Properties

Label 8092.2.a.z.1.7
Level $8092$
Weight $2$
Character 8092.1
Self dual yes
Analytic conductor $64.615$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8092,2,Mod(1,8092)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8092, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8092.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8092 = 2^{2} \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8092.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,8,0,8,0,20,0,28,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.6149453156\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{19} - 12 x^{18} + 240 x^{17} - 224 x^{16} - 2776 x^{15} + 5324 x^{14} + 15280 x^{13} + \cdots + 544 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 476)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.948608\) of defining polynomial
Character \(\chi\) \(=\) 8092.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.948608 q^{3} -3.07520 q^{5} +1.00000 q^{7} -2.10014 q^{9} +1.96405 q^{11} +2.55706 q^{13} +2.91716 q^{15} -5.17418 q^{19} -0.948608 q^{21} +4.86371 q^{23} +4.45685 q^{25} +4.83804 q^{27} -0.866107 q^{29} -1.50523 q^{31} -1.86311 q^{33} -3.07520 q^{35} -1.50842 q^{37} -2.42565 q^{39} -0.716268 q^{41} +1.87713 q^{43} +6.45836 q^{45} -7.11332 q^{47} +1.00000 q^{49} -8.36741 q^{53} -6.03984 q^{55} +4.90827 q^{57} -0.611228 q^{59} +5.37219 q^{61} -2.10014 q^{63} -7.86346 q^{65} +1.25625 q^{67} -4.61375 q^{69} +4.48800 q^{71} +5.55879 q^{73} -4.22781 q^{75} +1.96405 q^{77} -8.28300 q^{79} +1.71102 q^{81} -13.1152 q^{83} +0.821597 q^{87} -8.10832 q^{89} +2.55706 q^{91} +1.42787 q^{93} +15.9116 q^{95} -19.1555 q^{97} -4.12478 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{3} + 8 q^{5} + 20 q^{7} + 28 q^{9} + 16 q^{11} + 8 q^{13} + 8 q^{15} + 8 q^{19} + 8 q^{21} + 40 q^{23} + 36 q^{25} + 32 q^{27} + 16 q^{29} + 16 q^{31} + 8 q^{33} + 8 q^{35} + 24 q^{37} + 16 q^{39}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.948608 −0.547679 −0.273840 0.961775i \(-0.588294\pi\)
−0.273840 + 0.961775i \(0.588294\pi\)
\(4\) 0 0
\(5\) −3.07520 −1.37527 −0.687636 0.726056i \(-0.741351\pi\)
−0.687636 + 0.726056i \(0.741351\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.10014 −0.700047
\(10\) 0 0
\(11\) 1.96405 0.592183 0.296091 0.955160i \(-0.404317\pi\)
0.296091 + 0.955160i \(0.404317\pi\)
\(12\) 0 0
\(13\) 2.55706 0.709200 0.354600 0.935018i \(-0.384617\pi\)
0.354600 + 0.935018i \(0.384617\pi\)
\(14\) 0 0
\(15\) 2.91716 0.753208
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −5.17418 −1.18704 −0.593520 0.804820i \(-0.702262\pi\)
−0.593520 + 0.804820i \(0.702262\pi\)
\(20\) 0 0
\(21\) −0.948608 −0.207003
