Properties

Label 810.4.e.bf.541.1
Level $810$
Weight $4$
Character 810.541
Analytic conductor $47.792$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [810,4,Mod(271,810)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("810.271"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(810, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,-8,10,0,26,-32,0,40,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 810.541
Dual form 810.4.e.bf.271.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(2.50000 + 4.33013i) q^{5} +(5.63397 - 9.75833i) q^{7} -8.00000 q^{8} +10.0000 q^{10} +(0.526279 - 0.911543i) q^{11} +(6.73205 + 11.6603i) q^{13} +(-11.2679 - 19.5167i) q^{14} +(-8.00000 + 13.8564i) q^{16} +136.799 q^{17} -46.7128 q^{19} +(10.0000 - 17.3205i) q^{20} +(-1.05256 - 1.82309i) q^{22} +(-10.9474 - 18.9615i) q^{23} +(-12.5000 + 21.6506i) q^{25} +26.9282 q^{26} -45.0718 q^{28} +(-54.1532 + 93.7961i) q^{29} +(28.5526 + 49.4545i) q^{31} +(16.0000 + 27.7128i) q^{32} +(136.799 - 236.942i) q^{34} +56.3397 q^{35} +223.181 q^{37} +(-46.7128 + 80.9090i) q^{38} +(-20.0000 - 34.6410i) q^{40} +(-34.4212 - 59.6192i) q^{41} +(177.380 - 307.231i) q^{43} -4.21024 q^{44} -43.7898 q^{46} +(241.322 - 417.983i) q^{47} +(108.017 + 187.090i) q^{49} +(25.0000 + 43.3013i) q^{50} +(26.9282 - 46.6410i) q^{52} -110.445 q^{53} +5.26279 q^{55} +(-45.0718 + 78.0666i) q^{56} +(108.306 + 187.592i) q^{58} +(-328.903 - 569.677i) q^{59} +(19.2539 - 33.3487i) q^{61} +114.210 q^{62} +64.0000 q^{64} +(-33.6603 + 58.3013i) q^{65} +(339.004 + 587.172i) q^{67} +(-273.597 - 473.885i) q^{68} +(56.3397 - 97.5833i) q^{70} +572.065 q^{71} +107.458 q^{73} +(223.181 - 386.560i) q^{74} +(93.4256 + 161.818i) q^{76} +(-5.93009 - 10.2712i) q^{77} +(51.8653 - 89.8334i) q^{79} -80.0000 q^{80} -137.685 q^{82} +(472.804 - 818.921i) q^{83} +(341.997 + 592.356i) q^{85} +(-354.760 - 614.463i) q^{86} +(-4.21024 + 7.29234i) q^{88} +577.235 q^{89} +151.713 q^{91} +(-43.7898 + 75.8461i) q^{92} +(-482.645 - 835.965i) q^{94} +(-116.782 - 202.272i) q^{95} +(593.643 - 1028.22i) q^{97} +432.067 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{4} + 10 q^{5} + 26 q^{7} - 32 q^{8} + 40 q^{10} - 36 q^{11} + 20 q^{13} - 52 q^{14} - 32 q^{16} + 180 q^{17} - 76 q^{19} + 40 q^{20} + 72 q^{22} - 120 q^{23} - 50 q^{25} + 80 q^{26}+ \cdots + 1368 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.353553 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 5.63397 9.75833i 0.304206 0.526900i −0.672878 0.739753i \(-0.734942\pi\)
0.977084 + 0.212853i \(0.0682755\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 10.0000 0.316228
\(11\) 0.526279 0.911543i 0.0144254 0.0249855i −0.858723 0.512441i \(-0.828741\pi\)
0.873148 + 0.487455i \(0.162075\pi\)
\(12\) 0 0
\(13\) 6.73205 + 11.6603i 0.143626 + 0.248767i 0.928859 0.370432i \(-0.120791\pi\)
−0.785234 + 0.619200i \(0.787457\pi\)
\(14\) −11.2679 19.5167i −0.215106 0.372575i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) 136.799 1.95168 0.975840 0.218487i \(-0.0701121\pi\)
0.975840 + 0.218487i \(0.0701121\pi\)
\(18\) 0 0
\(19\) −46.7128 −0.564034 −0.282017 0.959409i \(-0.591004\pi\)
−0.282017 + 0.959409i \(0.591004\pi\)
\(20\) 10.0000 17.3205i 0.111803 0.193649i
\(21\) 0 0
\(22\) −1.05256 1.82309i −0.0102003 0.0176674i
\(23\) −10.9474 18.9615i −0.0992478 0.171902i 0.812126 0.583482i \(-0.198310\pi\)
−0.911374 + 0.411580i \(0.864977\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 26.9282 0.203118
\(27\) 0 0
\(28\) −45.0718 −0.304206
\(29\) −54.1532 + 93.7961i −0.346759 + 0.600603i −0.985672 0.168675i \(-0.946051\pi\)
0.638913 + 0.769279i \(0.279384\pi\)
\(30\) 0 0
\(31\) 28.5526 + 49.4545i 0.165426 + 0.286525i 0.936806 0.349848i \(-0.113767\pi\)
−0.771381 + 0.636374i \(0.780434\pi\)
\(32\) 16.0000 + 27.7128i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 136.799 236.942i 0.690023 1.19515i
\(35\) 56.3397 0.272090
\(36\) 0 0
\(37\) 223.181 0.991640 0.495820 0.868425i \(-0.334868\pi\)
0.495820 + 0.868425i \(0.334868\pi\)
\(38\) −46.7128 + 80.9090i −0.199416 + 0.345399i
\(39\) 0 0
\(40\) −20.0000 34.6410i −0.0790569 0.136931i
\(41\) −34.4212 59.6192i −0.131114 0.227096i 0.792992 0.609232i \(-0.208522\pi\)
−0.924106 + 0.382135i \(0.875189\pi\)
\(42\) 0 0
\(43\) 177.380 307.231i 0.629075 1.08959i −0.358663 0.933467i \(-0.616767\pi\)
0.987738 0.156122i \(-0.0498994\pi\)
\(44\) −4.21024 −0.0144254
\(45\) 0 0
\(46\) −43.7898 −0.140358
\(47\) 241.322 417.983i 0.748947 1.29721i −0.199381 0.979922i \(-0.563893\pi\)
0.948328 0.317292i \(-0.102773\pi\)
\(48\) 0 0
\(49\) 108.017 + 187.090i 0.314917 + 0.545453i
\(50\) 25.0000 + 43.3013i 0.0707107 + 0.122474i
\(51\) 0 0
\(52\) 26.9282 46.6410i 0.0718129 0.124384i
\(53\) −110.445 −0.286241 −0.143120 0.989705i \(-0.545714\pi\)
−0.143120 + 0.989705i \(0.545714\pi\)
\(54\) 0 0
\(55\) 5.26279 0.0129025
\(56\) −45.0718 + 78.0666i −0.107553 + 0.186287i
\(57\) 0 0
\(58\) 108.306 + 187.592i 0.245195 + 0.424691i
\(59\) −328.903 569.677i −0.725755 1.25704i −0.958663 0.284545i \(-0.908157\pi\)
0.232908 0.972499i \(-0.425176\pi\)
\(60\) 0 0
\(61\) 19.2539 33.3487i 0.0404132 0.0699977i −0.845111 0.534590i \(-0.820466\pi\)
0.885525 + 0.464593i \(0.153799\pi\)
\(62\) 114.210 0.233947
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −33.6603 + 58.3013i −0.0642314 + 0.111252i
\(66\) 0 0
\(67\) 339.004 + 587.172i 0.618148 + 1.07066i 0.989823 + 0.142301i \(0.0454500\pi\)
−0.371676 + 0.928363i \(0.621217\pi\)
\(68\) −273.597 473.885i −0.487920 0.845102i
\(69\) 0 0
\(70\) 56.3397 97.5833i 0.0961984 0.166621i
\(71\) 572.065 0.956221 0.478110 0.878300i \(-0.341322\pi\)
0.478110 + 0.878300i \(0.341322\pi\)
\(72\) 0 0
\(73\) 107.458 0.172287 0.0861435 0.996283i \(-0.472546\pi\)
0.0861435 + 0.996283i \(0.472546\pi\)
