Properties

Label 8092.2.a.z.1.9
Level $8092$
Weight $2$
Character 8092.1
Self dual yes
Analytic conductor $64.615$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8092,2,Mod(1,8092)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8092, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8092.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8092 = 2^{2} \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8092.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,8,0,8,0,20,0,28,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.6149453156\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{19} - 12 x^{18} + 240 x^{17} - 224 x^{16} - 2776 x^{15} + 5324 x^{14} + 15280 x^{13} + \cdots + 544 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 476)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(0.411306\) of defining polynomial
Character \(\chi\) \(=\) 8092.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.411306 q^{3} -0.830159 q^{5} +1.00000 q^{7} -2.83083 q^{9} -2.58028 q^{11} -0.648987 q^{13} -0.341449 q^{15} -6.04733 q^{19} +0.411306 q^{21} -2.44561 q^{23} -4.31084 q^{25} -2.39825 q^{27} -8.15224 q^{29} -0.704384 q^{31} -1.06128 q^{33} -0.830159 q^{35} -7.39962 q^{37} -0.266932 q^{39} +7.97071 q^{41} +4.09687 q^{43} +2.35004 q^{45} +6.53831 q^{47} +1.00000 q^{49} +11.8733 q^{53} +2.14204 q^{55} -2.48730 q^{57} -4.49372 q^{59} +10.9567 q^{61} -2.83083 q^{63} +0.538763 q^{65} +9.41150 q^{67} -1.00589 q^{69} +14.3610 q^{71} +12.5276 q^{73} -1.77307 q^{75} -2.58028 q^{77} +5.31955 q^{79} +7.50607 q^{81} +3.59081 q^{83} -3.35306 q^{87} -7.78812 q^{89} -0.648987 q^{91} -0.289717 q^{93} +5.02025 q^{95} +12.7068 q^{97} +7.30432 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{3} + 8 q^{5} + 20 q^{7} + 28 q^{9} + 16 q^{11} + 8 q^{13} + 8 q^{15} + 8 q^{19} + 8 q^{21} + 40 q^{23} + 36 q^{25} + 32 q^{27} + 16 q^{29} + 16 q^{31} + 8 q^{33} + 8 q^{35} + 24 q^{37} + 16 q^{39}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.411306 0.237468 0.118734 0.992926i \(-0.462116\pi\)
0.118734 + 0.992926i \(0.462116\pi\)
\(4\) 0 0
\(5\) −0.830159 −0.371259 −0.185629 0.982620i \(-0.559432\pi\)
−0.185629 + 0.982620i \(0.559432\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.83083 −0.943609
\(10\) 0 0
\(11\) −2.58028 −0.777983 −0.388992 0.921241i \(-0.627176\pi\)
−0.388992 + 0.921241i \(0.627176\pi\)
\(12\) 0 0
\(13\) −0.648987 −0.179997 −0.0899983 0.995942i \(-0.528686\pi\)
−0.0899983 + 0.995942i \(0.528686\pi\)
\(14\) 0 0
\(15\) −0.341449 −0.0881619
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −6.04733 −1.38735 −0.693677 0.720286i \(-0.744010\pi\)
−0.693677 + 0.720286i \(0.744010\pi\)
\(20\) 0 0
\(21\) 0.411306 0.0897543
\(22\) 0 0
\(23\) −2.44561 −0.509945 −0.254972 0.966948i \(-0.582066\pi\)
−0.254972 + 0.966948i \(0.582066\pi\)
\(24\) 0 0
\(25\) −4.31084 −0.862167
\(26\) 0 0
\(27\) −2.39825 −0.461544
\(28\) 0 0
\(29\) −8.15224 −1.51383 −0.756917 0.653511i \(-0.773295\pi\)
−0.756917 + 0.653511i \(0.773295\pi\)
\(30\) 0 0
\(31\) −0.704384 −0.126511 −0.0632555 0.997997i \(-0.520148\pi\)
−0.0632555 + 0.997997i \(0.520148\pi\)
\(32\) 0 0
\(33\) −1.06128 −0.184746
\(34\) 0 0
\(35\) −0.830159 −0.140323
\(36\) 0 0
\(37\) −7.39962 −1.21649 −0.608245 0.793749i \(-0.708126\pi\)
−0.608245 + 0.793749i \(0.708126\pi\)
\(38\) 0 0
\(39\) −0.266932 −0.0427434
\(40\) 0 0
\(41\) 7.97071 1.24482 0.622408 0.782693i \(-0.286155\pi\)
0.622408 + 0.782693i \(0.286155\pi\)
\(42\) 0 0
\(43\) 4.09687 0.624767 0.312384 0.949956i \(-0.398873\pi\)
0.312384 + 0.949956i \(0.398873\pi\)
\(44\) 0 0
\(45\) 2.35004 0.350323
\(46\) 0 0
\(47\) 6.53831 0.953711 0.476855 0.878982i \(-0.341777\pi\)
0.476855 + 0.878982i \(0.341777\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.8733 1.63092 0.815460 0.578813i \(-0.196484\pi\)
0.815460 + 0.578813i \(0.196484\pi\)
\(54\) 0 0
\(55\) 2.14204 0.288833
\(56\) 0 0
\(57\) −2.48730 −0.329451
\(58\) 0 0
\(59\) −4.49372 −0.585033 −0.292516 0.956261i \(-0.594493\pi\)
−0.292516 + 0.956261i \(0.594493\pi\)
\(60\) 0 0
\(61\) 10.9567 1.40287 0.701433 0.712735i \(-0.252544\pi\)
0.701433 + 0.712735i \(0.252544\pi\)
\(62\) 0 0
\(63\) −2.83083 −0.356651