\(22\) 0 0
\(23\) 4.86371 1.01415 0.507077 0.861901i \(-0.330726\pi\)
0.507077 + 0.861901i \(0.330726\pi\)
\(24\) 0 0
\(25\) 4.45685 0.891371
\(26\) 0 0
\(27\) 4.83804 0.931081
\(28\) 0 0
\(29\) −0.866107 −0.160832 −0.0804161 0.996761i \(-0.525625\pi\)
−0.0804161 + 0.996761i \(0.525625\pi\)
\(30\) 0 0
\(31\) −1.50523 −0.270347 −0.135173 0.990822i \(-0.543159\pi\)
−0.135173 + 0.990822i \(0.543159\pi\)
\(32\) 0 0
\(33\) −1.86311 −0.324326
\(34\) 0 0
\(35\) −3.07520 −0.519804
\(36\) 0 0
\(37\) −1.50842 −0.247983 −0.123992 0.992283i \(-0.539570\pi\)
−0.123992 + 0.992283i \(0.539570\pi\)
\(38\) 0 0
\(39\) −2.42565 −0.388414
\(40\) 0 0
\(41\) −0.716268 −0.111862 −0.0559311 0.998435i \(-0.517813\pi\)
−0.0559311 + 0.998435i \(0.517813\pi\)
\(42\) 0 0
\(43\) 1.87713 0.286260 0.143130 0.989704i \(-0.454283\pi\)
0.143130 + 0.989704i \(0.454283\pi\)
\(44\) 0 0
\(45\) 6.45836 0.962755
\(46\) 0 0
\(47\) −7.11332 −1.03758 −0.518792 0.854901i \(-0.673618\pi\)
−0.518792 + 0.854901i \(0.673618\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.36741 −1.14935 −0.574676 0.818381i \(-0.694872\pi\)
−0.574676 + 0.818381i \(0.694872\pi\)
\(54\) 0 0
\(55\) −6.03984 −0.814412
\(56\) 0 0
\(57\) 4.90827 0.650117
\(58\) 0 0
\(59\) −0.611228 −0.0795751 −0.0397876 0.999208i \(-0.512668\pi\)
−0.0397876 + 0.999208i \(0.512668\pi\)
\(60\) 0 0
\(61\) 5.37219 0.687838 0.343919 0.938999i \(-0.388245\pi\)
0.343919 + 0.938999i \(0.388245\pi\)
\(62\) 0 0
\(63\) −2.10014 −0.264593
\(64\) 0 0
\(65\) −7.86346 −0.975342
\(66\) 0 0
\(67\) 1.25625 0.153476 0.0767379 0.997051i \(-0.475550\pi\)
0.0767379 + 0.997051i \(0.475550\pi\)
\(68\) 0 0
\(69\) −4.61375 −0.555431
\(70\) 0 0
\(71\) 4.48800 0.532628 0.266314 0.963886i \(-0.414194\pi\)
0.266314 + 0.963886i \(0.414194\pi\)
\(72\) 0 0
\(73\) 5.55879 0.650608 0.325304 0.945610i \(-0.394533\pi\)
0.325304 + 0.945610i \(0.394533\pi\)
\(74\) 0 0
\(75\) −4.22781 −0.488185
\(76\) 0 0
\(77\) 1.96405 0.223824
\(78\) 0 0
\(79\) −8.28300 −0.931910 −0.465955 0.884808i \(-0.654289\pi\)
−0.465955 + 0.884808i \(0.654289\pi\)
\(80\) 0 0
\(81\) 1.71102 0.190114
\(82\) 0 0
\(83\) −13.1152 −1.43958 −0.719788 0.694194i \(-0.755761\pi\)
−0.719788 + 0.694194i \(0.755761\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.821597 0.0880844
\(88\) 0 0
\(89\) −8.10832 −0.859480 −0.429740 0.902953i \(-0.641395\pi\)
−0.429740 + 0.902953i \(0.641395\pi\)
\(90\) 0 0
\(91\) 2.55706 0.268052
\(92\) 0 0
\(93\) 1.42787 0.148063
\(94\) 0 0
\(95\) 15.9116 1.63250
\(96\) 0 0
\(97\) −19.1555 −1.94495 −0.972474 0.233011i \(-0.925142\pi\)
−0.972474 + 0.233011i \(0.925142\pi\)
\(98\) 0 0
\(99\) −4.12478 −0.414556
\(100\) 0 0
\(101\) 18.3302 1.82392 0.911961 0.410278i \(-0.134568\pi\)