\(74\) 223.181 386.560i 0.350598 0.607253i
\(75\) 0 0
\(76\) 93.4256 + 161.818i 0.141009 + 0.244234i
\(77\) −5.93009 10.2712i −0.00877658 0.0152015i
\(78\) 0 0
\(79\) 51.8653 89.8334i 0.0738646 0.127937i −0.826727 0.562603i \(-0.809800\pi\)
0.900592 + 0.434665i \(0.143133\pi\)
\(80\) −80.0000 −0.111803
\(81\) 0 0
\(82\) −137.685 −0.185423
\(83\) 472.804 818.921i 0.625265 1.08299i −0.363224 0.931702i \(-0.618324\pi\)
0.988489 0.151290i \(-0.0483426\pi\)
\(84\) 0 0
\(85\) 341.997 + 592.356i 0.436409 + 0.755882i
\(86\) −354.760 614.463i −0.444823 0.770456i
\(87\) 0 0
\(88\) −4.21024 + 7.29234i −0.00510014 + 0.00883371i
\(89\) 577.235 0.687492 0.343746 0.939063i \(-0.388304\pi\)
0.343746 + 0.939063i \(0.388304\pi\)
\(90\) 0 0
\(91\) 151.713 0.174767
\(92\) −43.7898 + 75.8461i −0.0496239 + 0.0859511i
\(93\) 0 0
\(94\) −482.645 835.965i −0.529585 0.917268i
\(95\) −116.782 202.272i −0.126122 0.218450i
\(96\) 0 0
\(97\) 593.643 1028.22i 0.621395 1.07629i −0.367831 0.929893i \(-0.619900\pi\)
0.989226 0.146395i \(-0.0467670\pi\)
\(98\) 432.067 0.445360
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 644.418 1116.17i 0.634872 1.09963i −0.351671 0.936124i \(-0.614386\pi\)
0.986542 0.163506i \(-0.0522803\pi\)
\(102\) 0 0
\(103\) −109.904 190.359i −0.105137 0.182103i 0.808657 0.588280i \(-0.200195\pi\)
−0.913794 + 0.406177i \(0.866862\pi\)
\(104\) −53.8564 93.2820i −0.0507794 0.0879525i
\(105\) 0 0
\(106\) −110.445 + 191.296i −0.101201 + 0.175286i
\(107\) −917.782 −0.829209 −0.414604 0.910002i \(-0.636080\pi\)
−0.414604 + 0.910002i \(0.636080\pi\)
\(108\) 0 0
\(109\) 470.882 0.413783 0.206891 0.978364i \(-0.433665\pi\)
0.206891 + 0.978364i \(0.433665\pi\)
\(110\) 5.26279 9.11543i 0.00456171 0.00790111i
\(111\) 0 0
\(112\) 90.1436 + 156.133i 0.0760515 + 0.131725i
\(113\) −243.934 422.506i −0.203074 0.351735i 0.746443 0.665449i \(-0.231760\pi\)
−0.949517 + 0.313714i \(0.898427\pi\)
\(114\) 0 0
\(115\) 54.7372 94.8076i 0.0443850 0.0768770i
\(116\) 433.226 0.346759
\(117\) 0 0
\(118\) −1315.61 −1.02637
\(119\) 770.720 1334.93i 0.593713 1.02834i
\(120\) 0 0
\(121\) 664.946 + 1151.72i 0.499584 + 0.865305i
\(122\) −38.5077 66.6973i −0.0285764 0.0494959i
\(123\) 0 0
\(124\) 114.210 197.818i 0.0827128 0.143263i
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −1158.20 −0.809239 −0.404619 0.914485i \(-0.632596\pi\)
−0.404619 + 0.914485i \(0.632596\pi\)
\(128\) 64.0000 110.851i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 67.3205 + 116.603i 0.0454185 + 0.0786671i
\(131\) −543.480 941.335i −0.362474 0.627823i 0.625894 0.779908i \(-0.284734\pi\)
−0.988367 + 0.152086i \(0.951401\pi\)
\(132\) 0 0
\(133\) −263.179 + 455.839i −0.171583 + 0.297190i
\(134\) 1356.02 0.874193
\(135\) 0 0
\(136\) −1094.39 −0.690023
\(137\) 708.042 1226.37i 0.441548 0.764784i −0.556256 0.831011i \(-0.687763\pi\)
0.997805 + 0.0662266i \(0.0210960\pi\)
\(138\) 0 0
\(139\) 265.792 + 460.366i 0.162189 + 0.280919i 0.935653 0.352920i \(-0.114811\pi\)
−0.773465 + 0.633839i \(0.781478\pi\)
\(140\) −112.679 195.167i −0.0680225 0.117818i
\(141\) 0 0
\(142\) 572.065 990.846i 0.338075 0.585563i
\(143\) 14.1718 0.00828743
\(144\) 0 0
\(145\) −541.532 −0.310150
\(146\) 107.458 186.122i 0.0609127 0.105504i
\(147\) 0 0
\(148\) −446.361 773.121i −0.247910 0.429393i
\(149\) −865.892 1499.77i −0.476085 0.824603i 0.523540 0.852001i \(-0.324611\pi\)
−0.999625 + 0.0273981i \(0.991278\pi\)
\(150\) 0 0
\(151\) −277.592 + 480.804i −0.149603 + 0.259121i −0.931081 0.364813i \(-0.881133\pi\)
0.781477 + 0.623933i \(0.214466\pi\)
\(152\) 373.703 0.199416
\(153\) 0 0
\(154\) −23.7204 −0.0124120
\(155\) −142.763 + 247.272i −0.0739805 + 0.128138i
\(156\) 0 0
\(157\) 743.649 + 1288.04i 0.378023 + 0.654756i 0.990775 0.135520i \(-0.0432705\pi\)
−0.612751 + 0.790276i \(0.709937\pi\)
\(158\) −103.731 179.667i −0.0522302 0.0904653i
\(159\) 0 0
\(160\) −80.0000 + 138.564i −0.0395285 + 0.0684653i
\(161\) −246.710 −0.120767
\(162\) 0 0
\(163\) −1501.78 −0.721646 −0.360823 0.932634i \(-0.617504\pi\)
−0.360823 + 0.932634i \(0.617504\pi\)
\(164\) −137.685 + 238.477i −0.0655571 + 0.113548i
\(165\) 0 0
\(166\) −945.609 1637.84i −0.442129 0.765790i
\(167\) 1704.08 + 2951.56i 0.789615 + 1.36765i 0.926203 + 0.377026i \(0.123053\pi\)
−0.136587 + 0.990628i \(0.543613\pi\)
\(168\) 0 0
\(169\) 1007.86 1745.66i 0.458743 0.794567i
\(170\) 1367.99 0.617175
\(171\) 0 0
\(172\) −1419.04 −0.629075
\(173\) 1212.52 2100.15i 0.532870 0.922958i −0.466393 0.884578i \(-0.654447\pi\)
0.999263 0.0383804i \(-0.0122199\pi\)
\(174\) 0 0
\(175\) 140.849 + 243.958i 0.0608412 + 0.105380i
\(176\) 8.42047 + 14.5847i 0.00360635 + 0.00624637i
\(177\) 0 0
\(178\) 577.235 999.800i 0.243065 0.421001i
\(179\) −4124.59 −1.72227 −0.861134 0.508378i \(-0.830245\pi\)
−0.861134 + 0.508378i \(0.830245\pi\)
\(180\) 0 0
\(181\) −4053.64 −1.66467 −0.832334 0.554274i \(-0.812996\pi\)
−0.832334 + 0.554274i \(0.812996\pi\)
\(182\) 151.713 262.774i 0.0617896 0.107023i
\(183\) 0 0
\(184\) 87.5795 + 151.692i 0.0350894 + 0.0607766i
\(185\) 557.952 + 966.401i 0.221737 + 0.384061i
\(186\) 0 0
\(187\) 71.9943 124.698i 0.0281537 0.0487637i
\(188\) −1930.58 −0.748947
\(189\) 0 0
\(190\) −467.128 −0.178363
\(191\) 739.828 1281.42i 0.280272 0.485446i −0.691179 0.722683i \(-0.742909\pi\)
0.971452 + 0.237237i \(0.0762418\pi\)
\(192\) 0 0
\(193\) 1183.84 + 2050.48i 0.441528 + 0.764749i 0.997803 0.0662490i \(-0.0211032\pi\)
−0.556275 + 0.830998i \(0.687770\pi\)
\(194\) −1187.29 2056.44i −0.439393 0.761050i
\(195\) 0 0
\(196\) 432.067 748.361i 0.157459 0.272726i
\(197\) 3603.59 1.30327 0.651637 0.758531i \(-0.274082\pi\)
0.651637 + 0.758531i \(0.274082\pi\)
\(198\) 0 0
\(199\) 1842.45 0.656321 0.328160 0.944622i \(-0.393571\pi\)
