\) −163.397 −0.0278882
\(326\) 2159.78 3740.84i 0.366930 0.635541i
\(327\) 0 0
\(328\) 732.631 + 1268.95i 0.123332 + 0.213617i
\(329\) 859.208 + 1488.19i 0.143981 + 0.249382i
\(330\) 0 0
\(331\) −3219.31 + 5576.00i −0.534589 + 0.925936i 0.464594 + 0.885524i \(0.346200\pi\)
−0.999183 + 0.0404121i \(0.987133\pi\)
\(332\) 4046.43 0.668907
\(333\) 0 0
\(334\) 1571.68 0.257480
\(335\) 955.019 1654.14i 0.155756 0.269777i
\(336\) 0 0
\(337\) −195.337 338.333i −0.0315747 0.0546889i 0.849806 0.527095i \(-0.176719\pi\)
−0.881381 + 0.472406i \(0.843386\pi\)
\(338\) −2154.28 3731.33i −0.346679 0.600466i
\(339\) 0 0
\(340\) −467.987 + 810.577i −0.0746475 + 0.129293i
\(341\) 707.894 0.112418
\(342\) 0 0
\(343\) 6908.84 1.08759
\(344\) −268.959 + 465.851i −0.0421550 + 0.0730145i
\(345\) 0 0
\(346\) −214.952 372.307i −0.0333985 0.0578478i
\(347\) −3970.25 6876.68i −0.614220 1.06386i −0.990521 0.137363i \(-0.956137\pi\)
0.376300 0.926498i \(-0.377196\pi\)
\(348\) 0 0
\(349\) −5570.57 + 9648.51i −0.854400 + 1.47986i 0.0227998 + 0.999740i \(0.492742\pi\)
−0.877200 + 0.480125i \(0.840591\pi\)
\(350\) 736.603 0.112494
\(351\) 0 0
\(352\) −1185.68 −0.179537
\(353\) 5456.27 9450.54i 0.822686 1.42493i −0.0809890 0.996715i \(-0.525808\pi\)
0.903675 0.428219i \(-0.140859\pi\)
\(354\) 0 0
\(355\) −830.163 1437.88i −0.124114 0.214972i
\(356\) −1341.53 2323.60i −0.199722 0.345928i
\(357\) 0 0
\(358\) 56.5853 98.0087i 0.00835371 0.0144690i
\(359\) 13534.9 1.98982 0.994908 0.100784i \(-0.0321351\pi\)
0.994908 + 0.100784i \(0.0321351\pi\)
\(360\) 0 0
\(361\) −6783.09 −0.988932
\(362\) −28.3570 + 49.1157i −0.00411715 + 0.00713112i
\(363\) 0 0
\(364\) −192.574 333.549i −0.0277298 0.0480294i
\(365\) −2043.64 3539.70i −0.293066 0.507606i
\(366\) 0 0
\(367\) −901.642 + 1561.69i −0.128243 + 0.222124i −0.922996 0.384809i \(-0.874267\pi\)
0.794753 + 0.606933i \(0.207601\pi\)
\(368\) 1569.68 0.222351
\(369\) 0 0
\(370\) −3691.81 −0.518724
\(371\) −379.756 + 657.757i −0.0531428 + 0.0920460i
\(372\) 0 0
\(373\) −994.174 1721.96i −0.138006 0.239034i 0.788736 0.614733i \(-0.210736\pi\)
−0.926742 + 0.375699i \(0.877403\pi\)
\(374\) −1734.01 3003.40i −0.239742 0.415246i
\(375\) 0 0
\(376\) 466.579 808.139i 0.0639946 0.110842i
\(377\) −1409.75 −0.192589
\(378\) 0 0
\(379\) −10809.6 −1.46504 −0.732522 0.680743i \(-0.761657\pi\)
−0.732522 + 0.680743i \(0.761657\pi\)
\(380\) 87.1281 150.910i 0.0117620 0.0203725i
\(381\) 0 0
\(382\) −1268.34 2196.84i −0.169880 0.294241i
\(383\) −2723.27 4716.85i −0.363323 0.629294i 0.625182 0.780479i \(-0.285025\pi\)
−0.988506 + 0.151184i \(0.951691\pi\)
\(384\) 0 0
\(385\) −1364.65 + 2363.64i −0.180647 + 0.312889i
\(386\) −6675.38 −0.880227
\(387\) 0 0
\(388\) −2074.86 −0.271482
\(389\) −2389.81 + 4139.27i −0.311486 + 0.539509i −0.978684 0.205371i \(-0.934160\pi\)
0.667198 + 0.744880i \(0.267493\pi\)
\(390\) 0 0
\(391\) 2295.60 + 3976.09i 0.296914 + 0.514270i
\(392\) −503.867 872.723i −0.0649212 0.112447i
\(393\) 0 0
\(394\) −1107.59 + 1918.40i −0.141623 + 0.245299i
\(395\) −3118.65 −0.397257
\(396\) 0 0
\(397\) 11892.7 1.50347 0.751737 0.659463i \(-0.229216\pi\)
0.751737 + 0.659463i \(0.229216\pi\)
\(398\) −2702.45 + 4680.78i −0.340356 + 0.589514i
\(399\) 0 0
\(400\) −200.000 346.410i −0.0250000 0.0433013i
\(401\) −1602.23 2775.14i −0.199530 0.345596i 0.748846 0.662744i \(-0.230608\pi\)
−0.948376 + 0.317148i \(0.897275\pi\)
\(402\) 0 0
\(403\) 62.4346 108.140i 0.00771734 0.0133668i
\(404\) 5971.35 0.735360
\(405\) 0 0
\(406\) 6355.22 0.776857
\(407\) 6839.54 11846.4i 0.832982 1.44277i
\(408\) 0 0
\(409\) −7652.31 13254.2i −0.925140 1.60239i −0.791336 0.611382i \(-0.790614\pi\)