0.911961 + 0.410278i \(0.134568\pi\)
\(102\) 0 0
\(103\) −9.14293 −0.900879 −0.450440 0.892807i \(-0.648733\pi\)
−0.450440 + 0.892807i \(0.648733\pi\)
\(104\) 0 0
\(105\) 2.91716 0.284686
\(106\) 0 0
\(107\) 3.48588 0.336993 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(108\) 0 0
\(109\) −3.05289 −0.292414 −0.146207 0.989254i \(-0.546707\pi\)
−0.146207 + 0.989254i \(0.546707\pi\)
\(110\) 0 0
\(111\) 1.43090 0.135815
\(112\) 0 0
\(113\) 15.8578 1.49178 0.745890 0.666069i \(-0.232024\pi\)
0.745890 + 0.666069i \(0.232024\pi\)
\(114\) 0 0
\(115\) −14.9569 −1.39474
\(116\) 0 0
\(117\) −5.37018 −0.496474
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.14252 −0.649320
\(122\) 0 0
\(123\) 0.679458 0.0612646
\(124\) 0 0
\(125\) 1.67028 0.149394
\(126\) 0 0
\(127\) −21.0365 −1.86668 −0.933342 0.358988i \(-0.883122\pi\)
−0.933342 + 0.358988i \(0.883122\pi\)
\(128\) 0 0
\(129\) −1.78067 −0.156779
\(130\) 0 0
\(131\) 7.22592 0.631332 0.315666 0.948870i \(-0.397772\pi\)
0.315666 + 0.948870i \(0.397772\pi\)
\(132\) 0 0
\(133\) −5.17418 −0.448659
\(134\) 0 0
\(135\) −14.8779 −1.28049
\(136\) 0 0
\(137\) 21.8370 1.86566 0.932831 0.360314i \(-0.117330\pi\)
0.932831 + 0.360314i \(0.117330\pi\)
\(138\) 0 0
\(139\) 4.52664 0.383945 0.191972 0.981400i \(-0.438512\pi\)
0.191972 + 0.981400i \(0.438512\pi\)
\(140\) 0 0
\(141\) 6.74775 0.568263
\(142\) 0 0
\(143\) 5.02218 0.419976
\(144\) 0 0
\(145\) 2.66345 0.221188
\(146\) 0 0
\(147\) −0.948608 −0.0782399
\(148\) 0 0
\(149\) −8.42472 −0.690180 −0.345090 0.938570i \(-0.612152\pi\)
−0.345090 + 0.938570i \(0.612152\pi\)
\(150\) 0 0
\(151\) 12.3210 1.00267 0.501333 0.865254i \(-0.332843\pi\)
0.501333 + 0.865254i \(0.332843\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.62887 0.371800
\(156\) 0 0
\(157\) −6.13536 −0.489655 −0.244827 0.969567i \(-0.578731\pi\)
−0.244827 + 0.969567i \(0.578731\pi\)
\(158\) 0 0
\(159\) 7.93739 0.629476
\(160\) 0 0
\(161\) 4.86371 0.383314
\(162\) 0 0
\(163\) 13.6914 1.07239 0.536197 0.844093i \(-0.319860\pi\)
0.536197 + 0.844093i \(0.319860\pi\)
\(164\) 0 0
\(165\) 5.72944 0.446037
\(166\) 0 0
\(167\) −6.50679 −0.503511 −0.251755 0.967791i \(-0.581008\pi\)
−0.251755 + 0.967791i \(0.581008\pi\)
\(168\) 0 0
\(169\) −6.46146 −0.497035
\(170\) 0 0
\(171\) 10.8665 0.830984
\(172\) 0 0
\(173\) 21.1169 1.60549 0.802744 0.596323i \(-0.203372\pi\)
0.802744 + 0.596323i \(0.203372\pi\)
\(174\) 0 0
\(175\) 4.45685 0.336907
\(176\) 0 0
\(177\) 0.579816 0.0435816
\(178\) 0 0
\(179\) −9.46818 −0.707685 −0.353843 0.935305i \(-0.615125\pi\)
−0.353843 + 0.935305i \(0.615125\pi\)
\(180\) 0 0
\(181\) −16.8825 −1.25486 −0.627432 0.778671i \(-0.715894\pi\)