0.328160 + 0.944622i \(0.393571\pi\)
\(200\) 100.000 173.205i 0.0353553 0.0612372i
\(201\) 0 0
\(202\) −1288.84 2232.33i −0.448922 0.777556i
\(203\) 610.196 + 1056.89i 0.210972 + 0.365414i
\(204\) 0 0
\(205\) 172.106 298.096i 0.0586361 0.101561i
\(206\) −439.615 −0.148687
\(207\) 0 0
\(208\) −215.426 −0.0718129
\(209\) −24.5840 + 42.5807i −0.00813641 + 0.0140927i
\(210\) 0 0
\(211\) 1604.90 + 2779.77i 0.523630 + 0.906954i 0.999622 + 0.0275040i \(0.00875590\pi\)
−0.475992 + 0.879450i \(0.657911\pi\)
\(212\) 220.890 + 382.592i 0.0715602 + 0.123946i
\(213\) 0 0
\(214\) −917.782 + 1589.65i −0.293170 + 0.507785i
\(215\) 1773.80 0.562662
\(216\) 0 0
\(217\) 643.458 0.201294
\(218\) 470.882 815.591i 0.146294 0.253389i
\(219\) 0 0
\(220\) −10.5256 18.2309i −0.00322561 0.00558693i
\(221\) 920.936 + 1595.11i 0.280312 + 0.485514i
\(222\) 0 0
\(223\) −3189.34 + 5524.10i −0.957732 + 1.65884i −0.229743 + 0.973251i \(0.573789\pi\)
−0.727989 + 0.685589i \(0.759545\pi\)
\(224\) 360.574 0.107553
\(225\) 0 0
\(226\) −975.735 −0.287190
\(227\) 535.429 927.390i 0.156554 0.271159i −0.777070 0.629414i \(-0.783295\pi\)
0.933624 + 0.358255i \(0.116628\pi\)
\(228\) 0 0
\(229\) 1278.95 + 2215.20i 0.369062 + 0.639235i 0.989419 0.145085i \(-0.0463456\pi\)
−0.620357 + 0.784320i \(0.713012\pi\)
\(230\) −109.474 189.615i −0.0313849 0.0543603i
\(231\) 0 0
\(232\) 433.226 750.369i 0.122598 0.212345i
\(233\) −2532.68 −0.712109 −0.356055 0.934465i \(-0.615878\pi\)
−0.356055 + 0.934465i \(0.615878\pi\)
\(234\) 0 0
\(235\) 2413.22 0.669878
\(236\) −1315.61 + 2278.71i −0.362877 + 0.628522i
\(237\) 0 0
\(238\) −1541.44 2669.85i −0.419818 0.727147i
\(239\) −576.245 998.085i −0.155959 0.270129i 0.777449 0.628946i \(-0.216513\pi\)
−0.933408 + 0.358817i \(0.883180\pi\)
\(240\) 0 0
\(241\) −3472.89 + 6015.21i −0.928250 + 1.60778i −0.142000 + 0.989867i \(0.545353\pi\)
−0.786249 + 0.617909i \(0.787980\pi\)
\(242\) 2659.78 0.706518
\(243\) 0 0
\(244\) −154.031 −0.0404132
\(245\) −540.083 + 935.452i −0.140835 + 0.243934i
\(246\) 0 0
\(247\) −314.473 544.683i −0.0810099 0.140313i
\(248\) −228.420 395.636i −0.0584868 0.101302i
\(249\) 0 0
\(250\) −125.000 + 216.506i −0.0316228 + 0.0547723i
\(251\) −3096.59 −0.778704 −0.389352 0.921089i \(-0.627301\pi\)
−0.389352 + 0.921089i \(0.627301\pi\)
\(252\) 0 0
\(253\) −23.0457 −0.00572675
\(254\) −1158.20 + 2006.05i −0.286109 + 0.495555i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 1075.59 + 1862.98i 0.261064 + 0.452176i 0.966525 0.256573i \(-0.0825932\pi\)
−0.705461 + 0.708749i \(0.749260\pi\)
\(258\) 0 0
\(259\) 1257.39 2177.87i 0.301663 0.522495i
\(260\) 269.282 0.0642314
\(261\) 0 0
\(262\) −2173.92 −0.512615
\(263\) 1029.92 1783.87i 0.241473 0.418243i −0.719661 0.694326i \(-0.755703\pi\)
0.961134 + 0.276082i \(0.0890361\pi\)
\(264\) 0 0
\(265\) −276.112 478.240i −0.0640054 0.110861i
\(266\) 526.358 + 911.678i 0.121327 + 0.210145i
\(267\) 0 0
\(268\) 1356.02 2348.69i 0.309074 0.535332i
\(269\) −2163.57 −0.490390 −0.245195 0.969474i \(-0.578852\pi\)
−0.245195 + 0.969474i \(0.578852\pi\)
\(270\) 0 0
\(271\) 6995.32 1.56803 0.784014 0.620743i \(-0.213169\pi\)
0.784014 + 0.620743i \(0.213169\pi\)
\(272\) −1094.39 + 1895.54i −0.243960 + 0.422551i
\(273\) 0 0
\(274\) −1416.08 2452.73i −0.312222 0.540784i
\(275\) 13.1570 + 22.7886i 0.00288508 + 0.00499710i
\(276\) 0 0
\(277\) 919.839 1593.21i 0.199523 0.345583i −0.748851 0.662738i \(-0.769394\pi\)
0.948374 + 0.317155i \(0.102728\pi\)
\(278\) 1063.17 0.229369
\(279\) 0 0
\(280\) −450.718 −0.0961984
\(281\) −64.9832 + 112.554i −0.0137956 + 0.0238947i −0.872841 0.488005i \(-0.837725\pi\)
0.859045 + 0.511900i \(0.171058\pi\)
\(282\) 0 0
\(283\) −2193.86 3799.88i −0.460818 0.798161i 0.538184 0.842828i \(-0.319111\pi\)
−0.999002 + 0.0446668i \(0.985777\pi\)
\(284\) −1144.13 1981.69i −0.239055 0.414056i
\(285\) 0 0
\(286\) 14.1718 24.5462i 0.00293005 0.00507499i
\(287\) −775.712 −0.159543
\(288\) 0 0
\(289\) 13800.9 2.80905
\(290\) −541.532 + 937.961i −0.109655 + 0.189928i
\(291\) 0 0
\(292\) −214.915 372.244i −0.0430718 0.0746025i
\(293\) 2390.20 + 4139.95i 0.476577 + 0.825456i 0.999640 0.0268385i \(-0.00854399\pi\)
−0.523063 + 0.852294i \(0.675211\pi\)
\(294\) 0 0
\(295\) 1644.52 2848.38i 0.324567 0.562167i
\(296\) −1785.45 −0.350598
\(297\) 0 0
\(298\) −3463.57 −0.673286
\(299\) 147.397 255.300i 0.0285091 0.0493792i
\(300\) 0 0
\(301\) −1998.71 3461.87i −0.382737 0.662919i
\(302\) 555.184 + 961.607i 0.105786 + 0.183226i
\(303\) 0 0
\(304\) 373.703 647.272i 0.0705043 0.122117i
\(305\) 192.539 0.0361467
\(306\) 0 0
\(307\) −6471.01 −1.20300 −0.601499 0.798874i \(-0.705429\pi\)
−0.601499 + 0.798874i \(0.705429\pi\)
\(308\) −23.7204 + 41.0849i −0.00438829 + 0.00760074i
\(309\) 0 0
\(310\) 285.526 + 494.545i 0.0523121 + 0.0906073i
\(311\) −975.580 1689.75i −0.177878 0.308094i 0.763276 0.646073i \(-0.223590\pi\)
−0.941154 + 0.337979i \(0.890257\pi\)
\(312\) 0 0
\(313\) −2673.20 + 4630.11i −0.482741 + 0.836132i −0.999804 0.0198153i \(-0.993692\pi\)
0.517062 + 0.855948i \(0.327026\pi\)
\(314\) 2974.60 0.534606
\(315\) 0 0
\(316\) −414.923 −0.0738646
\(317\) −4873.07 + 8440.40i −0.863403 + 1.49546i 0.00522201 + 0.999986i \(0.498338\pi\)
−0.868625 + 0.495471i \(0.834996\pi\)
\(318\) 0 0
\(319\) 56.9994 + 98.7259i 0.0100043 + 0.0173279i
\(320\) 160.000 + 277.128i 0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) −246.710 + 427.315i −0.0426976 + 0.0739545i
\(323\) −6390.25 −1.10081
\(324\) 0 0
\(325\) −336.603 −0.0574503
\(326\) −1501.78 + 2601.16i −0.255140 + 0.441916i
\(327\) 0 0
\(328\) 275.369 + 476.954i 0.0463559 + 0.0802907i
\(329\) −2719.21 4709.81i −0.455668 0.789240i
\(330\) 0 0
\(331\) 2704.31 4684.00i 0.449070 0.777812i −0.549256 0.835654i \(-0.685089\pi\)
0.998326 + 0.0578423i \(0.0184221\pi\)