\(64\) 0 0
\(65\) 0.538763 0.0668253
\(66\) 0 0
\(67\) 9.41150 1.14980 0.574899 0.818225i \(-0.305041\pi\)
0.574899 + 0.818225i \(0.305041\pi\)
\(68\) 0 0
\(69\) −1.00589 −0.121095
\(70\) 0 0
\(71\) 14.3610 1.70433 0.852166 0.523271i \(-0.175288\pi\)
0.852166 + 0.523271i \(0.175288\pi\)
\(72\) 0 0
\(73\) 12.5276 1.46624 0.733122 0.680097i \(-0.238062\pi\)
0.733122 + 0.680097i \(0.238062\pi\)
\(74\) 0 0
\(75\) −1.77307 −0.204737
\(76\) 0 0
\(77\) −2.58028 −0.294050
\(78\) 0 0
\(79\) 5.31955 0.598497 0.299248 0.954175i \(-0.403264\pi\)
0.299248 + 0.954175i \(0.403264\pi\)
\(80\) 0 0
\(81\) 7.50607 0.834007
\(82\) 0 0
\(83\) 3.59081 0.394143 0.197071 0.980389i \(-0.436857\pi\)
0.197071 + 0.980389i \(0.436857\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −3.35306 −0.359486
\(88\) 0 0
\(89\) −7.78812 −0.825539 −0.412769 0.910836i \(-0.635438\pi\)
−0.412769 + 0.910836i \(0.635438\pi\)
\(90\) 0 0
\(91\) −0.648987 −0.0680323
\(92\) 0 0
\(93\) −0.289717 −0.0300423
\(94\) 0 0
\(95\) 5.02025 0.515067
\(96\) 0 0
\(97\) 12.7068 1.29018 0.645088 0.764108i \(-0.276821\pi\)
0.645088 + 0.764108i \(0.276821\pi\)
\(98\) 0 0
\(99\) 7.30432 0.734112
\(100\) 0 0
\(101\) 7.49499 0.745779 0.372890 0.927876i \(-0.378367\pi\)
0.372890 + 0.927876i \(0.378367\pi\)
\(102\) 0 0
\(103\) −13.1228 −1.29303 −0.646515 0.762901i \(-0.723774\pi\)
−0.646515 + 0.762901i \(0.723774\pi\)
\(104\) 0 0
\(105\) −0.341449 −0.0333221
\(106\) 0 0
\(107\) −2.16355 −0.209158 −0.104579 0.994517i \(-0.533350\pi\)
−0.104579 + 0.994517i \(0.533350\pi\)
\(108\) 0 0
\(109\) −4.14649 −0.397162 −0.198581 0.980084i \(-0.563633\pi\)
−0.198581 + 0.980084i \(0.563633\pi\)
\(110\) 0 0
\(111\) −3.04351 −0.288877
\(112\) 0 0
\(113\) −11.2656 −1.05978 −0.529891 0.848066i \(-0.677767\pi\)
−0.529891 + 0.848066i \(0.677767\pi\)
\(114\) 0 0
\(115\) 2.03024 0.189321
\(116\) 0 0
\(117\) 1.83717 0.169846
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −4.34216 −0.394742
\(122\) 0 0
\(123\) 3.27840 0.295603
\(124\) 0 0
\(125\) 7.72948 0.691345
\(126\) 0 0
\(127\) −7.03547 −0.624297 −0.312148 0.950033i \(-0.601049\pi\)
−0.312148 + 0.950033i \(0.601049\pi\)
\(128\) 0 0
\(129\) 1.68507 0.148362
\(130\) 0 0
\(131\) 6.48213 0.566346 0.283173 0.959069i \(-0.408613\pi\)
0.283173 + 0.959069i \(0.408613\pi\)
\(132\) 0 0
\(133\) −6.04733 −0.524370
\(134\) 0 0
\(135\) 1.99093 0.171352
\(136\) 0 0
\(137\) −15.6105 −1.33370 −0.666849 0.745193i \(-0.732357\pi\)
−0.666849 + 0.745193i \(0.732357\pi\)
\(138\) 0 0
\(139\) 9.74681 0.826714 0.413357 0.910569i \(-0.364356\pi\)
0.413357 + 0.910569i \(0.364356\pi\)
\(140\) 0 0
\(141\) 2.68925 0.226475
\(142\) 0 0
\(143\) 1.67457 0.140034
\(144\) 0 0
\(145\) 6.76766 0.562024
\(146\) 0 0
\(147\) 0.411306 0.0339239
\(148\) 0 0
\(149\) 8.41645 0.689502 0.344751 0.938694i \(-0.387963\pi\)
0.344751 + 0.938694i \(0.387963\pi\)
\(150\) 0 0
\(151\) −19.1827 −1.56106 −0.780532 0.625116i \(-0.785052\pi\)
−0.780532 + 0.625116i \(0.785052\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.584751 0.0469683
\(156\) 0 0
\(157\) 20.6310 1.64654 0.823268 0.567653i \(-0.192148\pi\)
0.823268 + 0.567653i \(0.192148\pi\)
\(158\) 0 0
\(159\) 4.88355 0.387291
\(160\) 0 0
\(161\) −2.44561 −0.192741
\(162\) 0 0
\(163\) 20.0232 1.56834 0.784171 0.620545i \(-0.213089\pi\)
0.784171 + 0.620545i \(0.213089\pi\)
\(164\) 0 0
\(165\) 0.881035 0.0685885
\(166\) 0 0
\(167\) −24.5210 −1.89749 −0.948744 0.316045i \(-0.897645\pi\)
−0.948744 + 0.316045i \(0.897645\pi\)
\(168\) 0 0
\(169\) −12.5788 −0.967601
\(170\) 0 0
\(171\) 17.1190 1.30912
\(172\) 0 0
\(173\) −0.598964 −0.0455384 −0.0227692 0.999741i \(-0.507248\pi\)
−0.0227692 + 0.999741i \(0.507248\pi\)
\(174\) 0 0
\(175\) −4.31084 −0.325869
\(176\) 0 0
\(177\) −1.84829 −0.138926
\(178\) 0 0
\(179\) −2.39911 −0.179318 −0.0896588 0.995973i \(-0.528578\pi\)
−0.0896588 + 0.995973i \(0.528578\pi\)
\(180\) 0 0
\(181\) −6.53938 −0.486068 −0.243034 0.970018i \(-0.578143\pi\)
−0.243034 + 0.970018i \(0.578143\pi\)
\(182\) 0 0
\(183\) 4.50657 0.333135
\(184\) 0 0
\(185\) 6.14287 0.451633
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2.39825 −0.174447
\(190\) 0 0