−0.133805 0.991008i \(-0.542719\pi\)
\(410\) −915.788 1586.19i −0.110311 0.191064i
\(411\) 0 0
\(412\) 599.615 1038.56i 0.0717013 0.124190i
\(413\) 8630.13 1.02823
\(414\) 0 0
\(415\) −5058.04 −0.598288
\(416\) −104.574 + 181.128i −0.0123250 + 0.0213474i
\(417\) 0 0
\(418\) 322.832 + 559.161i 0.0377757 + 0.0654294i
\(419\) −6626.55 11477.5i −0.772621 1.33822i −0.936122 0.351676i \(-0.885612\pi\)
0.163501 0.986543i \(-0.447721\pi\)
\(420\) 0 0
\(421\) 4718.63 8172.91i 0.546252 0.946136i −0.452275 0.891878i \(-0.649388\pi\)
0.998527 0.0542573i \(-0.0172791\pi\)
\(422\) −5815.60 −0.670851
\(423\) 0 0
\(424\) 412.441 0.0472404
\(425\) 584.984 1013.22i 0.0667668 0.115643i
\(426\) 0 0
\(427\) −2427.05 4203.77i −0.275066 0.476428i
\(428\) 4260.44 + 7379.29i 0.481159 + 0.833391i
\(429\) 0 0
\(430\) 336.199 582.314i 0.0377045 0.0653062i
\(431\) −8049.50 −0.899608 −0.449804 0.893127i \(-0.648506\pi\)
−0.449804 + 0.893127i \(0.648506\pi\)
\(432\) 0 0
\(433\) 16268.1 1.80554 0.902768 0.430129i \(-0.141532\pi\)
0.902768 + 0.430129i \(0.141532\pi\)
\(434\) −281.458 + 487.499i −0.0311299 + 0.0539186i
\(435\) 0 0
\(436\) 2577.76 + 4464.82i 0.283148 + 0.490427i
\(437\) −427.386 740.254i −0.0467841 0.0810324i
\(438\) 0 0
\(439\) −6765.96 + 11719.0i −0.735585 + 1.27407i 0.218882 + 0.975751i \(0.429759\pi\)
−0.954466 + 0.298319i \(0.903574\pi\)
\(440\) 1482.10 0.160583
\(441\) 0 0
\(442\) −611.743 −0.0658318
\(443\) 6828.46 11827.2i 0.732347 1.26846i −0.223530 0.974697i \(-0.571758\pi\)
0.955877 0.293766i \(-0.0949086\pi\)
\(444\) 0 0
\(445\) 1676.91 + 2904.50i 0.178637 + 0.309408i
\(446\) −50.6863 87.7912i −0.00538131 0.00932071i
\(447\) 0 0
\(448\) 471.426 816.533i 0.0497160 0.0861106i
\(449\) 754.853 0.0793402 0.0396701 0.999213i \(-0.487369\pi\)
0.0396701 + 0.999213i \(0.487369\pi\)
\(450\) 0 0
\(451\) 6786.46 0.708563
\(452\) 2259.74 3913.98i 0.235153 0.407296i
\(453\) 0 0
\(454\) −1767.14 3060.78i −0.182679 0.316409i
\(455\) 240.718 + 416.936i 0.0248023 + 0.0429588i
\(456\) 0 0
\(457\) 5936.95 10283.1i 0.607699 1.05257i −0.383919 0.923367i \(-0.625426\pi\)
0.991619 0.129200i \(-0.0412408\pi\)
\(458\) −13451.8 −1.37240
\(459\) 0 0
\(460\) −1962.10 −0.198877
\(461\) 4098.55 7098.90i 0.414075 0.717199i −0.581256 0.813721i \(-0.697438\pi\)
0.995331 + 0.0965218i \(0.0307718\pi\)
\(462\) 0 0
\(463\) 96.3572 + 166.896i 0.00967192 + 0.0167523i 0.870821 0.491600i \(-0.163588\pi\)
−0.861149 + 0.508353i \(0.830255\pi\)
\(464\) −1725.55 2988.74i −0.172643 0.299027i
\(465\) 0 0
\(466\) −5993.32 + 10380.7i −0.595784 + 1.03193i
\(467\) −5254.00 −0.520613 −0.260306 0.965526i \(-0.583824\pi\)
−0.260306 + 0.965526i \(0.583824\pi\)
\(468\) 0 0
\(469\) −5627.75 −0.554084
\(470\) −583.224 + 1010.17i −0.0572385 + 0.0991401i
\(471\) 0 0
\(472\) −2343.22 4058.58i −0.228508 0.395787i
\(473\) 1245.70 + 2157.62i 0.121094 + 0.209741i
\(474\) 0 0
\(475\) −108.910 + 188.638i −0.0105203 + 0.0182217i
\(476\) 2757.76 0.265550
\(477\) 0 0
\(478\) 6576.98 0.629339
\(479\) −7626.31 + 13209.2i −0.727463 + 1.26000i 0.230489 + 0.973075i \(0.425968\pi\)
−0.957952 + 0.286928i \(0.907366\pi\)
\(480\) 0 0
\(481\) −1206.46 2089.66i −0.114366 0.198088i
\(482\) −335.771 581.572i −0.0317302 0.0549583i
\(483\) 0 0
\(484\) −83.7842 + 145.119i −0.00786854 + 0.0136287i
\(485\) 2593.57 0.242821
\(486\) 0 0
\(487\) −11485.1 −1.06867 −0.534333 0.845274i \(-0.679437\pi\)
−0.534333 + 0.845274i \(0.679437\pi\)
\(488\) −1317.97 + 2282.79i −0.122257 + 0.211756i
\(489\) 0 0
\(490\) 629.833 + 1090.90i 0.0580673 + 0.100575i
\(491\) 6944.60 + 12028.4i 0.638301 + 1.10557i 0.985806 + 0.167891i \(0.0536956\pi\)