\(332\) −3782.43 −0.625265
\(333\) 0 0
\(334\) 6816.32 1.11668
\(335\) −1695.02 + 2935.86i −0.276444 + 0.478815i
\(336\) 0 0
\(337\) 3937.34 + 6819.67i 0.636440 + 1.10235i 0.986208 + 0.165511i \(0.0529272\pi\)
−0.349768 + 0.936836i \(0.613739\pi\)
\(338\) −2015.72 3491.33i −0.324380 0.561843i
\(339\) 0 0
\(340\) 1367.99 2369.42i 0.218204 0.377941i
\(341\) 60.1065 0.00954531
\(342\) 0 0
\(343\) 6299.16 0.991611
\(344\) −1419.04 + 2457.85i −0.222412 + 0.385228i
\(345\) 0 0
\(346\) −2425.05 4200.31i −0.376796 0.652630i
\(347\) 4255.25 + 7370.32i 0.658311 + 1.14023i 0.981053 + 0.193741i \(0.0620623\pi\)
−0.322741 + 0.946487i \(0.604604\pi\)
\(348\) 0 0
\(349\) −4136.43 + 7164.51i −0.634436 + 1.09887i 0.352199 + 0.935925i \(0.385434\pi\)
−0.986634 + 0.162950i \(0.947899\pi\)
\(350\) 563.397 0.0860425
\(351\) 0 0
\(352\) 33.6819 0.00510014
\(353\) −2717.27 + 4706.46i −0.409705 + 0.709630i −0.994857 0.101294i \(-0.967702\pi\)
0.585151 + 0.810924i \(0.301035\pi\)
\(354\) 0 0
\(355\) 1430.16 + 2477.12i 0.213817 + 0.370343i
\(356\) −1154.47 1999.60i −0.171873 0.297693i
\(357\) 0 0
\(358\) −4124.59 + 7143.99i −0.608914 + 1.05467i
\(359\) 8737.11 1.28448 0.642238 0.766505i \(-0.278006\pi\)
0.642238 + 0.766505i \(0.278006\pi\)
\(360\) 0 0
\(361\) −4676.91 −0.681865
\(362\) −4053.64 + 7021.12i −0.588549 + 1.01940i
\(363\) 0 0
\(364\) −303.426 525.549i −0.0436918 0.0756765i
\(365\) 268.644 + 465.305i 0.0385246 + 0.0667265i
\(366\) 0 0
\(367\) 1145.64 1984.31i 0.162948 0.282235i −0.772976 0.634435i \(-0.781233\pi\)
0.935925 + 0.352200i \(0.114566\pi\)
\(368\) 350.318 0.0496239
\(369\) 0 0
\(370\) 2231.81 0.313584
\(371\) −622.244 + 1077.76i −0.0870762 + 0.150820i
\(372\) 0 0
\(373\) −3174.83 5498.96i −0.440714 0.763339i 0.557029 0.830493i \(-0.311941\pi\)
−0.997743 + 0.0671545i \(0.978608\pi\)
\(374\) −143.989 249.396i −0.0199077 0.0344811i
\(375\) 0 0
\(376\) −1930.58 + 3343.86i −0.264793 + 0.458634i
\(377\) −1458.25 −0.199214
\(378\) 0 0
\(379\) 13681.6 1.85429 0.927146 0.374701i \(-0.122255\pi\)
0.927146 + 0.374701i \(0.122255\pi\)
\(380\) −467.128 + 809.090i −0.0630610 + 0.109225i
\(381\) 0 0
\(382\) −1479.66 2562.84i −0.198183 0.343262i
\(383\) 3737.27 + 6473.15i 0.498605 + 0.863610i 0.999999 0.00160974i \(-0.000512398\pi\)
−0.501393 + 0.865219i \(0.667179\pi\)
\(384\) 0 0
\(385\) 29.6505 51.3561i 0.00392500 0.00679831i
\(386\) 4735.38 0.624415
\(387\) 0 0
\(388\) −4749.14 −0.621395
\(389\) −6550.19 + 11345.3i −0.853748 + 1.47873i 0.0240537 + 0.999711i \(0.492343\pi\)
−0.877802 + 0.479024i \(0.840991\pi\)
\(390\) 0 0
\(391\) −1497.60 2593.91i −0.193700 0.335498i
\(392\) −864.133 1496.72i −0.111340 0.192847i
\(393\) 0 0
\(394\) 3603.59 6241.60i 0.460777 0.798089i
\(395\) 518.653 0.0660665
\(396\) 0 0
\(397\) 5955.26 0.752862 0.376431 0.926445i \(-0.377151\pi\)
0.376431 + 0.926445i \(0.377151\pi\)
\(398\) 1842.45 3191.22i 0.232044 0.401913i
\(399\) 0 0
\(400\) −200.000 346.410i −0.0250000 0.0433013i
\(401\) 5880.23 + 10184.9i 0.732281 + 1.26835i 0.955906 + 0.293673i \(0.0948775\pi\)
−0.223625 + 0.974675i \(0.571789\pi\)
\(402\) 0 0
\(403\) −384.435 + 665.860i −0.0475187 + 0.0823049i
\(404\) −5155.35 −0.634872
\(405\) 0 0
\(406\) 2440.78 0.298360
\(407\) 117.455 203.439i 0.0143048 0.0247766i
\(408\) 0 0
\(409\) 876.309 + 1517.81i 0.105943 + 0.183499i 0.914123 0.405437i \(-0.132881\pi\)
−0.808180 + 0.588935i \(0.799547\pi\)
\(410\) −344.212 596.192i −0.0414620 0.0718142i
\(411\) 0 0
\(412\) −439.615 + 761.436i −0.0525687 + 0.0910516i
\(413\) −7412.13 −0.883116
\(414\) 0 0
\(415\) 4728.04 0.559254
\(416\) −215.426 + 373.128i −0.0253897 + 0.0439762i
\(417\) 0 0
\(418\) 49.1680 + 85.1615i 0.00575331 + 0.00996503i
\(419\) −2535.45 4391.52i −0.295620 0.512029i 0.679509 0.733667i \(-0.262193\pi\)
−0.975129 + 0.221638i \(0.928860\pi\)
\(420\) 0 0
\(421\) 208.370 360.907i 0.0241219 0.0417804i −0.853712 0.520745i \(-0.825654\pi\)
0.877834 + 0.478964i \(0.158988\pi\)
\(422\) 6419.60 0.740525
\(423\) 0 0
\(424\) 883.559 0.101201
\(425\) −1709.98 + 2961.78i −0.195168 + 0.338041i
\(426\) 0 0
\(427\) −216.952 375.771i −0.0245879 0.0425875i
\(428\) 1835.56 + 3179.29i 0.207302 + 0.359058i
\(429\) 0 0
\(430\) 1773.80 3072.31i 0.198931 0.344558i
\(431\) −8870.50 −0.991361 −0.495681 0.868505i \(-0.665081\pi\)
−0.495681 + 0.868505i \(0.665081\pi\)
\(432\) 0 0
\(433\) −12172.1 −1.35094 −0.675468 0.737389i \(-0.736058\pi\)
−0.675468 + 0.737389i \(0.736058\pi\)
\(434\) 643.458 1114.50i 0.0711681 0.123267i
\(435\) 0 0
\(436\) −941.764 1631.18i −0.103446 0.179173i
\(437\) 511.386 + 885.746i 0.0559792 + 0.0969588i
\(438\) 0 0
\(439\) 2794.96 4841.01i 0.303864 0.526307i −0.673144 0.739511i \(-0.735057\pi\)
0.977008 + 0.213204i \(0.0683899\pi\)
\(440\) −42.1024 −0.00456171
\(441\) 0 0
\(442\) 3683.74 0.396420
\(443\) −1743.46 + 3019.76i −0.186985 + 0.323867i −0.944244 0.329248i \(-0.893205\pi\)
0.757259 + 0.653115i \(0.226538\pi\)
\(444\) 0 0
\(445\) 1443.09 + 2499.50i 0.153728 + 0.266264i
\(446\) 6378.69 + 11048.2i 0.677219 + 1.17298i
\(447\) 0 0
\(448\) 360.574 624.533i 0.0380258 0.0658625i
\(449\) 6661.15 0.700131 0.350066 0.936725i \(-0.386159\pi\)
0.350066 + 0.936725i \(0.386159\pi\)
\(450\) 0 0
\(451\) −72.4606 −0.00756549
\(452\) −975.735 + 1690.02i −0.101537 + 0.175867i
\(453\) 0 0
\(454\) −1070.86 1854.78i −0.110700 0.191738i
\(455\) 379.282 + 656.936i 0.0390792 + 0.0676871i
\(456\) 0 0
\(457\) −5821.95 + 10083.9i −0.595928 + 1.03218i 0.397487 + 0.917608i \(0.369882\pi\)
−0.993415 + 0.114570i \(0.963451\pi\)
\(458\) 5115.79 0.521933
\(459\) 0 0
\(460\) −437.898 −0.0443850
\(461\) 7751.45 13425.9i 0.783126 1.35641i −0.146987 0.989138i \(-0.546957\pi\)
0.930112 0.367275i \(-0.119709\pi\)
\(462\) 0 0
\(463\) −3260.36 5647.10i −0.327261 0.566832i 0.654707 0.755883i \(-0.272792\pi\)