\(191\) 4.29647 0.310882 0.155441 0.987845i \(-0.450320\pi\)
0.155441 + 0.987845i \(0.450320\pi\)
\(192\) 0 0
\(193\) 9.07895 0.653517 0.326758 0.945108i \(-0.394044\pi\)
0.326758 + 0.945108i \(0.394044\pi\)
\(194\) 0 0
\(195\) 0.221596 0.0158688
\(196\) 0 0
\(197\) 10.0368 0.715095 0.357547 0.933895i \(-0.383613\pi\)
0.357547 + 0.933895i \(0.383613\pi\)
\(198\) 0 0
\(199\) −12.0391 −0.853429 −0.426714 0.904386i \(-0.640329\pi\)
−0.426714 + 0.904386i \(0.640329\pi\)
\(200\) 0 0
\(201\) 3.87100 0.273040
\(202\) 0 0
\(203\) −8.15224 −0.572175
\(204\) 0 0
\(205\) −6.61696 −0.462148
\(206\) 0 0
\(207\) 6.92309 0.481188
\(208\) 0 0
\(209\) 15.6038 1.07934
\(210\) 0 0
\(211\) 21.8913 1.50706 0.753529 0.657414i \(-0.228350\pi\)
0.753529 + 0.657414i \(0.228350\pi\)
\(212\) 0 0
\(213\) 5.90675 0.404724
\(214\) 0 0
\(215\) −3.40106 −0.231950
\(216\) 0 0
\(217\) −0.704384 −0.0478167
\(218\) 0 0
\(219\) 5.15268 0.348186
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −8.57622 −0.574306 −0.287153 0.957885i \(-0.592709\pi\)
−0.287153 + 0.957885i \(0.592709\pi\)
\(224\) 0 0
\(225\) 12.2032 0.813549
\(226\) 0 0
\(227\) 15.8544 1.05230 0.526148 0.850393i \(-0.323636\pi\)
0.526148 + 0.850393i \(0.323636\pi\)
\(228\) 0 0
\(229\) −19.4863 −1.28769 −0.643845 0.765156i \(-0.722662\pi\)
−0.643845 + 0.765156i \(0.722662\pi\)
\(230\) 0 0
\(231\) −1.06128 −0.0698273
\(232\) 0 0
\(233\) −15.8467 −1.03815 −0.519074 0.854729i \(-0.673723\pi\)
−0.519074 + 0.854729i \(0.673723\pi\)
\(234\) 0 0
\(235\) −5.42784 −0.354073
\(236\) 0 0
\(237\) 2.18796 0.142124
\(238\) 0 0
\(239\) −9.86627 −0.638196 −0.319098 0.947722i \(-0.603380\pi\)
−0.319098 + 0.947722i \(0.603380\pi\)
\(240\) 0 0
\(241\) 17.4717 1.12545 0.562724 0.826645i \(-0.309753\pi\)
0.562724 + 0.826645i \(0.309753\pi\)
\(242\) 0 0
\(243\) 10.2821 0.659594
\(244\) 0 0
\(245\) −0.830159 −0.0530369
\(246\) 0 0
\(247\) 3.92464 0.249719
\(248\) 0 0
\(249\) 1.47692 0.0935961
\(250\) 0 0
\(251\) 24.0492 1.51797 0.758986 0.651107i \(-0.225695\pi\)
0.758986 + 0.651107i \(0.225695\pi\)
\(252\) 0 0
\(253\) 6.31035 0.396728
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.8241 −0.799945 −0.399973 0.916527i \(-0.630980\pi\)
−0.399973 + 0.916527i \(0.630980\pi\)
\(258\) 0 0
\(259\) −7.39962 −0.459790
\(260\) 0 0
\(261\) 23.0776 1.42847
\(262\) 0 0
\(263\) 14.5779 0.898914 0.449457 0.893302i \(-0.351618\pi\)
0.449457 + 0.893302i \(0.351618\pi\)
\(264\) 0 0
\(265\) −9.85671 −0.605493
\(266\) 0 0
\(267\) −3.20330 −0.196039
\(268\) 0 0
\(269\) 7.33879 0.447454 0.223727 0.974652i \(-0.428178\pi\)
0.223727 + 0.974652i \(0.428178\pi\)
\(270\) 0 0
\(271\) 11.0167 0.669218 0.334609 0.942357i \(-0.391396\pi\)
0.334609 + 0.942357i \(0.391396\pi\)
\(272\) 0 0
\(273\) −0.266932 −0.0161555
\(274\) 0 0
\(275\) 11.1232 0.670752
\(276\) 0 0
\(277\) −10.0398 −0.603232 −0.301616 0.953429i \(-0.597526\pi\)
−0.301616 + 0.953429i \(0.597526\pi\)
\(278\) 0 0
\(279\) 1.99399 0.119377
\(280\) 0 0
\(281\) 6.22839 0.371555 0.185777 0.982592i \(-0.440520\pi\)
0.185777 + 0.982592i \(0.440520\pi\)
\(282\) 0 0
\(283\) 6.88123 0.409047 0.204523 0.978862i \(-0.434436\pi\)
0.204523 + 0.978862i \(0.434436\pi\)
\(284\) 0 0
\(285\) 2.06486 0.122312
\(286\) 0 0
\(287\) 7.97071 0.470496
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 5.22636 0.306375
\(292\) 0 0
\(293\) 20.8767 1.21963 0.609814 0.792544i \(-0.291244\pi\)
0.609814 + 0.792544i \(0.291244\pi\)
\(294\) 0 0
\(295\) 3.73050 0.217198
\(296\) 0 0
\(297\) 6.18816 0.359074
\(298\) 0 0
\(299\) 1.58717 0.0917883
\(300\) 0 0
\(301\) 4.09687 0.236140
\(302\) 0 0
\(303\) 3.08273 0.177098
\(304\) 0 0
\(305\) −9.09584 −0.520826
\(306\) 0 0
\(307\) −20.9303 −1.19455 −0.597277 0.802035i \(-0.703751\pi\)
−0.597277 + 0.802035i \(0.703751\pi\)
\(308\) 0 0
\(309\) −5.39750 −0.307053
\(310\) 0 0
\(311\) 8.31252 0.471360 0.235680 0.971831i \(-0.424268\pi\)
0.235680 + 0.971831i \(0.424268\pi\)
\(312\) 0 0
\(313\) 4.48015 0.253233 0.126617 0.991952i \(-0.459588\pi\)
0.126617 + 0.991952i \(0.459588\pi\)
\(314\) 0 0
\(315\) 2.35004 0.132410
\(316\) 0 0
\(317\) −0.553633 −0.0310951 −0.0155476 0.999879i \(-0.504949\pi\)
−0.0155476 + 0.999879i \(0.504949\pi\)