−0.347505 + 0.937678i \(0.612971\pi\)
\(492\) 0 0
\(493\) 5047.09 8741.81i 0.461074 0.798603i
\(494\) 113.892 0.0103730
\(495\) 0 0
\(496\) 305.682 0.0276724
\(497\) −2446.00 + 4236.60i −0.220761 + 0.382369i
\(498\) 0 0
\(499\) 9974.98 + 17277.2i 0.894873 + 1.54997i 0.833962 + 0.551822i \(0.186067\pi\)
0.0609111 + 0.998143i \(0.480599\pi\)
\(500\) 250.000 + 433.013i 0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) 360.587 624.554i 0.0320593 0.0555283i
\(503\) −978.744 −0.0867595 −0.0433797 0.999059i \(-0.513813\pi\)
−0.0433797 + 0.999059i \(0.513813\pi\)
\(504\) 0 0
\(505\) −7464.18 −0.657726
\(506\) 3635.05 6296.08i 0.319363 0.553152i
\(507\) 0 0
\(508\) 2295.61 + 3976.11i 0.200494 + 0.347266i
\(509\) −5567.91 9643.90i −0.484859 0.839800i 0.514990 0.857196i \(-0.327796\pi\)
−0.999849 + 0.0173960i \(0.994462\pi\)
\(510\) 0 0
\(511\) −6021.41 + 10429.4i −0.521275 + 0.902875i
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −11646.4 −0.999414
\(515\) −749.519 + 1298.21i −0.0641316 + 0.111079i
\(516\) 0 0
\(517\) −2160.99 3742.95i −0.183831 0.318404i
\(518\) 5438.79 + 9420.26i 0.461326 + 0.799039i
\(519\) 0 0
\(520\) 130.718 226.410i 0.0110238 0.0190937i
\(521\) −1429.84 −0.120235 −0.0601174 0.998191i \(-0.519148\pi\)
−0.0601174 + 0.998191i \(0.519148\pi\)
\(522\) 0 0
\(523\) 11997.2 1.00306 0.501529 0.865141i \(-0.332771\pi\)
0.501529 + 0.865141i \(0.332771\pi\)
\(524\) 4885.92 8462.66i 0.407333 0.705521i
\(525\) 0 0
\(526\) −5212.17 9027.74i −0.432056 0.748342i
\(527\) 447.047 + 774.309i 0.0369520 + 0.0640027i
\(528\) 0 0
\(529\) 1271.19 2201.77i 0.104479 0.180963i
\(530\) −515.551 −0.0422531
\(531\) 0 0
\(532\) −513.430 −0.0418422
\(533\) 598.550 1036.72i 0.0486418 0.0842501i
\(534\) 0 0
\(535\) −5325.54 9224.11i −0.430361 0.745408i
\(536\) 1528.03 + 2646.63i 0.123136 + 0.213278i
\(537\) 0 0
\(538\) 4047.57 7010.59i 0.324355 0.561799i
\(539\) −4667.39 −0.372984
\(540\) 0 0
\(541\) 13340.1 1.06014 0.530070 0.847954i \(-0.322166\pi\)
0.530070 + 0.847954i \(0.322166\pi\)
\(542\) 3004.68 5204.25i 0.238122 0.412439i
\(543\) 0 0
\(544\) −748.779 1296.92i −0.0590140 0.102215i
\(545\) −3222.20 5581.02i −0.253255 0.438651i
\(546\) 0 0
\(547\) 5363.18 9289.29i 0.419219 0.726109i −0.576642 0.816997i \(-0.695637\pi\)
0.995861 + 0.0908881i \(0.0289706\pi\)
\(548\) −2255.66 −0.175834
\(549\) 0 0
\(550\) −1852.63 −0.143630
\(551\) −939.649 + 1627.52i −0.0726504 + 0.125834i
\(552\) 0 0
\(553\) 4594.42 + 7957.76i 0.353299 + 0.611932i
\(554\) −1150.32 1992.42i −0.0882175 0.152797i
\(555\) 0 0
\(556\) 2060.83 3569.46i 0.157192 0.272264i
\(557\) 16993.1 1.29268 0.646338 0.763052i \(-0.276300\pi\)
0.646338 + 0.763052i \(0.276300\pi\)
\(558\) 0 0
\(559\) 439.472 0.0332517
\(560\) −589.282 + 1020.67i −0.0444673 + 0.0770197i
\(561\) 0 0
\(562\) −2481.97 4298.89i −0.186291 0.322665i
\(563\) 12960.2 + 22447.7i 0.970171 + 1.68039i 0.695028 + 0.718982i \(0.255392\pi\)
0.275143 + 0.961403i \(0.411275\pi\)
\(564\) 0 0
\(565\) −2824.67 + 4892.47i −0.210327 + 0.364297i
\(566\) −1528.55 −0.113515
\(567\) 0 0
\(568\) 2656.52 0.196242
\(569\) −5183.52 + 8978.12i −0.381906 + 0.661481i −0.991335 0.131360i \(-0.958066\pi\)
0.609429 + 0.792841i \(0.291399\pi\)
\(570\) 0 0
\(571\) 8391.71 + 14534.9i 0.615030 + 1.06526i 0.990379 + 0.138380i \(0.0441895\pi\)
−0.375349 + 0.926884i \(0.622477\pi\)
\(572\) 484.344 + 838.908i 0.0354046 + 0.0613225i
\(573\) 0 0
\(574\) −2698.29 + 4673.57i −0.196210 + 0.339845i
\(575\) 2452.63 0.177881
\(576\) 0 0
\(577\) 3580.35 0.258323 0.129161 0.991624i \(-0.458772\pi\)
0.129161 + 0.991624i \(0.458772\pi\)
\(578\) −2722.88 + 4716.17i −0.195946 + 0.339389i