−0.981967 + 0.189051i \(0.939459\pi\)
\(464\) −866.451 1500.74i −0.0866896 0.150151i
\(465\) 0 0
\(466\) −2532.68 + 4386.73i −0.251769 + 0.436076i
\(467\) 11488.0 1.13833 0.569166 0.822222i \(-0.307266\pi\)
0.569166 + 0.822222i \(0.307266\pi\)
\(468\) 0 0
\(469\) 7639.75 0.752177
\(470\) 2413.22 4179.83i 0.236838 0.410215i
\(471\) 0 0
\(472\) 2631.22 + 4557.42i 0.256593 + 0.444432i
\(473\) −186.703 323.379i −0.0181493 0.0314355i
\(474\) 0 0
\(475\) 583.910 1011.36i 0.0564034 0.0976936i
\(476\) −6165.76 −0.593713
\(477\) 0 0
\(478\) −2304.98 −0.220559
\(479\) −8819.69 + 15276.2i −0.841299 + 1.45717i 0.0474988 + 0.998871i \(0.484875\pi\)
−0.888797 + 0.458300i \(0.848458\pi\)
\(480\) 0 0
\(481\) 1502.46 + 2602.34i 0.142425 + 0.246687i
\(482\) 6945.77 + 12030.4i 0.656372 + 1.13687i
\(483\) 0 0
\(484\) 2659.78 4606.88i 0.249792 0.432652i
\(485\) 5936.43 0.555792
\(486\) 0 0
\(487\) −1182.88 −0.110065 −0.0550323 0.998485i \(-0.517526\pi\)
−0.0550323 + 0.998485i \(0.517526\pi\)
\(488\) −154.031 + 266.789i −0.0142882 + 0.0247479i
\(489\) 0 0
\(490\) 1080.17 + 1870.90i 0.0995856 + 0.172487i
\(491\) −248.604 430.594i −0.0228499 0.0395773i 0.854374 0.519658i \(-0.173941\pi\)
−0.877224 + 0.480081i \(0.840607\pi\)
\(492\) 0 0
\(493\) −7408.09 + 12831.2i −0.676762 + 1.17219i
\(494\) −1257.89 −0.114565
\(495\) 0 0
\(496\) −913.682 −0.0827128
\(497\) 3223.00 5582.40i 0.290888 0.503833i
\(498\) 0 0
\(499\) 2638.02 + 4569.18i 0.236661 + 0.409909i 0.959754 0.280842i \(-0.0906136\pi\)
−0.723093 + 0.690751i \(0.757280\pi\)
\(500\) 250.000 + 433.013i 0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) −3096.59 + 5363.45i −0.275314 + 0.476857i
\(503\) −19553.3 −1.73327 −0.866637 0.498940i \(-0.833723\pi\)
−0.866637 + 0.498940i \(0.833723\pi\)
\(504\) 0 0
\(505\) 6444.18 0.567846
\(506\) −23.0457 + 39.9162i −0.00202471 + 0.00350690i
\(507\) 0 0
\(508\) 2316.39 + 4012.11i 0.202310 + 0.350411i
\(509\) −10182.1 17635.9i −0.886667 1.53575i −0.843792 0.536671i \(-0.819682\pi\)
−0.0428750 0.999080i \(-0.513652\pi\)
\(510\) 0 0
\(511\) 605.413 1048.61i 0.0524108 0.0907781i
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 4302.36 0.369200
\(515\) 549.519 951.795i 0.0470188 0.0814390i
\(516\) 0 0
\(517\) −254.006 439.951i −0.0216077 0.0374256i
\(518\) −2514.79 4355.74i −0.213308 0.369460i
\(519\) 0 0
\(520\) 269.282 466.410i 0.0227092 0.0393335i
\(521\) −2074.16 −0.174416 −0.0872079 0.996190i \(-0.527794\pi\)
−0.0872079 + 0.996190i \(0.527794\pi\)
\(522\) 0 0
\(523\) −20489.2 −1.71306 −0.856529 0.516099i \(-0.827383\pi\)
−0.856529 + 0.516099i \(0.827383\pi\)
\(524\) −2173.92 + 3765.34i −0.181237 + 0.313911i
\(525\) 0 0
\(526\) −2059.83 3567.74i −0.170747 0.295743i
\(527\) 3905.95 + 6765.31i 0.322858 + 0.559206i
\(528\) 0 0
\(529\) 5843.81 10121.8i 0.480300 0.831904i
\(530\) −1104.45 −0.0905173
\(531\) 0 0
\(532\) 2105.43 0.171583
\(533\) 463.450 802.719i 0.0376628 0.0652338i
\(534\) 0 0
\(535\) −2294.46 3974.11i −0.185417 0.321151i
\(536\) −2712.03 4697.37i −0.218548 0.378537i
\(537\) 0 0
\(538\) −2163.57 + 3747.41i −0.173379 + 0.300302i
\(539\) 227.388 0.0181712
\(540\) 0 0
\(541\) −16846.1 −1.33876 −0.669381 0.742919i \(-0.733441\pi\)
−0.669381 + 0.742919i \(0.733441\pi\)
\(542\) 6995.32 12116.3i 0.554382 0.960217i
\(543\) 0 0
\(544\) 2188.78 + 3791.08i 0.172506 + 0.298789i
\(545\) 1177.20 + 2038.98i 0.0925246 + 0.160257i
\(546\) 0 0
\(547\) −103.176 + 178.706i −0.00806489 + 0.0139688i −0.870030 0.492999i \(-0.835900\pi\)
0.861965 + 0.506968i \(0.169234\pi\)
\(548\) −5664.34 −0.441548
\(549\) 0 0
\(550\) 52.6279 0.00408011
\(551\) 2529.65 4381.48i 0.195584 0.338761i
\(552\) 0 0
\(553\) −584.416 1012.24i −0.0449401 0.0778386i
\(554\) −1839.68 3186.42i −0.141084 0.244364i
\(555\) 0 0
\(556\) 1063.17 1841.46i 0.0810943 0.140459i
\(557\) −2773.08 −0.210950 −0.105475 0.994422i \(-0.533636\pi\)
−0.105475 + 0.994422i \(0.533636\pi\)
\(558\) 0 0
\(559\) 4776.53 0.361405
\(560\) −450.718 + 780.666i −0.0340113 + 0.0589092i
\(561\) 0 0
\(562\) 129.966 + 225.108i 0.00975498 + 0.0168961i
\(563\) 9206.82 + 15946.7i 0.689203 + 1.19373i 0.972096 + 0.234583i \(0.0753725\pi\)
−0.282893 + 0.959151i \(0.591294\pi\)
\(564\) 0 0
\(565\) 1219.67 2112.53i 0.0908175 0.157300i
\(566\) −8775.45 −0.651696
\(567\) 0 0
\(568\) −4576.52 −0.338075
\(569\) 2411.52 4176.88i 0.177674 0.307740i −0.763410 0.645915i \(-0.776476\pi\)
0.941083 + 0.338175i \(0.109810\pi\)
\(570\) 0 0
\(571\) −11204.7 19407.1i −0.821195 1.42235i −0.904793 0.425853i \(-0.859974\pi\)
0.0835972 0.996500i \(-0.473359\pi\)
\(572\) −28.3435 49.0924i −0.00207186 0.00358856i
\(573\) 0 0
\(574\) −775.712 + 1343.57i −0.0564069 + 0.0976997i
\(575\) 547.372 0.0396991
\(576\) 0 0
\(577\) −18690.4 −1.34851 −0.674254 0.738499i \(-0.735535\pi\)
−0.674254 + 0.738499i \(0.735535\pi\)
\(578\) 13800.9 23903.8i 0.993151 1.72019i
\(579\) 0 0
\(580\) 1083.06 + 1875.92i 0.0775376 + 0.134299i
\(581\) −5327.54 9227.56i −0.380419 0.658905i
\(582\) 0 0
\(583\) −58.1249 + 100.675i −0.00412914 + 0.00715187i
\(584\) −859.661 −0.0609127
\(585\) 0 0
\(586\) 9560.81 0.673982
\(587\) 3842.27 6655.01i 0.270166 0.467941i −0.698738 0.715378i \(-0.746255\pi\)
0.968904 + 0.247436i \(0.0795881\pi\)
\(588\) 0 0
\(589\) −1333.77 2310.16i −0.0933057 0.161610i
\(590\) −3289.03 5696.77i −0.229504 0.397512i
\(591\) 0 0
\(592\) −1785.45 + 3092.48i −0.123955 + 0.214696i
\(593\) −1520.59 −0.105301 −0.0526504 0.998613i \(-0.516767\pi\)
−0.0526504 + 0.998613i \(0.516767\pi\)
\(594\) 0 0
\(595\) 7707.20 0.531033
\(596\) −3463.57 + 5999.08i −0.238042 + 0.412302i
\(597\) 0 0
\(598\) −294.795 510.600i −0.0201590 0.0349164i
\(599\) −2831.30 4903.96i −0.193128 0.334508i 0.753157 0.657841i \(-0.228530\pi\)