−0.627432 + 0.778671i \(0.715894\pi\)
\(182\) 0 0
\(183\) −5.09610 −0.376715
\(184\) 0 0
\(185\) 4.63870 0.341044
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 4.83804 0.351915
\(190\) 0 0
\(191\) −9.52990 −0.689559 −0.344780 0.938684i \(-0.612046\pi\)
−0.344780 + 0.938684i \(0.612046\pi\)
\(192\) 0 0
\(193\) 2.12347 0.152851 0.0764253 0.997075i \(-0.475649\pi\)
0.0764253 + 0.997075i \(0.475649\pi\)
\(194\) 0 0
\(195\) 7.45934 0.534175
\(196\) 0 0
\(197\) 3.67515 0.261844 0.130922 0.991393i \(-0.458206\pi\)
0.130922 + 0.991393i \(0.458206\pi\)
\(198\) 0 0
\(199\) −8.93341 −0.633272 −0.316636 0.948547i \(-0.602553\pi\)
−0.316636 + 0.948547i \(0.602553\pi\)
\(200\) 0 0
\(201\) −1.19169 −0.0840555
\(202\) 0 0
\(203\) −0.866107 −0.0607888
\(204\) 0 0
\(205\) 2.20267 0.153841
\(206\) 0 0
\(207\) −10.2145 −0.709955
\(208\) 0 0
\(209\) −10.1623 −0.702944
\(210\) 0 0
\(211\) 27.3255 1.88116 0.940581 0.339570i \(-0.110282\pi\)
0.940581 + 0.339570i \(0.110282\pi\)
\(212\) 0 0
\(213\) −4.25736 −0.291709
\(214\) 0 0
\(215\) −5.77256 −0.393686
\(216\) 0 0
\(217\) −1.50523 −0.102181
\(218\) 0 0
\(219\) −5.27312 −0.356324
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 17.1460 1.14818 0.574092 0.818791i \(-0.305355\pi\)
0.574092 + 0.818791i \(0.305355\pi\)
\(224\) 0 0
\(225\) −9.36003 −0.624002
\(226\) 0 0
\(227\) −4.45185 −0.295479 −0.147740 0.989026i \(-0.547200\pi\)
−0.147740 + 0.989026i \(0.547200\pi\)
\(228\) 0 0
\(229\) 26.7608 1.76841 0.884203 0.467103i \(-0.154702\pi\)
0.884203 + 0.467103i \(0.154702\pi\)
\(230\) 0 0
\(231\) −1.86311 −0.122584
\(232\) 0 0
\(233\) 9.71746 0.636612 0.318306 0.947988i \(-0.396886\pi\)
0.318306 + 0.947988i \(0.396886\pi\)
\(234\) 0 0
\(235\) 21.8749 1.42696
\(236\) 0 0
\(237\) 7.85732 0.510388
\(238\) 0 0
\(239\) 30.5463 1.97588 0.987940 0.154840i \(-0.0494862\pi\)
0.987940 + 0.154840i \(0.0494862\pi\)
\(240\) 0 0
\(241\) 14.9545 0.963306 0.481653 0.876362i \(-0.340037\pi\)
0.481653 + 0.876362i \(0.340037\pi\)
\(242\) 0 0
\(243\) −16.1372 −1.03520
\(244\) 0 0
\(245\) −3.07520 −0.196467
\(246\) 0 0
\(247\) −13.2307 −0.841848
\(248\) 0 0
\(249\) 12.4412 0.788426
\(250\) 0 0
\(251\) −17.3960 −1.09802 −0.549011 0.835815i \(-0.684996\pi\)
−0.549011 + 0.835815i \(0.684996\pi\)
\(252\) 0 0
\(253\) 9.55256 0.600564
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.8982 −0.991701 −0.495850 0.868408i \(-0.665144\pi\)
−0.495850 + 0.868408i \(0.665144\pi\)
\(258\) 0 0
\(259\) −1.50842 −0.0937288
\(260\) 0 0
\(261\) 1.81895 0.112590
\(262\) 0 0
\(263\) 27.7848 1.71329 0.856643 0.515910i \(-0.172546\pi\)
0.856643 + 0.515910i \(0.172546\pi\)
\(264\) 0 0
\(265\) 25.7314 1.58067
\(266\) 0 0
\(267\) 7.69162 0.470719