\(579\) 0 0
\(580\) 2156.94 + 3735.92i 0.154417 + 0.267458i
\(581\) 7451.54 + 12906.4i 0.532086 + 0.921599i
\(582\) 0 0
\(583\) 955.125 1654.32i 0.0678512 0.117522i
\(584\) 6539.66 0.463379
\(585\) 0 0
\(586\) 6339.19 0.446877
\(587\) −6503.27 + 11264.0i −0.457272 + 0.792018i −0.998816 0.0486543i \(-0.984507\pi\)
0.541544 + 0.840673i \(0.317840\pi\)
\(588\) 0 0
\(589\) −83.2297 144.158i −0.00582244 0.0100848i
\(590\) 2929.03 + 5073.23i 0.204384 + 0.354003i
\(591\) 0 0
\(592\) 2953.45 5115.52i 0.205044 0.355146i
\(593\) 2996.59 0.207513 0.103757 0.994603i \(-0.466914\pi\)
0.103757 + 0.994603i \(0.466914\pi\)
\(594\) 0 0
\(595\) −3447.20 −0.237515
\(596\) 2023.57 3504.92i 0.139075 0.240885i
\(597\) 0 0
\(598\) −641.205 1110.60i −0.0438475 0.0759462i
\(599\) −5808.70 10061.0i −0.396222 0.686277i 0.597034 0.802216i \(-0.296346\pi\)
−0.993256 + 0.115939i \(0.963012\pi\)
\(600\) 0 0
\(601\) 13223.2 22903.3i 0.897483 1.55449i 0.0667820 0.997768i \(-0.478727\pi\)
0.830701 0.556719i \(-0.187940\pi\)
\(602\) −1981.16 −0.134130
\(603\) 0 0
\(604\) −13076.7 −0.880935
\(605\) 104.730 181.398i 0.00703784 0.0121899i
\(606\) 0 0
\(607\) 10007.7 + 17333.8i 0.669193 + 1.15908i 0.978130 + 0.207993i \(0.0666932\pi\)
−0.308938 + 0.951082i \(0.599973\pi\)
\(608\) 139.405 + 241.457i 0.00929872 + 0.0161058i
\(609\) 0 0
\(610\) 1647.46 2853.49i 0.109350 0.189400i
\(611\) −762.378 −0.0504788
\(612\) 0 0
\(613\) 25246.4 1.66344 0.831722 0.555193i \(-0.187356\pi\)
0.831722 + 0.555193i \(0.187356\pi\)
\(614\) −7582.99 + 13134.1i −0.498411 + 0.863274i
\(615\) 0 0
\(616\) −2183.44 3781.83i −0.142814 0.247361i
\(617\) 10100.3 + 17494.1i 0.659029 + 1.14147i 0.980867 + 0.194677i \(0.0623658\pi\)
−0.321839 + 0.946795i \(0.604301\pi\)
\(618\) 0 0
\(619\) −5815.74 + 10073.2i −0.377632 + 0.654079i −0.990717 0.135938i \(-0.956595\pi\)
0.613085 + 0.790017i \(0.289928\pi\)
\(620\) −382.102 −0.0247510
\(621\) 0 0
\(622\) 4238.32 0.273217
\(623\) 4940.87 8557.85i 0.317740 0.550342i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) −4034.39 6987.77i −0.257583 0.446146i
\(627\) 0 0
\(628\) 5309.40 9196.15i 0.337370 0.584342i
\(629\) 17277.2 1.09521
\(630\) 0 0
\(631\) 3857.24 0.243351 0.121675 0.992570i \(-0.461173\pi\)
0.121675 + 0.992570i \(0.461173\pi\)
\(632\) 2494.92 4321.33i 0.157030 0.271983i
\(633\) 0 0
\(634\) 555.869 + 962.794i 0.0348208 + 0.0603114i
\(635\) −2869.51 4970.14i −0.179328 0.310604i
\(636\) 0 0
\(637\) −411.653 + 713.003i −0.0256048 + 0.0443489i
\(638\) −15984.0 −0.991869
\(639\) 0 0
\(640\) 640.000 0.0395285
\(641\) −9263.70 + 16045.2i −0.570818 + 0.988685i 0.425665 + 0.904881i \(0.360040\pi\)
−0.996482 + 0.0838040i \(0.973293\pi\)
\(642\) 0 0
\(643\) 10774.9 + 18662.7i 0.660842 + 1.14461i 0.980395 + 0.197044i \(0.0631341\pi\)
−0.319552 + 0.947569i \(0.603533\pi\)
\(644\) 2890.58 + 5006.63i 0.176871 + 0.306349i
\(645\) 0 0
\(646\) −407.748 + 706.241i −0.0248338 + 0.0430134i
\(647\) −28952.4 −1.75925 −0.879627 0.475664i \(-0.842208\pi\)
−0.879627 + 0.475664i \(0.842208\pi\)
\(648\) 0 0
\(649\) −21705.6 −1.31282
\(650\) −163.397 + 283.013i −0.00985996 + 0.0170780i
\(651\) 0 0
\(652\) −4319.56 7481.69i −0.259458 0.449395i
\(653\) −6232.62 10795.2i −0.373509 0.646936i 0.616594 0.787282i \(-0.288512\pi\)
−0.990103 + 0.140345i \(0.955179\pi\)
\(654\) 0 0
\(655\) −6107.40 + 10578.3i −0.364330 + 0.631037i
\(656\) 2930.52 0.174417
\(657\) 0 0
\(658\) 3436.83 0.203620
\(659\) −8102.37 + 14033.7i −0.478943 + 0.829554i −0.999708 0.0241459i \(-0.992313\pi\)
0.520765 + 0.853700i \(0.325647\pi\)
\(660\) 0 0
\(661\) 14262.1 + 24702.7i 0.839231 + 1.45359i 0.890538 + 0.454908i \(0.150328\pi\)