−0.946285 + 0.323333i \(0.895197\pi\)
\(600\) 0 0
\(601\) −1156.24 + 2002.67i −0.0784761 + 0.135925i −0.902593 0.430496i \(-0.858339\pi\)
0.824117 + 0.566420i \(0.191672\pi\)
\(602\) −7994.84 −0.541271
\(603\) 0 0
\(604\) 2220.74 0.149603
\(605\) −3324.73 + 5758.60i −0.223421 + 0.386976i
\(606\) 0 0
\(607\) 2977.30 + 5156.84i 0.199086 + 0.344826i 0.948232 0.317578i \(-0.102869\pi\)
−0.749147 + 0.662404i \(0.769536\pi\)
\(608\) −747.405 1294.54i −0.0498541 0.0863498i
\(609\) 0 0
\(610\) 192.539 333.487i 0.0127798 0.0221352i
\(611\) 6498.38 0.430272
\(612\) 0 0
\(613\) −19170.4 −1.26310 −0.631552 0.775333i \(-0.717582\pi\)
−0.631552 + 0.775333i \(0.717582\pi\)
\(614\) −6471.01 + 11208.1i −0.425324 + 0.736682i
\(615\) 0 0
\(616\) 47.4407 + 82.1697i 0.00310299 + 0.00537453i
\(617\) −14072.3 24373.9i −0.918197 1.59036i −0.802152 0.597120i \(-0.796312\pi\)
−0.116045 0.993244i \(-0.537022\pi\)
\(618\) 0 0
\(619\) 10541.7 18258.8i 0.684505 1.18560i −0.289087 0.957303i \(-0.593352\pi\)
0.973592 0.228294i \(-0.0733149\pi\)
\(620\) 1142.10 0.0739805
\(621\) 0 0
\(622\) −3902.32 −0.251557
\(623\) 3252.13 5632.85i 0.209139 0.362240i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 5346.39 + 9260.23i 0.341350 + 0.591235i
\(627\) 0 0
\(628\) 2974.60 5152.15i 0.189012 0.327378i
\(629\) 30530.8 1.93536
\(630\) 0 0
\(631\) −26107.2 −1.64709 −0.823544 0.567252i \(-0.808007\pi\)
−0.823544 + 0.567252i \(0.808007\pi\)
\(632\) −414.923 + 718.667i −0.0261151 + 0.0452327i
\(633\) 0 0
\(634\) 9746.13 + 16880.8i 0.610518 + 1.05745i
\(635\) −2895.49 5015.14i −0.180951 0.313417i
\(636\) 0 0
\(637\) −1454.35 + 2519.00i −0.0904605 + 0.156682i
\(638\) 227.998 0.0141481
\(639\) 0 0
\(640\) 640.000 0.0395285
\(641\) −882.303 + 1528.19i −0.0543664 + 0.0941654i −0.891928 0.452178i \(-0.850647\pi\)
0.837561 + 0.546343i \(0.183981\pi\)
\(642\) 0 0
\(643\) −9141.93 15834.3i −0.560688 0.971140i −0.997437 0.0715565i \(-0.977203\pi\)
0.436749 0.899584i \(-0.356130\pi\)
\(644\) 493.421 + 854.630i 0.0301918 + 0.0522937i
\(645\) 0 0
\(646\) −6390.25 + 11068.2i −0.389197 + 0.674109i
\(647\) −14271.6 −0.867192 −0.433596 0.901107i \(-0.642756\pi\)
−0.433596 + 0.901107i \(0.642756\pi\)
\(648\) 0 0
\(649\) −692.380 −0.0418772
\(650\) −336.603 + 583.013i −0.0203118 + 0.0351810i
\(651\) 0 0
\(652\) 3003.56 + 5202.31i 0.180412 + 0.312482i
\(653\) −3409.38 5905.22i −0.204317 0.353888i 0.745598 0.666396i \(-0.232164\pi\)
−0.949915 + 0.312508i \(0.898831\pi\)
\(654\) 0 0
\(655\) 2717.40 4706.67i 0.162103 0.280771i
\(656\) 1101.48 0.0655571
\(657\) 0 0
\(658\) −10876.8 −0.644412
\(659\) 14840.4 25704.3i 0.877236 1.51942i 0.0228754 0.999738i \(-0.492718\pi\)
0.854361 0.519680i \(-0.173949\pi\)
\(660\) 0 0
\(661\) 13752.9 + 23820.7i 0.809267 + 1.40169i 0.913372 + 0.407125i \(0.133469\pi\)
−0.104106 + 0.994566i \(0.533198\pi\)
\(662\) −5408.61 9367.99i −0.317540 0.549996i
\(663\) 0 0
\(664\) −3782.43 + 6551.37i −0.221065 + 0.382895i
\(665\) −2631.79 −0.153468
\(666\) 0 0
\(667\) 2371.36 0.137660
\(668\) 6816.32 11806.2i 0.394808 0.683827i
\(669\) 0 0
\(670\) 3390.04 + 5871.72i 0.195475 + 0.338573i
\(671\) −20.2658 35.1014i −0.00116595 0.00201949i
\(672\) 0 0
\(673\) −15610.2 + 27037.6i −0.894099 + 1.54863i −0.0591836 + 0.998247i \(0.518850\pi\)
−0.834916 + 0.550378i \(0.814484\pi\)
\(674\) 15749.3 0.900063
\(675\) 0 0
\(676\) −8062.87 −0.458743
\(677\) 4343.28 7522.79i 0.246567 0.427067i −0.716004 0.698096i \(-0.754031\pi\)
0.962571 + 0.271029i \(0.0873641\pi\)
\(678\) 0 0
\(679\) −6689.14 11585.9i −0.378064 0.654826i
\(680\) −2735.97 4738.85i −0.154294 0.267245i
\(681\) 0 0
\(682\) 60.1065 104.108i 0.00337478 0.00584528i
\(683\) 11939.8 0.668905 0.334452 0.942413i \(-0.391449\pi\)
0.334452 + 0.942413i \(0.391449\pi\)
\(684\) 0 0
\(685\) 7080.42 0.394933
\(686\) 6299.16 10910.5i 0.350587 0.607235i
\(687\) 0 0
\(688\) 2838.08 + 4915.70i 0.157269 + 0.272397i
\(689\) −743.520 1287.82i −0.0411116 0.0712073i
\(690\) 0 0
\(691\) 4890.07 8469.85i 0.269214 0.466293i −0.699445 0.714687i \(-0.746569\pi\)
0.968659 + 0.248394i \(0.0799027\pi\)
\(692\) −9700.19 −0.532870
\(693\) 0 0
\(694\) 17021.0 0.930993
\(695\) −1328.96 + 2301.83i −0.0725329 + 0.125631i
\(696\) 0 0
\(697\) −4708.77 8155.83i −0.255893 0.443220i
\(698\) 8272.86 + 14329.0i 0.448614 + 0.777022i
\(699\) 0 0
\(700\) 563.397 975.833i 0.0304206 0.0526900i
\(701\) 11963.4 0.644581 0.322290 0.946641i \(-0.395547\pi\)
0.322290 + 0.946641i \(0.395547\pi\)
\(702\) 0 0
\(703\) −10425.4 −0.559319
\(704\) 33.6819 58.3387i 0.00180317 0.00312319i
\(705\) 0 0
\(706\) 5434.55 + 9412.91i 0.289705 + 0.501784i
\(707\) −7261.27 12576.9i −0.386264 0.669028i
\(708\) 0 0
\(709\) 6451.96 11175.1i 0.341761 0.591947i −0.642999 0.765867i \(-0.722310\pi\)
0.984760 + 0.173920i \(0.0556434\pi\)
\(710\) 5720.65 0.302383
\(711\) 0 0
\(712\) −4617.88 −0.243065
\(713\) 625.155 1082.80i 0.0328362 0.0568740i
\(714\) 0 0
\(715\) 35.4294 + 61.3655i 0.00185313 + 0.00320971i
\(716\) 8249.17 + 14288.0i 0.430567 + 0.745764i
\(717\) 0 0
\(718\) 8737.11 15133.1i 0.454131 0.786578i
\(719\) 19351.9 1.00376 0.501881 0.864936i \(-0.332641\pi\)
0.501881 + 0.864936i \(0.332641\pi\)
\(720\) 0 0
\(721\) −2476.78 −0.127934
\(722\) −4676.91 + 8100.65i −0.241076 + 0.417555i
\(723\) 0 0
\(724\) 8107.29 + 14042.2i 0.416167 + 0.720822i
\(725\) −1353.83 2344.90i −0.0693517 0.120121i
\(726\) 0 0
\(727\) 16894.4 29261.9i 0.861868 1.49280i −0.00825650 0.999966i \(-0.502628\pi\)
0.870124 0.492833i \(-0.164039\pi\)
\(728\) −1213.70 −0.0617896
\(729\) 0 0
\(730\) 1074.58 0.0544820
\(731\) 24265.4 42028.8i 1.22775 2.12653i
\(732\) 0 0
\(733\) −10498.6 18184.0i −0.529022 0.916292i −0.999427 0.0338421i \(-0.989226\pi\)
0.470405 0.882450i \(-0.344108\pi\)
\(734\) −2291.28 3968.62i −0.115222 0.199570i