\(318\) 0 0
\(319\) 21.0351 1.17774
\(320\) 0 0
\(321\) −0.889881 −0.0496683
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 2.79768 0.155187
\(326\) 0 0
\(327\) −1.70548 −0.0943131
\(328\) 0 0
\(329\) 6.53831 0.360469
\(330\) 0 0
\(331\) −33.1492 −1.82204 −0.911022 0.412357i \(-0.864706\pi\)
−0.911022 + 0.412357i \(0.864706\pi\)
\(332\) 0 0
\(333\) 20.9471 1.14789
\(334\) 0 0
\(335\) −7.81304 −0.426872
\(336\) 0 0
\(337\) 2.00018 0.108957 0.0544783 0.998515i \(-0.482650\pi\)
0.0544783 + 0.998515i \(0.482650\pi\)
\(338\) 0 0
\(339\) −4.63362 −0.251664
\(340\) 0 0
\(341\) 1.81751 0.0984235
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0.835051 0.0449577
\(346\) 0 0
\(347\) −16.1307 −0.865941 −0.432971 0.901408i \(-0.642535\pi\)
−0.432971 + 0.901408i \(0.642535\pi\)
\(348\) 0 0
\(349\) −12.3185 −0.659393 −0.329697 0.944087i \(-0.606946\pi\)
−0.329697 + 0.944087i \(0.606946\pi\)
\(350\) 0 0
\(351\) 1.55644 0.0830764
\(352\) 0 0
\(353\) −10.5411 −0.561048 −0.280524 0.959847i \(-0.590508\pi\)
−0.280524 + 0.959847i \(0.590508\pi\)
\(354\) 0 0
\(355\) −11.9219 −0.632748
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.14847 0.166170 0.0830849 0.996542i \(-0.473523\pi\)
0.0830849 + 0.996542i \(0.473523\pi\)
\(360\) 0 0
\(361\) 17.5702 0.924750
\(362\) 0 0
\(363\) −1.78596 −0.0937385
\(364\) 0 0
\(365\) −10.3999 −0.544356
\(366\) 0 0
\(367\) 21.2023 1.10675 0.553377 0.832931i \(-0.313339\pi\)
0.553377 + 0.832931i \(0.313339\pi\)
\(368\) 0 0
\(369\) −22.5637 −1.17462
\(370\) 0 0
\(371\) 11.8733 0.616430
\(372\) 0 0
\(373\) −2.58465 −0.133828 −0.0669142 0.997759i \(-0.521315\pi\)
−0.0669142 + 0.997759i \(0.521315\pi\)
\(374\) 0 0
\(375\) 3.17918 0.164172
\(376\) 0 0
\(377\) 5.29070 0.272485
\(378\) 0 0
\(379\) 14.4376 0.741611 0.370805 0.928711i \(-0.379082\pi\)
0.370805 + 0.928711i \(0.379082\pi\)
\(380\) 0 0
\(381\) −2.89373 −0.148250
\(382\) 0 0
\(383\) −29.0751 −1.48567 −0.742835 0.669475i \(-0.766519\pi\)
−0.742835 + 0.669475i \(0.766519\pi\)
\(384\) 0 0
\(385\) 2.14204 0.109169
\(386\) 0 0
\(387\) −11.5975 −0.589536
\(388\) 0 0
\(389\) 24.2825 1.23117 0.615587 0.788069i \(-0.288919\pi\)
0.615587 + 0.788069i \(0.288919\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 2.66614 0.134489
\(394\) 0 0
\(395\) −4.41608 −0.222197
\(396\) 0 0
\(397\) −29.3485 −1.47296 −0.736480 0.676460i \(-0.763513\pi\)
−0.736480 + 0.676460i \(0.763513\pi\)
\(398\) 0 0
\(399\) −2.48730 −0.124521
\(400\) 0 0
\(401\) 34.2340 1.70957 0.854783 0.518985i \(-0.173690\pi\)
0.854783 + 0.518985i \(0.173690\pi\)
\(402\) 0 0
\(403\) 0.457136 0.0227716
\(404\) 0 0
\(405\) −6.23123 −0.309632
\(406\) 0 0
\(407\) 19.0931 0.946409
\(408\) 0 0
\(409\) −30.4230 −1.50432 −0.752161 0.658979i \(-0.770988\pi\)
−0.752161 + 0.658979i \(0.770988\pi\)
\(410\) 0 0
\(411\) −6.42070 −0.316710
\(412\) 0 0
\(413\) −4.49372 −0.221122
\(414\) 0 0
\(415\) −2.98095 −0.146329
\(416\) 0 0
\(417\) 4.00892 0.196318
\(418\) 0 0
\(419\) −6.24873 −0.305270 −0.152635 0.988283i \(-0.548776\pi\)
−0.152635 + 0.988283i \(0.548776\pi\)
\(420\) 0 0
\(421\) 11.1927 0.545500 0.272750 0.962085i \(-0.412067\pi\)
0.272750 + 0.962085i \(0.412067\pi\)
\(422\) 0 0
\(423\) −18.5088 −0.899930
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 10.9567 0.530234
\(428\) 0 0
\(429\) 0.688760 0.0332536
\(430\) 0 0
\(431\) 17.4889 0.842413 0.421207 0.906965i \(-0.361607\pi\)
0.421207 + 0.906965i \(0.361607\pi\)
\(432\) 0 0
\(433\) −11.0024 −0.528742 −0.264371 0.964421i \(-0.585164\pi\)
−0.264371 + 0.964421i \(0.585164\pi\)
\(434\) 0 0
\(435\) 2.78358 0.133462
\(436\) 0 0
\(437\) 14.7894 0.707473
\(438\) 0 0
\(439\) −11.9799 −0.571771 −0.285886 0.958264i \(-0.592288\pi\)
−0.285886 + 0.958264i \(0.592288\pi\)
\(440\) 0 0
\(441\) −2.83083 −0.134801
\(442\) 0 0
\(443\) 8.15044 0.387239 0.193619 0.981077i \(-0.437977\pi\)
0.193619 + 0.981077i \(0.437977\pi\)
\(444\) 0 0
\(445\) 6.46538 0.306488
\(446\) 0 0
\(447\) 3.46174 0.163734
\(448\) 0 0
\(449\) 1.55566 0.0734159 0.0367080 0.999326i \(-0.488313\pi\)
0.0367080 + 0.999326i \(0.488313\pi\)
\(450\) 0 0
\(451\) −20.5666 −0.968446
\(452\) 0 0
\(453\) −7.88995 −0.370702
\(454\) 0 0