\(268\) 0 0
\(269\) 0.386116 0.0235419 0.0117709 0.999931i \(-0.496253\pi\)
0.0117709 + 0.999931i \(0.496253\pi\)
\(270\) 0 0
\(271\) −19.9108 −1.20949 −0.604746 0.796418i \(-0.706726\pi\)
−0.604746 + 0.796418i \(0.706726\pi\)
\(272\) 0 0
\(273\) −2.42565 −0.146807
\(274\) 0 0
\(275\) 8.75348 0.527855
\(276\) 0 0
\(277\) 24.3362 1.46222 0.731110 0.682260i \(-0.239003\pi\)
0.731110 + 0.682260i \(0.239003\pi\)
\(278\) 0 0
\(279\) 3.16119 0.189255
\(280\) 0 0
\(281\) −11.7032 −0.698157 −0.349078 0.937094i \(-0.613505\pi\)
−0.349078 + 0.937094i \(0.613505\pi\)
\(282\) 0 0
\(283\) −20.9171 −1.24339 −0.621697 0.783257i \(-0.713557\pi\)
−0.621697 + 0.783257i \(0.713557\pi\)
\(284\) 0 0
\(285\) −15.0939 −0.894087
\(286\) 0 0
\(287\) −0.716268 −0.0422800
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 18.1711 1.06521
\(292\) 0 0
\(293\) 9.01821 0.526849 0.263425 0.964680i \(-0.415148\pi\)
0.263425 + 0.964680i \(0.415148\pi\)
\(294\) 0 0
\(295\) 1.87965 0.109437
\(296\) 0 0
\(297\) 9.50214 0.551370
\(298\) 0 0
\(299\) 12.4368 0.719238
\(300\) 0 0
\(301\) 1.87713 0.108196
\(302\) 0 0
\(303\) −17.3882 −0.998924
\(304\) 0 0
\(305\) −16.5205 −0.945964
\(306\) 0 0
\(307\) −12.6478 −0.721847 −0.360924 0.932595i \(-0.617538\pi\)
−0.360924 + 0.932595i \(0.617538\pi\)
\(308\) 0 0
\(309\) 8.67306 0.493393
\(310\) 0 0
\(311\) 17.0239 0.965338 0.482669 0.875803i \(-0.339667\pi\)
0.482669 + 0.875803i \(0.339667\pi\)
\(312\) 0 0
\(313\) −22.1457 −1.25175 −0.625873 0.779925i \(-0.715257\pi\)
−0.625873 + 0.779925i \(0.715257\pi\)
\(314\) 0 0
\(315\) 6.45836 0.363887
\(316\) 0 0
\(317\) −25.8353 −1.45105 −0.725526 0.688194i \(-0.758404\pi\)
−0.725526 + 0.688194i \(0.758404\pi\)
\(318\) 0 0
\(319\) −1.70108 −0.0952420
\(320\) 0 0
\(321\) −3.30674 −0.184564
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 11.3964 0.632160
\(326\) 0 0
\(327\) 2.89600 0.160149
\(328\) 0 0
\(329\) −7.11332 −0.392170
\(330\) 0 0
\(331\) 28.9367 1.59050 0.795252 0.606279i \(-0.207339\pi\)
0.795252 + 0.606279i \(0.207339\pi\)
\(332\) 0 0
\(333\) 3.16790 0.173600
\(334\) 0 0
\(335\) −3.86323 −0.211071
\(336\) 0 0
\(337\) 32.9305 1.79384 0.896919 0.442194i \(-0.145800\pi\)
0.896919 + 0.442194i \(0.145800\pi\)
\(338\) 0 0
\(339\) −15.0429 −0.817017
\(340\) 0 0
\(341\) −2.95634 −0.160095
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 14.1882 0.763868
\(346\) 0 0
\(347\) 29.3061 1.57323 0.786617 0.617441i \(-0.211831\pi\)
0.786617 + 0.617441i \(0.211831\pi\)
\(348\) 0 0
\(349\) 19.1762 1.02648 0.513240 0.858245i \(-0.328445\pi\)
0.513240 + 0.858245i \(0.328445\pi\)
\(350\) 0 0
\(351\) 12.3711 0.660322
\(352\) 0 0
\(353\) −6.23962 −0.332101 −0.166051 0.986117i \(-0.553102\pi\)