\(735\) 0 0
\(736\) 350.318 606.769i 0.0175447 0.0303883i
\(737\) 713.643 0.0356681
\(738\) 0 0
\(739\) 27556.6 1.37170 0.685849 0.727744i \(-0.259431\pi\)
0.685849 + 0.727744i \(0.259431\pi\)
\(740\) 2231.81 3865.60i 0.110869 0.192030i
\(741\) 0 0
\(742\) 1244.49 + 2155.51i 0.0615722 + 0.106646i
\(743\) 5936.90 + 10283.0i 0.293141 + 0.507735i 0.974551 0.224167i \(-0.0719662\pi\)
−0.681410 + 0.731902i \(0.738633\pi\)
\(744\) 0 0
\(745\) 4329.46 7498.85i 0.212912 0.368774i
\(746\) −12699.3 −0.623263
\(747\) 0 0
\(748\) −575.955 −0.0281537
\(749\) −5170.76 + 8956.02i −0.252250 + 0.436910i
\(750\) 0 0
\(751\) 661.879 + 1146.41i 0.0321602 + 0.0557031i 0.881658 0.471890i \(-0.156428\pi\)
−0.849497 + 0.527593i \(0.823095\pi\)
\(752\) 3861.16 + 6687.72i 0.187237 + 0.324303i
\(753\) 0 0
\(754\) −1458.25 + 2525.76i −0.0704327 + 0.121993i
\(755\) −2775.92 −0.133809
\(756\) 0 0
\(757\) −29436.0 −1.41330 −0.706650 0.707563i \(-0.749795\pi\)
−0.706650 + 0.707563i \(0.749795\pi\)
\(758\) 13681.6 23697.2i 0.655591 1.13552i
\(759\) 0 0
\(760\) 934.256 + 1618.18i 0.0445908 + 0.0772336i
\(761\) −14505.6 25124.5i −0.690970 1.19680i −0.971520 0.236956i \(-0.923850\pi\)
0.280550 0.959839i \(-0.409483\pi\)
\(762\) 0 0
\(763\) 2652.94 4595.02i 0.125875 0.218022i
\(764\) −5918.62 −0.280272
\(765\) 0 0
\(766\) 14949.1 0.705134
\(767\) 4428.39 7670.19i 0.208474 0.361088i
\(768\) 0 0
\(769\) 15169.5 + 26274.4i 0.711348 + 1.23209i 0.964351 + 0.264625i \(0.0852482\pi\)
−0.253004 + 0.967465i \(0.581418\pi\)
\(770\) −59.3009 102.712i −0.00277540 0.00480713i
\(771\) 0 0
\(772\) 4735.38 8201.91i 0.220764 0.382375i
\(773\) 16100.2 0.749139 0.374569 0.927199i \(-0.377791\pi\)
0.374569 + 0.927199i \(0.377791\pi\)
\(774\) 0 0
\(775\) −1427.63 −0.0661702
\(776\) −4749.14 + 8225.76i −0.219696 + 0.380525i
\(777\) 0 0
\(778\) 13100.4 + 22690.5i 0.603691 + 1.04562i
\(779\) 1607.91 + 2784.98i 0.0739529 + 0.128090i
\(780\) 0 0
\(781\) 301.066 521.462i 0.0137938 0.0238916i
\(782\) −5990.38 −0.273933
\(783\) 0 0
\(784\) −3456.53 −0.157459
\(785\) −3718.25 + 6440.19i −0.169057 + 0.292816i
\(786\) 0 0
\(787\) −9295.05 16099.5i −0.421007 0.729206i 0.575031 0.818132i \(-0.304990\pi\)
−0.996038 + 0.0889256i \(0.971657\pi\)
\(788\) −7207.18 12483.2i −0.325819 0.564334i
\(789\) 0 0
\(790\) 518.653 898.334i 0.0233580 0.0404573i
\(791\) −5497.27 −0.247105
\(792\) 0 0
\(793\) 518.472 0.0232175
\(794\) 5955.26 10314.8i 0.266177 0.461032i
\(795\) 0 0
\(796\) −3684.90 6382.44i −0.164080 0.284195i
\(797\) −11051.8 19142.3i −0.491186 0.850759i 0.508762 0.860907i \(-0.330103\pi\)
−0.999949 + 0.0101477i \(0.996770\pi\)
\(798\) 0 0
\(799\) 33012.6 57179.5i 1.46170 2.53175i
\(800\) −800.000 −0.0353553
\(801\) 0 0
\(802\) 23520.9 1.03560
\(803\) 56.5527 97.9522i 0.00248531 0.00430468i
\(804\) 0 0
\(805\) −616.776 1068.29i −0.0270043 0.0467729i
\(806\) 768.869 + 1331.72i 0.0336008 + 0.0581983i
\(807\) 0 0
\(808\) −5155.35 + 8929.32i −0.224461 + 0.388778i
\(809\) 12985.4 0.564329 0.282165 0.959366i \(-0.408948\pi\)
0.282165 + 0.959366i \(0.408948\pi\)
\(810\) 0 0
\(811\) −41541.9 −1.79868 −0.899342 0.437247i \(-0.855954\pi\)
−0.899342 + 0.437247i \(0.855954\pi\)
\(812\) 2440.78 4227.56i 0.105486 0.182707i
\(813\) 0 0
\(814\) −234.911 406.877i −0.0101150 0.0175197i
\(815\) −3754.44 6502.89i −0.161365 0.279492i
\(816\) 0 0
\(817\) −8285.92 + 14351.6i −0.354820 + 0.614566i
\(818\) 3505.24 0.149826
\(819\) 0 0
\(820\) −1376.85 −0.0586361
\(821\) −17699.9 + 30657.1i −0.752413 + 1.30322i 0.194238 + 0.980954i \(0.437777\pi\)
−0.946650 + 0.322262i \(0.895557\pi\)
\(822\) 0 0
\(823\) 12200.0 + 21131.1i 0.516727 + 0.894998i 0.999811 + 0.0194239i \(0.00618322\pi\)
−0.483084 + 0.875574i \(0.660483\pi\)
\(824\) 879.230 + 1522.87i 0.0371717 + 0.0643832i
\(825\) 0 0
\(826\) −7412.13 + 12838.2i −0.312229 + 0.540796i
\(827\) 20292.5 0.853252 0.426626 0.904428i \(-0.359702\pi\)
0.426626 + 0.904428i \(0.359702\pi\)
\(828\) 0 0
\(829\) 26651.2 1.11657 0.558283 0.829651i \(-0.311460\pi\)
0.558283 + 0.829651i \(0.311460\pi\)
\(830\) 4728.04 8189.21i 0.197726 0.342472i
\(831\) 0 0
\(832\) 430.851 + 746.256i 0.0179532 + 0.0310959i
\(833\) 14776.5 + 25593.7i 0.614618 + 1.06455i
\(834\) 0 0
\(835\) −8520.41 + 14757.8i −0.353127 + 0.611633i
\(836\) 196.672 0.00813641
\(837\) 0 0
\(838\) −10141.8 −0.418070
\(839\) −21885.1 + 37906.2i −0.900547 + 1.55979i −0.0737604 + 0.997276i \(0.523500\pi\)
−0.826786 + 0.562516i \(0.809833\pi\)
\(840\) 0 0
\(841\) 6329.36 + 10962.8i 0.259517 + 0.449497i
\(842\) −416.740 721.814i −0.0170568 0.0295432i
\(843\) 0 0
\(844\) 6419.60 11119.1i 0.261815 0.453477i
\(845\) 10078.6 0.410312
\(846\) 0 0
\(847\) 14985.2 0.607906
\(848\) 883.559 1530.37i 0.0357801 0.0619730i
\(849\) 0 0
\(850\) 3419.97 + 5923.56i 0.138005 + 0.239031i
\(851\) −2443.26 4231.85i −0.0984181 0.170465i
\(852\) 0 0
\(853\) −1742.56 + 3018.20i −0.0699461 + 0.121150i −0.898877 0.438200i \(-0.855616\pi\)
0.828931 + 0.559350i \(0.188949\pi\)
\(854\) −867.806 −0.0347725
\(855\) 0 0
\(856\) 7342.26 0.293170
\(857\) 5054.46 8754.58i 0.201467 0.348951i −0.747535 0.664223i \(-0.768763\pi\)
0.949001 + 0.315272i \(0.102096\pi\)
\(858\) 0 0
\(859\) 20554.9 + 35602.1i 0.816441 + 1.41412i 0.908288 + 0.418344i \(0.137389\pi\)
−0.0918474 + 0.995773i \(0.529277\pi\)
\(860\) −3547.60 6144.63i −0.140665 0.243640i
\(861\) 0 0
\(862\) −8870.50 + 15364.1i −0.350499 + 0.607082i
\(863\) −31278.0 −1.23374 −0.616869 0.787066i \(-0.711599\pi\)
−0.616869 + 0.787066i \(0.711599\pi\)
\(864\) 0 0
\(865\) 12125.2 0.476613
\(866\) −12172.1 + 21082.8i −0.477628 + 0.827276i
\(867\) 0 0
\(868\) −1286.92 2229.00i −0.0503234 0.0871628i
\(869\) −54.5913 94.5549i −0.00213105 0.00369109i
\(870\) 0 0
\(871\) −4564.38 + 7905.74i −0.177564 + 0.307550i