\(455\) 0.538763 0.0252576
\(456\) 0 0
\(457\) 13.0862 0.612146 0.306073 0.952008i \(-0.400985\pi\)
0.306073 + 0.952008i \(0.400985\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 25.6025 1.19243 0.596214 0.802826i \(-0.296671\pi\)
0.596214 + 0.802826i \(0.296671\pi\)
\(462\) 0 0
\(463\) −33.4214 −1.55323 −0.776613 0.629978i \(-0.783064\pi\)
−0.776613 + 0.629978i \(0.783064\pi\)
\(464\) 0 0
\(465\) 0.240511 0.0111535
\(466\) 0 0
\(467\) −37.4711 −1.73396 −0.866978 0.498346i \(-0.833941\pi\)
−0.866978 + 0.498346i \(0.833941\pi\)
\(468\) 0 0
\(469\) 9.41150 0.434583
\(470\) 0 0
\(471\) 8.48567 0.390999
\(472\) 0 0
\(473\) −10.5711 −0.486059
\(474\) 0 0
\(475\) 26.0691 1.19613
\(476\) 0 0
\(477\) −33.6112 −1.53895
\(478\) 0 0
\(479\) −6.31911 −0.288727 −0.144364 0.989525i \(-0.546114\pi\)
−0.144364 + 0.989525i \(0.546114\pi\)
\(480\) 0 0
\(481\) 4.80226 0.218964
\(482\) 0 0
\(483\) −1.00589 −0.0457697
\(484\) 0 0
\(485\) −10.5486 −0.478989
\(486\) 0 0
\(487\) 1.43736 0.0651329 0.0325664 0.999470i \(-0.489632\pi\)
0.0325664 + 0.999470i \(0.489632\pi\)
\(488\) 0 0
\(489\) 8.23568 0.372430
\(490\) 0 0
\(491\) −13.7106 −0.618749 −0.309375 0.950940i \(-0.600120\pi\)
−0.309375 + 0.950940i \(0.600120\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −6.06375 −0.272545
\(496\) 0 0
\(497\) 14.3610 0.644177
\(498\) 0 0
\(499\) 27.3393 1.22388 0.611938 0.790906i \(-0.290390\pi\)
0.611938 + 0.790906i \(0.290390\pi\)
\(500\) 0 0
\(501\) −10.0856 −0.450592
\(502\) 0 0
\(503\) 19.7853 0.882184 0.441092 0.897462i \(-0.354591\pi\)
0.441092 + 0.897462i \(0.354591\pi\)
\(504\) 0 0
\(505\) −6.22203 −0.276877
\(506\) 0 0
\(507\) −5.17374 −0.229774
\(508\) 0 0
\(509\) 20.8928 0.926056 0.463028 0.886344i \(-0.346763\pi\)
0.463028 + 0.886344i \(0.346763\pi\)
\(510\) 0 0
\(511\) 12.5276 0.554188
\(512\) 0 0
\(513\) 14.5030 0.640325
\(514\) 0 0
\(515\) 10.8940 0.480049
\(516\) 0 0
\(517\) −16.8707 −0.741971
\(518\) 0 0
\(519\) −0.246357 −0.0108139
\(520\) 0 0
\(521\) 13.5525 0.593747 0.296873 0.954917i \(-0.404056\pi\)
0.296873 + 0.954917i \(0.404056\pi\)
\(522\) 0 0
\(523\) 27.2512 1.19161 0.595806 0.803128i \(-0.296833\pi\)
0.595806 + 0.803128i \(0.296833\pi\)
\(524\) 0 0
\(525\) −1.77307 −0.0773832
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −17.0190 −0.739957
\(530\) 0 0
\(531\) 12.7209 0.552042
\(532\) 0 0
\(533\) −5.17289 −0.224063
\(534\) 0 0
\(535\) 1.79609 0.0776518
\(536\) 0 0
\(537\) −0.986767 −0.0425821
\(538\) 0 0
\(539\) −2.58028 −0.111140
\(540\) 0 0
\(541\) 4.47470 0.192383 0.0961913 0.995363i \(-0.469334\pi\)
0.0961913 + 0.995363i \(0.469334\pi\)
\(542\) 0 0
\(543\) −2.68969 −0.115425
\(544\) 0 0
\(545\) 3.44225 0.147450
\(546\) 0 0
\(547\) −5.30223 −0.226707 −0.113353 0.993555i \(-0.536159\pi\)
−0.113353 + 0.993555i \(0.536159\pi\)
\(548\) 0 0
\(549\) −31.0166 −1.32376
\(550\) 0 0
\(551\) 49.2993 2.10022
\(552\) 0 0
\(553\) 5.31955 0.226210
\(554\) 0 0
\(555\) 2.52660 0.107248
\(556\) 0 0
\(557\) 2.15891 0.0914760 0.0457380 0.998953i \(-0.485436\pi\)
0.0457380 + 0.998953i \(0.485436\pi\)
\(558\) 0 0
\(559\) −2.65882 −0.112456
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6.55509 0.276264 0.138132 0.990414i \(-0.455890\pi\)
0.138132 + 0.990414i \(0.455890\pi\)
\(564\) 0 0
\(565\) 9.35227 0.393453
\(566\) 0 0
\(567\) 7.50607 0.315225
\(568\) 0 0
\(569\) 44.9389 1.88394 0.941969 0.335700i \(-0.108973\pi\)
0.941969 + 0.335700i \(0.108973\pi\)
\(570\) 0 0
\(571\) −37.3323 −1.56231 −0.781154 0.624338i \(-0.785369\pi\)
−0.781154 + 0.624338i \(0.785369\pi\)
\(572\) 0 0
\(573\) 1.76716 0.0738243
\(574\) 0 0
\(575\) 10.5426 0.439657
\(576\) 0 0
\(577\) 13.3042 0.553860 0.276930 0.960890i \(-0.410683\pi\)
0.276930 + 0.960890i \(0.410683\pi\)
\(578\) 0 0
\(579\) 3.73422 0.155189
\(580\) 0 0
\(581\) 3.59081 0.148972
\(582\) 0 0
\(583\) −30.6364 −1.26883
\(584\) 0 0
\(585\) −1.52514 −0.0630570
\(586\) 0 0
\(587\) 17.0629 0.704261 0.352130 0.935951i \(-0.385457\pi\)
0.352130 + 0.935951i \(0.385457\pi\)
\(588\) 0 0
\(589\) 4.25964 0.175516
\(590\) 0 0
\(591\) 4.12821 0.169812
\(592\) 0 0
\(593\) 7.90337 0.324553 0.162276 0.986745i \(-0.448116\pi\)