−0.166051 + 0.986117i \(0.553102\pi\)
\(354\) 0 0
\(355\) −13.8015 −0.732508
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.5638 1.13810 0.569048 0.822304i \(-0.307312\pi\)
0.569048 + 0.822304i \(0.307312\pi\)
\(360\) 0 0
\(361\) 7.77218 0.409062
\(362\) 0 0
\(363\) 6.77545 0.355619
\(364\) 0 0
\(365\) −17.0944 −0.894762
\(366\) 0 0
\(367\) −3.95597 −0.206500 −0.103250 0.994655i \(-0.532924\pi\)
−0.103250 + 0.994655i \(0.532924\pi\)
\(368\) 0 0
\(369\) 1.50426 0.0783089
\(370\) 0 0
\(371\) −8.36741 −0.434414
\(372\) 0 0
\(373\) 12.2776 0.635708 0.317854 0.948140i \(-0.397038\pi\)
0.317854 + 0.948140i \(0.397038\pi\)
\(374\) 0 0
\(375\) −1.58444 −0.0818202
\(376\) 0 0
\(377\) −2.21469 −0.114062
\(378\) 0 0
\(379\) 33.7224 1.73221 0.866103 0.499866i \(-0.166618\pi\)
0.866103 + 0.499866i \(0.166618\pi\)
\(380\) 0 0
\(381\) 19.9554 1.02234
\(382\) 0 0
\(383\) 20.4969 1.04734 0.523670 0.851921i \(-0.324562\pi\)
0.523670 + 0.851921i \(0.324562\pi\)
\(384\) 0 0
\(385\) −6.03984 −0.307819
\(386\) 0 0
\(387\) −3.94225 −0.200396
\(388\) 0 0
\(389\) −13.1854 −0.668526 −0.334263 0.942480i \(-0.608487\pi\)
−0.334263 + 0.942480i \(0.608487\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −6.85457 −0.345767
\(394\) 0 0
\(395\) 25.4719 1.28163
\(396\) 0 0
\(397\) 10.8140 0.542740 0.271370 0.962475i \(-0.412523\pi\)
0.271370 + 0.962475i \(0.412523\pi\)
\(398\) 0 0
\(399\) 4.90827 0.245721
\(400\) 0 0
\(401\) −4.27206 −0.213336 −0.106668 0.994295i \(-0.534018\pi\)
−0.106668 + 0.994295i \(0.534018\pi\)
\(402\) 0 0
\(403\) −3.84895 −0.191730
\(404\) 0 0
\(405\) −5.26174 −0.261458
\(406\) 0 0
\(407\) −2.96261 −0.146851
\(408\) 0 0
\(409\) 38.2296 1.89033 0.945167 0.326588i \(-0.105899\pi\)
0.945167 + 0.326588i \(0.105899\pi\)
\(410\) 0 0
\(411\) −20.7148 −1.02178
\(412\) 0 0
\(413\) −0.611228 −0.0300766
\(414\) 0 0
\(415\) 40.3318 1.97981
\(416\) 0 0
\(417\) −4.29401 −0.210279
\(418\) 0 0
\(419\) 21.4262 1.04674 0.523369 0.852106i \(-0.324675\pi\)
0.523369 + 0.852106i \(0.324675\pi\)
\(420\) 0 0
\(421\) −15.6311 −0.761815 −0.380907 0.924613i \(-0.624388\pi\)
−0.380907 + 0.924613i \(0.624388\pi\)
\(422\) 0 0
\(423\) 14.9390 0.726358
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5.37219 0.259978
\(428\) 0 0
\(429\) −4.76408 −0.230012
\(430\) 0 0
\(431\) 9.79841 0.471973 0.235986 0.971756i \(-0.424168\pi\)
0.235986 + 0.971756i \(0.424168\pi\)
\(432\) 0 0
\(433\) 29.4813 1.41678 0.708390 0.705822i \(-0.249422\pi\)
0.708390 + 0.705822i \(0.249422\pi\)
\(434\) 0 0
\(435\) −2.52657 −0.121140
\(436\) 0 0
\(437\) −25.1657 −1.20384
\(438\) 0 0
\(439\) −26.2230 −1.25156 −0.625779 0.780001i \(-0.715219\pi\)
−0.625779 + 0.780001i \(0.715219\pi\)