\(872\) −3767.05 −0.146294
\(873\) 0 0
\(874\) 2045.54 0.0791665
\(875\) −704.247 + 1219.79i −0.0272090 + 0.0471274i
\(876\) 0 0
\(877\) −3505.23 6071.23i −0.134964 0.233764i 0.790620 0.612307i \(-0.209758\pi\)
−0.925584 + 0.378543i \(0.876425\pi\)
\(878\) −5589.92 9682.03i −0.214864 0.372156i
\(879\) 0 0
\(880\) −42.1024 + 72.9234i −0.00161281 + 0.00279346i
\(881\) 40740.1 1.55797 0.778983 0.627045i \(-0.215736\pi\)
0.778983 + 0.627045i \(0.215736\pi\)
\(882\) 0 0
\(883\) −19342.0 −0.737158 −0.368579 0.929596i \(-0.620156\pi\)
−0.368579 + 0.929596i \(0.620156\pi\)
\(884\) 3683.74 6380.43i 0.140156 0.242757i
\(885\) 0 0
\(886\) 3486.92 + 6039.52i 0.132218 + 0.229009i
\(887\) −7262.88 12579.7i −0.274931 0.476194i 0.695187 0.718829i \(-0.255322\pi\)
−0.970118 + 0.242635i \(0.921988\pi\)
\(888\) 0 0
\(889\) −6525.25 + 11302.1i −0.246175 + 0.426388i
\(890\) 5772.35 0.217404
\(891\) 0 0
\(892\) 25514.7 0.957732
\(893\) −11272.8 + 19525.1i −0.422432 + 0.731673i
\(894\) 0 0
\(895\) −10311.5 17860.0i −0.385111 0.667032i
\(896\) −721.149 1249.07i −0.0268883 0.0465718i
\(897\) 0 0
\(898\) 6661.15 11537.4i 0.247534 0.428741i
\(899\) −6184.85 −0.229451
\(900\) 0 0
\(901\) −15108.7 −0.558651
\(902\) −72.4606 + 125.505i −0.00267480 + 0.00463290i
\(903\) 0 0
\(904\) 1951.47 + 3380.05i 0.0717975 + 0.124357i
\(905\) −10134.1 17552.8i −0.372231 0.644723i
\(906\) 0 0
\(907\) 11827.6 20486.1i 0.432999 0.749977i −0.564131 0.825686i \(-0.690789\pi\)
0.997130 + 0.0757086i \(0.0241219\pi\)
\(908\) −4283.43 −0.156554
\(909\) 0 0
\(910\) 1517.13 0.0552663
\(911\) 25239.3 43715.8i 0.917910 1.58987i 0.115327 0.993328i \(-0.463209\pi\)
0.802584 0.596540i \(-0.203458\pi\)
\(912\) 0 0
\(913\) −497.654 861.963i −0.0180394 0.0312451i
\(914\) 11643.9 + 20167.8i 0.421385 + 0.729860i
\(915\) 0 0
\(916\) 5115.79 8860.81i 0.184531 0.319617i
\(917\) −12247.8 −0.441067
\(918\) 0 0
\(919\) −14457.9 −0.518958 −0.259479 0.965749i \(-0.583551\pi\)
−0.259479 + 0.965749i \(0.583551\pi\)
\(920\) −437.898 + 758.461i −0.0156925 + 0.0271801i
\(921\) 0 0
\(922\) −15502.9 26851.8i −0.553753 0.959129i
\(923\) 3851.17 + 6670.43i 0.137338 + 0.237876i
\(924\) 0 0
\(925\) −2789.76 + 4832.00i −0.0991640 + 0.171757i
\(926\) −13041.4 −0.462816
\(927\) 0 0
\(928\) −3465.81 −0.122598
\(929\) −13994.7 + 24239.5i −0.494242 + 0.856052i −0.999978 0.00663591i \(-0.997888\pi\)
0.505736 + 0.862688i \(0.331221\pi\)
\(930\) 0 0
\(931\) −5045.76 8739.52i −0.177624 0.307654i
\(932\) 5065.36 + 8773.47i 0.178027 + 0.308352i
\(933\) 0 0
\(934\) 11488.0 19897.8i 0.402461 0.697083i
\(935\) 719.943 0.0251815
\(936\) 0 0
\(937\) 33622.8 1.17226 0.586130 0.810217i \(-0.300651\pi\)
0.586130 + 0.810217i \(0.300651\pi\)
\(938\) 7639.75 13232.4i 0.265935 0.460613i
\(939\) 0 0
\(940\) −4826.45 8359.65i −0.167470 0.290066i
\(941\) −11910.6 20629.8i −0.412621 0.714680i 0.582555 0.812791i \(-0.302053\pi\)
−0.995175 + 0.0981115i \(0.968720\pi\)
\(942\) 0 0
\(943\) −753.647 + 1305.36i −0.0260256 + 0.0450776i
\(944\) 10524.9 0.362877
\(945\) 0 0
\(946\) −746.812 −0.0256670
\(947\) 11035.5 19114.0i 0.378675 0.655884i −0.612195 0.790707i \(-0.709713\pi\)
0.990870 + 0.134823i \(0.0430465\pi\)
\(948\) 0 0
\(949\) 723.410 + 1252.98i 0.0247449 + 0.0428594i
\(950\) −1167.82 2022.72i −0.0398833 0.0690798i
\(951\) 0 0
\(952\) −6165.76 + 10679.4i −0.209909 + 0.363573i
\(953\) −7748.53 −0.263378 −0.131689 0.991291i \(-0.542040\pi\)
−0.131689 + 0.991291i \(0.542040\pi\)
\(954\) 0 0
\(955\) 7398.28 0.250683
\(956\) −2304.98 + 3992.34i −0.0779794 + 0.135064i
\(957\) 0 0
\(958\) 17639.4 + 30552.3i 0.594888 + 1.03038i
\(959\) −7978.18 13818.6i −0.268643 0.465304i
\(960\) 0 0
\(961\) 13265.0 22975.7i 0.445269 0.771228i
\(962\) 6009.85 0.201419
\(963\) 0 0
\(964\) 27783.1 0.928250
\(965\) −5919.22 + 10252.4i −0.197457 + 0.342006i
\(966\) 0 0
\(967\) −20402.4 35337.9i −0.678486 1.17517i −0.975437 0.220279i \(-0.929303\pi\)
0.296951 0.954893i \(-0.404030\pi\)
\(968\) −5319.57 9213.76i −0.176630 0.305931i
\(969\) 0 0
\(970\) 5936.43 10282.2i 0.196502 0.340352i
\(971\) −28616.3 −0.945768 −0.472884 0.881125i \(-0.656787\pi\)
−0.472884 + 0.881125i \(0.656787\pi\)
\(972\) 0 0
\(973\) 5989.87 0.197355
\(974\) −1182.88 + 2048.81i −0.0389137 + 0.0674005i
\(975\) 0 0
\(976\) 308.062 + 533.579i 0.0101033 + 0.0174994i
\(977\) −6507.19 11270.8i −0.213085 0.369073i 0.739594 0.673053i \(-0.235018\pi\)
−0.952678 + 0.303980i \(0.901684\pi\)
\(978\) 0 0
\(979\) 303.787 526.174i 0.00991733 0.0171773i
\(980\) 4320.67 0.140835
\(981\) 0 0
\(982\) −994.414 −0.0323147
\(983\) −16704.7 + 28933.4i −0.542012 + 0.938792i 0.456777 + 0.889581i \(0.349004\pi\)
−0.998788 + 0.0492105i \(0.984329\pi\)
\(984\) 0 0
\(985\) 9008.97 + 15604.0i 0.291421 + 0.504756i
\(986\) 14816.2 + 25662.4i 0.478543 + 0.828860i
\(987\) 0 0
\(988\) −1257.89 + 2178.73i −0.0405049 + 0.0701566i
\(989\) −7767.43 −0.249737
\(990\) 0 0
\(991\) 51837.9 1.66164 0.830820 0.556541i \(-0.187872\pi\)
0.830820 + 0.556541i \(0.187872\pi\)
\(992\) −913.682 + 1582.54i −0.0292434 + 0.0506510i
\(993\) 0 0
\(994\) −6446.00 11164.8i −0.205689 0.356264i
\(995\) 4606.13 + 7978.05i 0.146758 + 0.254192i
\(996\) 0 0
\(997\) −13694.7 + 23719.9i −0.435020 + 0.753476i −0.997297 0.0734724i \(-0.976592\pi\)
0.562278 + 0.826949i \(0.309925\pi\)
\(998\) 10552.1 0.334689
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.4.e.bf.541.1 4
3.2 odd 2 810.4.e.bb.541.1 4
9.2 odd 6 810.4.a.m.1.2 yes 2
9.4 even 3 inner 810.4.e.bf.271.1 4
9.5 odd 6 810.4.e.bb.271.1 4
9.7 even 3 810.4.a.g.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.4.a.g.1.2 2 9.7 even 3
810.4.a.m.1.2 yes 2 9.2 odd 6
810.4.e.bb.271.1 4 9.5 odd 6
810.4.e.bb.541.1 4 3.2 odd 2
810.4.e.bf.271.1 4 9.4 even 3 inner
810.4.e.bf.541.1 4 1.1 even 1 trivial