−0.0513071 + 0.998683i \(0.516339\pi\)
\(662\) 6438.61 + 11152.0i 0.378012 + 0.654736i
\(663\) 0 0
\(664\) 4046.43 7008.63i 0.236494 0.409620i
\(665\) 641.788 0.0374248
\(666\) 0 0
\(667\) 21160.6 1.22840
\(668\) 1571.68 2722.22i 0.0910328 0.157673i
\(669\) 0 0
\(670\) −1910.04 3308.28i −0.110136 0.190761i
\(671\) 6104.27 + 10572.9i 0.351196 + 0.608289i
\(672\) 0 0
\(673\) 3314.19 5740.35i 0.189826 0.328788i −0.755366 0.655303i \(-0.772541\pi\)
0.945192 + 0.326515i \(0.105874\pi\)
\(674\) −781.346 −0.0446533
\(675\) 0 0
\(676\) −8617.13 −0.490278
\(677\) −11813.3 + 20461.2i −0.670637 + 1.16158i 0.307086 + 0.951682i \(0.400646\pi\)
−0.977724 + 0.209896i \(0.932687\pi\)
\(678\) 0 0
\(679\) −3820.86 6617.93i −0.215952 0.374039i
\(680\) 935.974 + 1621.15i 0.0527838 + 0.0914242i
\(681\) 0 0
\(682\) 707.894 1226.11i 0.0397458 0.0688418i
\(683\) −22943.8 −1.28539 −0.642693 0.766124i \(-0.722183\pi\)
−0.642693 + 0.766124i \(0.722183\pi\)
\(684\) 0 0
\(685\) 2819.58 0.157271
\(686\) 6908.84 11966.5i 0.384520 0.666008i
\(687\) 0 0
\(688\) 537.918 + 931.702i 0.0298081 + 0.0516291i
\(689\) −168.480 291.815i −0.00931576 0.0161354i
\(690\) 0 0
\(691\) 8859.93 15345.8i 0.487768 0.844839i −0.512133 0.858906i \(-0.671145\pi\)
0.999901 + 0.0140673i \(0.00447790\pi\)
\(692\) −859.806 −0.0472326
\(693\) 0 0
\(694\) −15881.0 −0.868639
\(695\) −2576.04 + 4461.83i −0.140597 + 0.243521i
\(696\) 0 0
\(697\) 4285.77 + 7423.17i 0.232905 + 0.403404i
\(698\) 11141.1 + 19297.0i 0.604152 + 1.04642i
\(699\) 0 0
\(700\) 736.603 1275.83i 0.0397728 0.0688885i
\(701\) −27863.4 −1.50126 −0.750632 0.660721i \(-0.770251\pi\)
−0.750632 + 0.660721i \(0.770251\pi\)
\(702\) 0 0
\(703\) −3216.60 −0.172570
\(704\) −1185.68 + 2053.66i −0.0634759 + 0.109944i
\(705\) 0 0
\(706\) −10912.5 18901.1i −0.581727 1.00758i
\(707\) 10996.3 + 19046.1i 0.584947 + 1.01316i
\(708\) 0 0
\(709\) −2481.96 + 4298.88i −0.131470 + 0.227712i −0.924243 0.381804i \(-0.875303\pi\)
0.792774 + 0.609516i \(0.208636\pi\)
\(710\) −3320.65 −0.175524
\(711\) 0 0
\(712\) −5366.12 −0.282449
\(713\) −937.155 + 1623.20i −0.0492240 + 0.0852585i
\(714\) 0 0
\(715\) −605.429 1048.63i −0.0316668 0.0548485i
\(716\) −113.171 196.017i −0.00590696 0.0102312i
\(717\) 0 0
\(718\) 13534.9 23443.1i 0.703506 1.21851i
\(719\) −2419.94 −0.125519 −0.0627597 0.998029i \(-0.519990\pi\)
−0.0627597 + 0.998029i \(0.519990\pi\)
\(720\) 0 0
\(721\) 4416.78 0.228141
\(722\) −6783.09 + 11748.7i −0.349640 + 0.605595i
\(723\) 0 0
\(724\) 56.7139 + 98.2314i 0.00291127 + 0.00504246i
\(725\) −2696.17 4669.90i −0.138115 0.239222i
\(726\) 0 0
\(727\) −8556.38 + 14820.1i −0.436504 + 0.756047i −0.997417 0.0718275i \(-0.977117\pi\)
0.560913 + 0.827875i \(0.310450\pi\)
\(728\) −770.297 −0.0392158
\(729\) 0 0
\(730\) −8174.58 −0.414458
\(731\) −1573.37 + 2725.15i −0.0796075 + 0.137884i
\(732\) 0 0
\(733\) −7131.45 12352.0i −0.359353 0.622418i 0.628500 0.777810i \(-0.283669\pi\)
−0.987853 + 0.155392i \(0.950336\pi\)
\(734\) 1803.28 + 3123.38i 0.0906818 + 0.157065i
\(735\) 0 0
\(736\) 1569.68 2718.77i 0.0786131 0.136162i
\(737\) 14154.4 0.707439
\(738\) 0 0
\(739\) −37374.6 −1.86041 −0.930207 0.367036i \(-0.880373\pi\)
−0.930207 + 0.367036i \(0.880373\pi\)
\(740\) −3691.81 + 6394.40i −0.183397 + 0.317652i
\(741\) 0 0
\(742\) 759.513 + 1315.51i 0.0375776 + 0.0650863i
\(743\) −12971.9 22468.0i −0.640502 1.10938i −0.985321 0.170712i \(-0.945393\pi\)
0.344819 0.938669i \(-0.387940\pi\)
\(744\) 0 0
\(745\) −2529.46 + 4381.15i −0.124392 + 0.215454i
\(746\) −3976.70 −0.195170
\(747\) 0 0
\(748\) −6936.05 −0.339047
\(749\) −15691.2 + 27178.0i −0.765481 + 1.32585i
\(750\) 0 0