\(440\) 0 0
\(441\) −2.10014 −0.100007
\(442\) 0 0
\(443\) 23.6159 1.12203 0.561013 0.827807i \(-0.310412\pi\)
0.561013 + 0.827807i \(0.310412\pi\)
\(444\) 0 0
\(445\) 24.9347 1.18202
\(446\) 0 0
\(447\) 7.99176 0.377997
\(448\) 0 0
\(449\) −22.3051 −1.05264 −0.526321 0.850286i \(-0.676429\pi\)
−0.526321 + 0.850286i \(0.676429\pi\)
\(450\) 0 0
\(451\) −1.40678 −0.0662429
\(452\) 0 0
\(453\) −11.6878 −0.549140
\(454\) 0 0
\(455\) −7.86346 −0.368645
\(456\) 0 0
\(457\) −5.00361 −0.234059 −0.117029 0.993128i \(-0.537337\pi\)
−0.117029 + 0.993128i \(0.537337\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 18.6446 0.868366 0.434183 0.900825i \(-0.357037\pi\)
0.434183 + 0.900825i \(0.357037\pi\)
\(462\) 0 0
\(463\) −33.5355 −1.55853 −0.779264 0.626696i \(-0.784407\pi\)
−0.779264 + 0.626696i \(0.784407\pi\)
\(464\) 0 0
\(465\) −4.39099 −0.203627
\(466\) 0 0
\(467\) 1.10557 0.0511598 0.0255799 0.999673i \(-0.491857\pi\)
0.0255799 + 0.999673i \(0.491857\pi\)
\(468\) 0 0
\(469\) 1.25625 0.0580084
\(470\) 0 0
\(471\) 5.82005 0.268174
\(472\) 0 0
\(473\) 3.68678 0.169518
\(474\) 0 0
\(475\) −23.0606 −1.05809
\(476\) 0 0
\(477\) 17.5727 0.804601
\(478\) 0 0
\(479\) 28.1986 1.28843 0.644213 0.764846i \(-0.277185\pi\)
0.644213 + 0.764846i \(0.277185\pi\)
\(480\) 0 0
\(481\) −3.85712 −0.175870
\(482\) 0 0
\(483\) −4.61375 −0.209933
\(484\) 0 0
\(485\) 58.9070 2.67483
\(486\) 0 0
\(487\) −41.9575 −1.90128 −0.950638 0.310301i \(-0.899570\pi\)
−0.950638 + 0.310301i \(0.899570\pi\)
\(488\) 0 0
\(489\) −12.9878 −0.587328
\(490\) 0 0
\(491\) 27.4261 1.23772 0.618860 0.785501i \(-0.287595\pi\)
0.618860 + 0.785501i \(0.287595\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 12.6845 0.570127
\(496\) 0 0
\(497\) 4.48800 0.201314
\(498\) 0 0
\(499\) −9.09373 −0.407091 −0.203546 0.979065i \(-0.565247\pi\)
−0.203546 + 0.979065i \(0.565247\pi\)
\(500\) 0 0
\(501\) 6.17240 0.275762
\(502\) 0 0
\(503\) 11.9890 0.534565 0.267283 0.963618i \(-0.413874\pi\)
0.267283 + 0.963618i \(0.413874\pi\)
\(504\) 0 0
\(505\) −56.3690 −2.50839
\(506\) 0 0
\(507\) 6.12939 0.272216
\(508\) 0 0
\(509\) 31.6070 1.40096 0.700479 0.713673i \(-0.252970\pi\)
0.700479 + 0.713673i \(0.252970\pi\)
\(510\) 0 0
\(511\) 5.55879 0.245907
\(512\) 0 0
\(513\) −25.0329 −1.10523
\(514\) 0 0
\(515\) 28.1163 1.23895
\(516\) 0 0
\(517\) −13.9709 −0.614439
\(518\) 0 0
\(519\) −20.0317 −0.879293
\(520\) 0 0
\(521\) 28.9582 1.26868 0.634340 0.773054i \(-0.281272\pi\)
0.634340 + 0.773054i \(0.281272\pi\)
\(522\) 0 0
\(523\) 19.6802 0.860555 0.430278 0.902697i \(-0.358416\pi\)
0.430278 + 0.902697i \(0.358416\pi\)
\(524\) 0 0
\(525\) −4.22781 −0.184517
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.655661 0.0285070