0.162276 + 0.986745i \(0.448116\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.95175 −0.202662
\(598\) 0 0
\(599\) 36.6728 1.49841 0.749205 0.662338i \(-0.230436\pi\)
0.749205 + 0.662338i \(0.230436\pi\)
\(600\) 0 0
\(601\) −5.25010 −0.214156 −0.107078 0.994251i \(-0.534149\pi\)
−0.107078 + 0.994251i \(0.534149\pi\)
\(602\) 0 0
\(603\) −26.6423 −1.08496
\(604\) 0 0
\(605\) 3.60469 0.146551
\(606\) 0 0
\(607\) −9.28740 −0.376964 −0.188482 0.982077i \(-0.560357\pi\)
−0.188482 + 0.982077i \(0.560357\pi\)
\(608\) 0 0
\(609\) −3.35306 −0.135873
\(610\) 0 0
\(611\) −4.24328 −0.171665
\(612\) 0 0
\(613\) 3.96358 0.160087 0.0800437 0.996791i \(-0.474494\pi\)
0.0800437 + 0.996791i \(0.474494\pi\)
\(614\) 0 0
\(615\) −2.72159 −0.109745
\(616\) 0 0
\(617\) 19.2531 0.775099 0.387549 0.921849i \(-0.373322\pi\)
0.387549 + 0.921849i \(0.373322\pi\)
\(618\) 0 0
\(619\) 12.7211 0.511306 0.255653 0.966769i \(-0.417710\pi\)
0.255653 + 0.966769i \(0.417710\pi\)
\(620\) 0 0
\(621\) 5.86519 0.235362
\(622\) 0 0
\(623\) −7.78812 −0.312024
\(624\) 0 0
\(625\) 15.1375 0.605499
\(626\) 0 0
\(627\) 6.41794 0.256308
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −31.8286 −1.26708 −0.633539 0.773711i \(-0.718398\pi\)
−0.633539 + 0.773711i \(0.718398\pi\)
\(632\) 0 0
\(633\) 9.00402 0.357878
\(634\) 0 0
\(635\) 5.84056 0.231776
\(636\) 0 0
\(637\) −0.648987 −0.0257138
\(638\) 0 0
\(639\) −40.6534 −1.60822
\(640\) 0 0
\(641\) −26.1190 −1.03164 −0.515819 0.856698i \(-0.672512\pi\)
−0.515819 + 0.856698i \(0.672512\pi\)
\(642\) 0 0
\(643\) 40.2971 1.58916 0.794581 0.607158i \(-0.207691\pi\)
0.794581 + 0.607158i \(0.207691\pi\)
\(644\) 0 0
\(645\) −1.39888 −0.0550807
\(646\) 0 0
\(647\) −31.0279 −1.21983 −0.609917 0.792465i \(-0.708797\pi\)
−0.609917 + 0.792465i \(0.708797\pi\)
\(648\) 0 0
\(649\) 11.5951 0.455146
\(650\) 0 0
\(651\) −0.289717 −0.0113549
\(652\) 0 0
\(653\) −9.42264 −0.368736 −0.184368 0.982857i \(-0.559024\pi\)
−0.184368 + 0.982857i \(0.559024\pi\)
\(654\) 0 0
\(655\) −5.38120 −0.210261
\(656\) 0 0
\(657\) −35.4635 −1.38356
\(658\) 0 0
\(659\) 9.30384 0.362426 0.181213 0.983444i \(-0.441998\pi\)
0.181213 + 0.983444i \(0.441998\pi\)
\(660\) 0 0
\(661\) 15.5049 0.603071 0.301536 0.953455i \(-0.402501\pi\)
0.301536 + 0.953455i \(0.402501\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.02025 0.194677
\(666\) 0 0
\(667\) 19.9372 0.771971
\(668\) 0 0
\(669\) −3.52745 −0.136379
\(670\) 0 0
\(671\) −28.2714 −1.09141
\(672\) 0 0
\(673\) −24.0223 −0.925990 −0.462995 0.886361i \(-0.653225\pi\)
−0.462995 + 0.886361i \(0.653225\pi\)
\(674\) 0 0
\(675\) 10.3385 0.397928
\(676\) 0 0
\(677\) 12.8826 0.495119 0.247560 0.968873i \(-0.420371\pi\)
0.247560 + 0.968873i \(0.420371\pi\)
\(678\) 0 0
\(679\) 12.7068 0.487641
\(680\) 0 0
\(681\) 6.52103 0.249886
\(682\) 0 0
\(683\) 35.4977 1.35828 0.679142 0.734007i \(-0.262352\pi\)
0.679142 + 0.734007i \(0.262352\pi\)
\(684\) 0 0
\(685\) 12.9592 0.495147
\(686\) 0 0
\(687\) −8.01483 −0.305785
\(688\) 0 0
\(689\) −7.70560 −0.293560
\(690\) 0 0
\(691\) −41.3441 −1.57281 −0.786403 0.617714i \(-0.788059\pi\)
−0.786403 + 0.617714i \(0.788059\pi\)
\(692\) 0 0
\(693\) 7.30432 0.277468
\(694\) 0 0
\(695\) −8.09141 −0.306925
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −6.51782 −0.246527
\(700\) 0 0
\(701\) −8.10139 −0.305985 −0.152993 0.988227i \(-0.548891\pi\)
−0.152993 + 0.988227i \(0.548891\pi\)
\(702\) 0 0
\(703\) 44.7480 1.68770
\(704\) 0 0
\(705\) −2.23250 −0.0840809
\(706\) 0 0
\(707\) 7.49499 0.281878
\(708\) 0 0
\(709\) −31.1598 −1.17023 −0.585115 0.810950i \(-0.698951\pi\)
−0.585115 + 0.810950i \(0.698951\pi\)
\(710\) 0 0
\(711\) −15.0587 −0.564747
\(712\) 0 0
\(713\) 1.72265 0.0645136
\(714\) 0 0
\(715\) −1.39016 −0.0519890
\(716\) 0 0
\(717\) −4.05806 −0.151551
\(718\) 0 0
\(719\) 48.6941 1.81598 0.907992 0.418987i \(-0.137615\pi\)
0.907992 + 0.418987i \(0.137615\pi\)
\(720\) 0 0
\(721\) −13.1228 −0.488720
\(722\) 0 0
\(723\) 7.18619 0.267257
\(724\) 0 0
\(725\) 35.1430 1.30518
\(726\) 0 0
\(727\) −30.5854 −1.13435 −0.567176 0.823597i \(-0.691964\pi\)
−0.567176 + 0.823597i \(0.691964\pi\)
\(728\) 0 0
\(729\) −18.2891 −0.677375