\(751\) 12218.1 + 21162.4i 0.593669 + 1.02827i 0.993733 + 0.111778i \(0.0356546\pi\)
−0.400064 + 0.916487i \(0.631012\pi\)
\(752\) −933.158 1616.28i −0.0452510 0.0783771i
\(753\) 0 0
\(754\) −1409.75 + 2441.76i −0.0680903 + 0.117936i
\(755\) 16345.9 0.787932
\(756\) 0 0
\(757\) −11000.0 −0.528141 −0.264070 0.964503i \(-0.585065\pi\)
−0.264070 + 0.964503i \(0.585065\pi\)
\(758\) −10809.6 + 18722.8i −0.517971 + 0.897153i
\(759\) 0 0
\(760\) −174.256 301.821i −0.00831702 0.0144055i
\(761\) −9872.38 17099.5i −0.470268 0.814527i 0.529154 0.848526i \(-0.322509\pi\)
−0.999422 + 0.0339984i \(0.989176\pi\)
\(762\) 0 0
\(763\) −9493.94 + 16444.0i −0.450463 + 0.780225i
\(764\) −5073.38 −0.240247
\(765\) 0 0
\(766\) −10893.1 −0.513817
\(767\) −1914.39 + 3315.81i −0.0901231 + 0.156098i
\(768\) 0 0
\(769\) −4080.51 7067.64i −0.191348 0.331425i 0.754349 0.656474i \(-0.227953\pi\)
−0.945697 + 0.325049i \(0.894619\pi\)
\(770\) 2729.30 + 4727.29i 0.127737 + 0.221246i
\(771\) 0 0
\(772\) −6675.38 + 11562.1i −0.311207 + 0.539027i
\(773\) −5138.20 −0.239079 −0.119540 0.992829i \(-0.538142\pi\)
−0.119540 + 0.992829i \(0.538142\pi\)
\(774\) 0 0
\(775\) 477.628 0.0221379
\(776\) −2074.86 + 3593.76i −0.0959833 + 0.166248i
\(777\) 0 0
\(778\) 4779.61 + 8278.53i 0.220254 + 0.381491i
\(779\) −797.909 1382.02i −0.0366984 0.0635635i
\(780\) 0 0
\(781\) 6151.93 10655.5i 0.281861 0.488198i
\(782\) 9182.38 0.419899
\(783\) 0 0
\(784\) −2015.47 −0.0918124
\(785\) −6636.75 + 11495.2i −0.301753 + 0.522651i
\(786\) 0 0
\(787\) 5966.05 + 10333.5i 0.270225 + 0.468043i 0.968919 0.247377i \(-0.0795687\pi\)
−0.698695 + 0.715420i \(0.746235\pi\)
\(788\) 2215.18 + 3836.80i 0.100143 + 0.173452i
\(789\) 0 0
\(790\) −3118.65 + 5401.67i −0.140452 + 0.243269i
\(791\) 16645.3 0.748214
\(792\) 0 0
\(793\) 2153.53 0.0964363
\(794\) 11892.7 20598.8i 0.531558 0.920686i
\(795\) 0 0
\(796\) 5404.90 + 9361.56i 0.240668 + 0.416849i
\(797\) −642.187 1112.30i −0.0285413 0.0494350i 0.851402 0.524514i \(-0.175753\pi\)
−0.879943 + 0.475079i \(0.842420\pi\)
\(798\) 0 0
\(799\) 2729.41 4727.48i 0.120851 0.209319i
\(800\) −800.000 −0.0353553
\(801\) 0 0
\(802\) −6408.92 −0.282178
\(803\) 15144.4 26231.0i 0.665549 1.15276i
\(804\) 0 0
\(805\) −3613.22 6258.29i −0.158198 0.274007i
\(806\) −124.869 216.280i −0.00545698 0.00945177i
\(807\) 0 0
\(808\) 5971.35 10342.7i 0.259989 0.450314i
\(809\) 7030.60 0.305541 0.152771 0.988262i \(-0.451180\pi\)
0.152771 + 0.988262i \(0.451180\pi\)
\(810\) 0 0
\(811\) −17584.1 −0.761359 −0.380680 0.924707i \(-0.624310\pi\)
−0.380680 + 0.924707i \(0.624310\pi\)
\(812\) 6355.22 11007.6i 0.274661 0.475726i
\(813\) 0 0
\(814\) −13679.1 23692.9i −0.589007 1.02019i
\(815\) 5399.44 + 9352.11i 0.232067 + 0.401951i
\(816\) 0 0
\(817\) 292.924 507.359i 0.0125436 0.0217261i
\(818\) −30609.2 −1.30835
\(819\) 0 0
\(820\) −3663.15 −0.156004
\(821\) −21564.1 + 37350.1i −0.916678 + 1.58773i −0.112251 + 0.993680i \(0.535806\pi\)
−0.804426 + 0.594052i \(0.797527\pi\)
\(822\) 0 0
\(823\) 18962.0 + 32843.1i 0.803126 + 1.39105i 0.917549 + 0.397623i \(0.130165\pi\)
−0.114423 + 0.993432i \(0.536502\pi\)
\(824\) −1199.23 2077.13i −0.0507005 0.0878158i
\(825\) 0 0
\(826\) 8630.13 14947.8i 0.363536 0.629662i
\(827\) 8327.50 0.350152 0.175076 0.984555i \(-0.443983\pi\)
0.175076 + 0.984555i \(0.443983\pi\)
\(828\) 0 0
\(829\) −23689.2 −0.992471 −0.496236 0.868188i \(-0.665285\pi\)
−0.496236 + 0.868188i \(0.665285\pi\)
\(830\) −5058.04 + 8760.79i −0.211527 + 0.366375i
\(831\) 0 0
\(832\) 209.149 + 362.256i 0.00871506 + 0.0150949i
\(833\) −2947.54 5105.29i −0.122600 0.212350i
\(834\) 0 0
\(835\) −1964.59 + 3402.78i −0.0814222 + 0.141027i