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −45.4998 −1.68057 −0.840286 0.542143i \(-0.817613\pi\)
−0.840286 + 0.542143i \(0.817613\pi\)
\(734\) 0 0
\(735\) −0.341449 −0.0125946
\(736\) 0 0
\(737\) −24.2843 −0.894523
\(738\) 0 0
\(739\) 51.2964 1.88697 0.943484 0.331419i \(-0.107527\pi\)
0.943484 + 0.331419i \(0.107527\pi\)
\(740\) 0 0
\(741\) 1.61423 0.0593002
\(742\) 0 0
\(743\) 44.4995 1.63253 0.816264 0.577680i \(-0.196042\pi\)
0.816264 + 0.577680i \(0.196042\pi\)
\(744\) 0 0
\(745\) −6.98700 −0.255984
\(746\) 0 0
\(747\) −10.1650 −0.371917
\(748\) 0 0
\(749\) −2.16355 −0.0790544
\(750\) 0 0
\(751\) 12.5724 0.458774 0.229387 0.973335i \(-0.426328\pi\)
0.229387 + 0.973335i \(0.426328\pi\)
\(752\) 0 0
\(753\) 9.89158 0.360469
\(754\) 0 0
\(755\) 15.9247 0.579558
\(756\) 0 0
\(757\) −11.6350 −0.422883 −0.211441 0.977391i \(-0.567816\pi\)
−0.211441 + 0.977391i \(0.567816\pi\)
\(758\) 0 0
\(759\) 2.59548 0.0942101
\(760\) 0 0
\(761\) −20.4844 −0.742558 −0.371279 0.928521i \(-0.621081\pi\)
−0.371279 + 0.928521i \(0.621081\pi\)
\(762\) 0 0
\(763\) −4.14649 −0.150113
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.91637 0.105304
\(768\) 0 0
\(769\) −11.8655 −0.427880 −0.213940 0.976847i \(-0.568630\pi\)
−0.213940 + 0.976847i \(0.568630\pi\)
\(770\) 0 0
\(771\) −5.27463 −0.189961
\(772\) 0 0
\(773\) −4.86427 −0.174956 −0.0874778 0.996166i \(-0.527881\pi\)
−0.0874778 + 0.996166i \(0.527881\pi\)
\(774\) 0 0
\(775\) 3.03648 0.109074
\(776\) 0 0
\(777\) −3.04351 −0.109185
\(778\) 0 0
\(779\) −48.2015 −1.72700
\(780\) 0 0
\(781\) −37.0553 −1.32594
\(782\) 0 0
\(783\) 19.5511 0.698701
\(784\) 0 0
\(785\) −17.1270 −0.611291
\(786\) 0 0
\(787\) 11.1663 0.398037 0.199018 0.979996i \(-0.436225\pi\)
0.199018 + 0.979996i \(0.436225\pi\)
\(788\) 0 0
\(789\) 5.99599 0.213463
\(790\) 0 0
\(791\) −11.2656 −0.400560
\(792\) 0 0
\(793\) −7.11078 −0.252511
\(794\) 0 0
\(795\) −4.05412 −0.143785
\(796\) 0 0
\(797\) 13.7439 0.486834 0.243417 0.969922i \(-0.421732\pi\)
0.243417 + 0.969922i \(0.421732\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 22.0468 0.778986
\(802\) 0 0
\(803\) −32.3247 −1.14071
\(804\) 0 0
\(805\) 2.03024 0.0715567
\(806\) 0 0
\(807\) 3.01849 0.106256
\(808\) 0 0
\(809\) 31.2368 1.09823 0.549114 0.835748i \(-0.314965\pi\)
0.549114 + 0.835748i \(0.314965\pi\)
\(810\) 0 0
\(811\) 35.6728 1.25264 0.626321 0.779565i \(-0.284560\pi\)
0.626321 + 0.779565i \(0.284560\pi\)
\(812\) 0 0
\(813\) 4.53124 0.158918
\(814\) 0 0
\(815\) −16.6225 −0.582260
\(816\) 0 0
\(817\) −24.7752 −0.866773
\(818\) 0 0
\(819\) 1.83717 0.0641959
\(820\) 0 0
\(821\) 10.4805 0.365774 0.182887 0.983134i \(-0.441456\pi\)
0.182887 + 0.983134i \(0.441456\pi\)
\(822\) 0 0
\(823\) 20.5994 0.718052 0.359026 0.933328i \(-0.383109\pi\)
0.359026 + 0.933328i \(0.383109\pi\)
\(824\) 0 0
\(825\) 4.57502 0.159282
\(826\) 0 0
\(827\) 26.7409 0.929871 0.464936 0.885344i \(-0.346077\pi\)
0.464936 + 0.885344i \(0.346077\pi\)
\(828\) 0 0
\(829\) 44.5408 1.54697 0.773483 0.633817i \(-0.218513\pi\)
0.773483 + 0.633817i \(0.218513\pi\)
\(830\) 0 0
\(831\) −4.12942 −0.143248
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 20.3563 0.704459
\(836\) 0 0
\(837\) 1.68929 0.0583904
\(838\) 0 0
\(839\) 4.39922 0.151878 0.0759391 0.997112i \(-0.475805\pi\)
0.0759391 + 0.997112i \(0.475805\pi\)
\(840\) 0 0
\(841\) 37.4590 1.29169
\(842\) 0 0
\(843\) 2.56178 0.0882322
\(844\) 0 0
\(845\) 10.4424 0.359230
\(846\) 0 0
\(847\) −4.34216 −0.149199
\(848\) 0 0
\(849\) 2.83029 0.0971354
\(850\) 0 0
\(851\) 18.0966 0.620343
\(852\) 0 0
\(853\) −18.4937 −0.633213 −0.316606 0.948557i \(-0.602543\pi\)
−0.316606 + 0.948557i \(0.602543\pi\)
\(854\) 0 0
\(855\) −14.2115 −0.486022
\(856\) 0 0
\(857\) −28.5034 −0.973659 −0.486830 0.873497i \(-0.661847\pi\)
−0.486830 + 0.873497i \(0.661847\pi\)
\(858\) 0 0
\(859\) 53.7580 1.83420 0.917100 0.398658i \(-0.130524\pi\)
0.917100 + 0.398658i \(0.130524\pi\)
\(860\) 0 0
\(861\) 3.27840 0.111728
\(862\) 0 0
\(863\) −6.24562 −0.212603 −0.106302 0.994334i \(-0.533901\pi\)
−0.106302 + 0.994334i \(0.533901\pi\)
\(864\) 0 0
\(865\) 0.497235 0.0169065
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −13.7259 −0.465620
\(870\) 0 0
\(871\) −6.10794 −0.206960
\(872\) 0 0
\(873\) −35.9706 −1.21742
\(874\) 0 0
\(875\) 7.72948 0.261304
\(876\) 0 0
\(877\) −3.50585 −0.118384 −0.0591921 0.998247i \(-0.518852\pi\)
−0.0591921 + 0.998247i \(0.518852\pi\)
\(878\) 0 0
\(879\) 8.58670 0.289622
\(880\) 0 0
\(881\) 16.2054 0.545975 0.272988 0.962018i \(-0.411988\pi\)
0.272988 + 0.962018i \(0.411988\pi\)
\(882\) 0 0
\(883\) −13.3564 −0.449477 −0.224739 0.974419i \(-0.572153\pi\)
−0.224739 + 0.974419i \(0.572153\pi\)
\(884\) 0 0
\(885\) 1.53438 0.0515776
\(886\) 0 0
\(887\) 50.3882 1.69187 0.845935 0.533287i \(-0.179043\pi\)
0.845935 + 0.533287i \(0.179043\pi\)
\(888\) 0 0
\(889\) −7.03547 −0.235962
\(890\) 0 0
\(891\) −19.3677 −0.648844
\(892\) 0 0
\(893\) −39.5394 −1.32313
\(894\) 0 0
\(895\) 1.99164 0.0665732
\(896\) 0 0
\(897\) 0.652812 0.0217967
\(898\) 0 0
\(899\) 5.74231 0.191517
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 1.68507 0.0560756
\(904\) 0 0
\(905\) 5.42873 0.180457
\(906\) 0 0
\(907\) 17.0911 0.567502 0.283751 0.958898i \(-0.408421\pi\)
0.283751 + 0.958898i \(0.408421\pi\)
\(908\) 0 0
\(909\) −21.2170 −0.703724
\(910\) 0 0
\(911\) 39.3835 1.30484 0.652418 0.757860i \(-0.273755\pi\)
0.652418 + 0.757860i \(0.273755\pi\)
\(912\) 0 0
\(913\) −9.26529 −0.306636
\(914\) 0 0
\(915\) −3.74117 −0.123679
\(916\) 0 0
\(917\) 6.48213 0.214059
\(918\) 0 0
\(919\) 26.5781 0.876731 0.438366 0.898797i \(-0.355558\pi\)
0.438366 + 0.898797i \(0.355558\pi\)
\(920\) 0 0
\(921\) −8.60875 −0.283668
\(922\) 0 0
\(923\) −9.32008 −0.306774
\(924\) 0 0
\(925\) 31.8986 1.04882
\(926\) 0 0
\(927\) 37.1485 1.22012
\(928\) 0 0
\(929\) −42.3940 −1.39090 −0.695450 0.718574i \(-0.744795\pi\)
−0.695450 + 0.718574i \(0.744795\pi\)
\(930\) 0 0
\(931\) −6.04733 −0.198193
\(932\) 0 0
\(933\) 3.41899 0.111933
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −2.45274 −0.0801276 −0.0400638 0.999197i \(-0.512756\pi\)
−0.0400638 + 0.999197i \(0.512756\pi\)
\(938\) 0 0
\(939\) 1.84271 0.0601347
\(940\) 0 0
\(941\) −23.6834 −0.772058 −0.386029 0.922487i \(-0.626153\pi\)
−0.386029 + 0.922487i \(0.626153\pi\)
\(942\) 0 0
\(943\) −19.4932 −0.634787
\(944\) 0 0
\(945\) 1.99093 0.0647650
\(946\) 0 0
\(947\) 15.1939 0.493734 0.246867 0.969049i \(-0.420599\pi\)
0.246867 + 0.969049i \(0.420599\pi\)
\(948\) 0 0
\(949\) −8.13025 −0.263919
\(950\) 0 0
\(951\) −0.227712 −0.00738408
\(952\) 0 0
\(953\) −29.4565 −0.954191 −0.477095 0.878852i \(-0.658310\pi\)
−0.477095 + 0.878852i \(0.658310\pi\)
\(954\) 0 0
\(955\) −3.56675 −0.115417
\(956\) 0 0
\(957\) 8.65184 0.279674
\(958\) 0 0
\(959\) −15.6105 −0.504090
\(960\) 0 0
\(961\) −30.5038 −0.983995
\(962\) 0 0
\(963\) 6.12464 0.197364
\(964\) 0 0
\(965\) −7.53697 −0.242624
\(966\) 0 0
\(967\) 5.05212 0.162465 0.0812326 0.996695i \(-0.474114\pi\)
0.0812326 + 0.996695i \(0.474114\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −60.6866 −1.94753 −0.973763 0.227566i \(-0.926923\pi\)
−0.973763 + 0.227566i \(0.926923\pi\)
\(972\) 0 0
\(973\) 9.74681 0.312468
\(974\) 0 0
\(975\) 1.15070 0.0368519
\(976\) 0 0
\(977\) −8.68190 −0.277759 −0.138879 0.990309i \(-0.544350\pi\)
−0.138879 + 0.990309i \(0.544350\pi\)
\(978\) 0 0
\(979\) 20.0955 0.642255
\(980\) 0 0
\(981\) 11.7380 0.374766
\(982\) 0 0
\(983\) 26.7276 0.852477 0.426239 0.904611i \(-0.359838\pi\)
0.426239 + 0.904611i \(0.359838\pi\)
\(984\) 0 0
\(985\) −8.33217 −0.265485
\(986\) 0 0
\(987\) 2.68925 0.0855997
\(988\) 0 0
\(989\) −10.0193 −0.318597
\(990\) 0 0
\(991\) −43.0587 −1.36780 −0.683902 0.729574i \(-0.739718\pi\)
−0.683902 + 0.729574i \(0.739718\pi\)
\(992\) 0 0
\(993\) −13.6345 −0.432677
\(994\) 0 0
\(995\) 9.99436 0.316843
\(996\) 0 0
\(997\) −28.4278 −0.900318 −0.450159 0.892948i \(-0.648633\pi\)
−0.450159 + 0.892948i \(0.648633\pi\)
\(998\) 0 0
\(999\) 17.7462 0.561464
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8092.2.a.z.1.9 20
17.10 odd 16 476.2.u.a.253.5 40
17.12 odd 16 476.2.u.a.365.5 yes 40
17.16 even 2 8092.2.a.y.1.12 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
476.2.u.a.253.5 40 17.10 odd 16
476.2.u.a.365.5 yes 40 17.12 odd 16
8092.2.a.y.1.12 20 17.16 even 2
8092.2.a.z.1.9 20 1.1 even 1 trivial