\(836\) 1291.33 0.0534229
\(837\) 0 0
\(838\) −26506.2 −1.09265
\(839\) 8559.13 14824.8i 0.352198 0.610024i −0.634436 0.772975i \(-0.718768\pi\)
0.986634 + 0.162951i \(0.0521011\pi\)
\(840\) 0 0
\(841\) −11067.4 19169.2i −0.453785 0.785978i
\(842\) −9437.26 16345.8i −0.386258 0.669019i
\(843\) 0 0
\(844\) −5815.60 + 10072.9i −0.237182 + 0.410811i
\(845\) 10771.4 0.438518
\(846\) 0 0
\(847\) −617.157 −0.0250363
\(848\) 412.441 714.369i 0.0167020 0.0289287i
\(849\) 0 0
\(850\) −1169.97 2026.44i −0.0472112 0.0817723i
\(851\) 18109.3 + 31366.2i 0.729468 + 1.26348i
\(852\) 0 0
\(853\) 21333.6 36950.8i 0.856327 1.48320i −0.0190812 0.999818i \(-0.506074\pi\)
0.875408 0.483384i \(-0.160593\pi\)
\(854\) −9708.19 −0.389002
\(855\) 0 0
\(856\) 17041.7 0.680461
\(857\) −5954.46 + 10313.4i −0.237340 + 0.411085i −0.959950 0.280171i \(-0.909609\pi\)
0.722610 + 0.691256i \(0.242942\pi\)
\(858\) 0 0
\(859\) 13436.1 + 23272.1i 0.533685 + 0.924369i 0.999226 + 0.0393426i \(0.0125264\pi\)
−0.465541 + 0.885026i \(0.654140\pi\)
\(860\) −672.398 1164.63i −0.0266611 0.0461784i
\(861\) 0 0
\(862\) −8049.50 + 13942.1i −0.318059 + 0.550895i
\(863\) −10968.0 −0.432624 −0.216312 0.976324i \(-0.569403\pi\)
−0.216312 + 0.976324i \(0.569403\pi\)
\(864\) 0 0
\(865\) 1074.76 0.0422461
\(866\) 16268.1 28177.2i 0.638353 1.10566i
\(867\) 0 0
\(868\) 562.915 + 974.998i 0.0220122 + 0.0381262i
\(869\) −11555.4 20014.6i −0.451082 0.781297i
\(870\) 0 0
\(871\) 1248.38 2162.26i 0.0485646 0.0841164i
\(872\) 10311.1 0.400432
\(873\) 0 0
\(874\) −1709.54 −0.0661627
\(875\) −920.753 + 1594.79i −0.0355739 + 0.0616158i
\(876\) 0 0
\(877\) 7403.23 + 12822.8i 0.285050 + 0.493722i 0.972621 0.232395i \(-0.0746563\pi\)
−0.687571 + 0.726117i \(0.741323\pi\)
\(878\) 13531.9 + 23438.0i 0.520137 + 0.900904i
\(879\) 0 0
\(880\) 1482.10 2567.08i 0.0567746 0.0983365i
\(881\) 9635.92 0.368493 0.184246 0.982880i \(-0.441016\pi\)
0.184246 + 0.982880i \(0.441016\pi\)
\(882\) 0 0
\(883\) 29048.0 1.10707 0.553535 0.832826i \(-0.313278\pi\)
0.553535 + 0.832826i \(0.313278\pi\)
\(884\) −611.743 + 1059.57i −0.0232750 + 0.0403136i
\(885\) 0 0
\(886\) −13656.9 23654.5i −0.517848 0.896939i
\(887\) 2867.88 + 4967.32i 0.108562 + 0.188034i 0.915188 0.403028i \(-0.132042\pi\)
−0.806626 + 0.591062i \(0.798709\pi\)
\(888\) 0 0
\(889\) −8454.75 + 14644.1i −0.318969 + 0.552470i
\(890\) 6707.65 0.252630
\(891\) 0 0
\(892\) −202.745 −0.00761033
\(893\) −508.152 + 880.145i −0.0190422 + 0.0329820i
\(894\) 0 0
\(895\) 141.463 + 245.022i 0.00528335 + 0.00915103i
\(896\) −942.851 1633.07i −0.0351545 0.0608894i
\(897\) 0 0
\(898\) 754.853 1307.44i 0.0280510 0.0485857i
\(899\) 4120.85 0.152879
\(900\) 0 0
\(901\) 2412.71 0.0892110
\(902\) 6786.46 11754.5i 0.250515 0.433904i
\(903\) 0 0
\(904\) −4519.47 7827.95i −0.166278 0.288002i
\(905\) −70.8924 122.789i −0.00260392 0.00451011i
\(906\) 0 0
\(907\) −1557.64 + 2697.92i −0.0570240 + 0.0987684i −0.893128 0.449802i \(-0.851494\pi\)
0.836104 + 0.548571i \(0.184828\pi\)
\(908\) −7068.57 −0.258347
\(909\) 0 0
\(910\) 962.872 0.0350757
\(911\) −5745.33 + 9951.20i −0.208948 + 0.361908i −0.951383 0.308010i \(-0.900337\pi\)
0.742436 + 0.669917i \(0.233670\pi\)
\(912\) 0 0
\(913\) −18741.3 32461.0i −0.679352 1.17667i
\(914\) −11873.9 20566.2i −0.429708 0.744277i
\(915\) 0 0
\(916\) −13451.8 + 23299.2i −0.485218 + 0.840422i
\(917\) 35989.8 1.29606
\(918\) 0 0
\(919\) −42808.1 −1.53657 −0.768286 0.640107i \(-0.778890\pi\)
−0.768286 + 0.640107i \(0.778890\pi\)
\(920\) −1962.10 + 3398.46i −0.0703137 + 0.121787i
\(921\) 0 0
\(922\) −8197.10 14197.8i −0.292795 0.507136i
\(923\) −1085.17 1879.57i −0.0386987 0.0670281i
\(924\) 0 0
\(925\) 4614.76 7993.00i 0.164035 0.284117i
\(926\) 385.429 0.0136782
\(927\) 0 0
\(928\) −6902.19 −0.244155
\(929\) −12801.3 + 22172.5i −0.452096 + 0.783053i −0.998516 0.0544579i \(-0.982657\pi\)
0.546420 + 0.837511i \(0.315990\pi\)
\(930\) 0 0
\(931\) 548.762 + 950.484i 0.0193179 + 0.0334596i
\(932\) 11986.6 + 20761.5i 0.421283 + 0.729683i
\(933\) 0 0
\(934\) −5254.00 + 9100.20i −0.184064 + 0.318809i
\(935\) 8670.06 0.303253
\(936\) 0 0
\(937\) 38597.2 1.34570 0.672848 0.739781i \(-0.265071\pi\)
0.672848 + 0.739781i \(0.265071\pi\)
\(938\) −5627.75 + 9747.56i −0.195898 + 0.339306i
\(939\) 0 0
\(940\) 1166.45 + 2020.35i 0.0404738 + 0.0701026i
\(941\) −15461.4 26779.8i −0.535628 0.927734i −0.999133 0.0416401i \(-0.986742\pi\)
0.463505 0.886094i \(-0.346592\pi\)
\(942\) 0 0
\(943\) −8984.35 + 15561.4i −0.310255 + 0.537378i
\(944\) −9372.90 −0.323159
\(945\) 0 0
\(946\) 4982.81 0.171253
\(947\) −4213.49 + 7297.97i −0.144583 + 0.250425i −0.929217 0.369534i \(-0.879517\pi\)
0.784634 + 0.619959i \(0.212851\pi\)
\(948\) 0 0
\(949\) −2671.41 4627.02i −0.0913779 0.158271i
\(950\) 217.820 + 377.276i 0.00743897 + 0.0128847i
\(951\) 0 0
\(952\) 2757.76 4776.59i 0.0938861 0.162616i
\(953\) 8456.53 0.287444 0.143722 0.989618i \(-0.454093\pi\)
0.143722 + 0.989618i \(0.454093\pi\)
\(954\) 0 0
\(955\) 6341.72 0.214883
\(956\) 6576.98 11391.7i 0.222505 0.385390i
\(957\) 0 0
\(958\) 15252.6 + 26418.3i 0.514394 + 0.890957i
\(959\) −4153.82 7194.62i −0.139868 0.242259i
\(960\) 0 0
\(961\) 14713.0 25483.7i 0.493874 0.855415i
\(962\) −4825.85 −0.161738
\(963\) 0 0
\(964\) −1343.08 −0.0448732
\(965\) 8344.22 14452.6i 0.278352 0.482120i
\(966\) 0 0
\(967\) 3723.37 + 6449.06i 0.123822 + 0.214465i 0.921272 0.388920i \(-0.127152\pi\)
−0.797450 + 0.603385i \(0.793818\pi\)
\(968\) 167.568 + 290.237i 0.00556390 + 0.00963696i
\(969\) 0 0
\(970\) 2593.57 4492.20i 0.0858500 0.148697i
\(971\) −17139.7 −0.566467 −0.283234 0.959051i \(-0.591407\pi\)
−0.283234 + 0.959051i \(0.591407\pi\)
\(972\) 0 0
\(973\) 15180.1 0.500157
\(974\) −11485.1 + 19892.8i −0.377831 + 0.654422i
\(975\) 0 0
\(976\) 2635.94 + 4565.58i 0.0864491 + 0.149734i
\(977\) 12417.2 + 21507.2i 0.406613 + 0.704275i 0.994508 0.104663i \(-0.0333763\pi\)
−0.587894 + 0.808938i \(0.700043\pi\)
\(978\) 0 0
\(979\) −12426.8 + 21523.8i −0.405681 + 0.702660i
\(980\) 2519.33 0.0821196
\(981\) 0 0
\(982\) 27778.4 0.902693
\(983\) 10635.7 18421.6i 0.345093 0.597719i −0.640278 0.768144i \(-0.721181\pi\)
0.985371 + 0.170425i \(0.0545140\pi\)
\(984\) 0 0
\(985\) −2768.97 4796.00i −0.0895704 0.155140i
\(986\) −10094.2 17483.6i −0.326028 0.564698i
\(987\) 0 0
\(988\) 113.892 197.267i 0.00366740 0.00635212i
\(989\) −6596.57 −0.212092
\(990\) 0 0
\(991\) −1931.89 −0.0619259 −0.0309630 0.999521i \(-0.509857\pi\)
−0.0309630 + 0.999521i \(0.509857\pi\)
\(992\) 305.682 529.457i 0.00978368 0.0169458i
\(993\) 0 0
\(994\) 4892.00 + 8473.20i 0.156101 + 0.270376i
\(995\) −6756.13 11702.0i −0.215260 0.372841i
\(996\) 0 0
\(997\) −13076.3 + 22648.9i −0.415378 + 0.719455i −0.995468 0.0950970i \(-0.969684\pi\)
0.580090 + 0.814552i \(0.303017\pi\)
\(998\) 39899.9 1.26554
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.4.e.bf.541.2 4
3.2 odd 2 810.4.e.bb.541.2 4
9.2 odd 6 810.4.a.m.1.1 yes 2
9.4 even 3 inner 810.4.e.bf.271.2 4
9.5 odd 6 810.4.e.bb.271.2 4
9.7 even 3 810.4.a.g.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.4.a.g.1.1 2 9.7 even 3
810.4.a.m.1.1 yes 2 9.2 odd 6
810.4.e.bb.271.2 4 9.5 odd 6
810.4.e.bb.541.2 4 3.2 odd 2
810.4.e.bf.271.2 4 9.4 even 3 inner
810.4.e.bf.541.2 4 1.1 even 1 trivial