\(530\) 0 0
\(531\) 1.28367 0.0557064
\(532\) 0 0
\(533\) −1.83154 −0.0793327
\(534\) 0 0
\(535\) −10.7198 −0.463457
\(536\) 0 0
\(537\) 8.98160 0.387585
\(538\) 0 0
\(539\) 1.96405 0.0845975
\(540\) 0 0
\(541\) 17.9593 0.772133 0.386066 0.922471i \(-0.373834\pi\)
0.386066 + 0.922471i \(0.373834\pi\)
\(542\) 0 0
\(543\) 16.0149 0.687263
\(544\) 0 0
\(545\) 9.38826 0.402149
\(546\) 0 0
\(547\) 21.8256 0.933195 0.466598 0.884470i \(-0.345480\pi\)
0.466598 + 0.884470i \(0.345480\pi\)
\(548\) 0 0
\(549\) −11.2824 −0.481519
\(550\) 0 0
\(551\) 4.48140 0.190914
\(552\) 0 0
\(553\) −8.28300 −0.352229
\(554\) 0 0
\(555\) −4.40031 −0.186783
\(556\) 0 0
\(557\) 11.0590 0.468586 0.234293 0.972166i \(-0.424723\pi\)
0.234293 + 0.972166i \(0.424723\pi\)
\(558\) 0 0
\(559\) 4.79994 0.203016
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.41320 −0.185994 −0.0929970 0.995666i \(-0.529645\pi\)
−0.0929970 + 0.995666i \(0.529645\pi\)
\(564\) 0 0
\(565\) −48.7660 −2.05160
\(566\) 0 0
\(567\) 1.71102 0.0718563
\(568\) 0 0
\(569\) 14.8723 0.623480 0.311740 0.950167i \(-0.399088\pi\)
0.311740 + 0.950167i \(0.399088\pi\)
\(570\) 0 0
\(571\) −22.6262 −0.946877 −0.473438 0.880827i \(-0.656987\pi\)
−0.473438 + 0.880827i \(0.656987\pi\)
\(572\) 0 0
\(573\) 9.04014 0.377657
\(574\) 0 0
\(575\) 21.6768 0.903987
\(576\) 0 0
\(577\) −8.74877 −0.364216 −0.182108 0.983279i \(-0.558292\pi\)
−0.182108 + 0.983279i \(0.558292\pi\)
\(578\) 0 0
\(579\) −2.01434 −0.0837131
\(580\) 0 0
\(581\) −13.1152 −0.544109
\(582\) 0 0
\(583\) −16.4340 −0.680626
\(584\) 0 0
\(585\) 16.5144 0.682786
\(586\) 0 0
\(587\) 14.8510 0.612966 0.306483 0.951876i \(-0.400848\pi\)
0.306483 + 0.951876i \(0.400848\pi\)
\(588\) 0 0
\(589\) 7.78832 0.320912
\(590\) 0 0
\(591\) −3.48628 −0.143406
\(592\) 0 0
\(593\) −38.4055 −1.57713 −0.788563 0.614954i \(-0.789175\pi\)
−0.788563 + 0.614954i \(0.789175\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.47430 0.346830
\(598\) 0 0
\(599\) 7.91405 0.323359 0.161680 0.986843i \(-0.448309\pi\)
0.161680 + 0.986843i \(0.448309\pi\)
\(600\) 0 0
\(601\) 17.2672 0.704345 0.352173 0.935935i \(-0.385443\pi\)
0.352173 + 0.935935i \(0.385443\pi\)
\(602\) 0 0
\(603\) −2.63831 −0.107440
\(604\) 0 0
\(605\) 21.9647 0.892991
\(606\) 0 0
\(607\) −11.4062 −0.462964 −0.231482 0.972839i \(-0.574357\pi\)
−0.231482 + 0.972839i \(0.574357\pi\)
\(608\) 0 0
\(609\) 0.821597 0.0332928
\(610\) 0 0
\(611\) −18.1892 −0.735854
\(612\) 0 0
\(613\) −0.0371290 −0.00149962 −0.000749812 1.00000i \(-0.500239\pi\)
−0.000749812 1.00000i \(0.500239\pi\)
\(614\) 0 0
\(615\) −2.08947 −0.0842555
\(616\) 0 0
\(617\) 15.8563 0.638351 0.319176 0.947696i \(-0.396594\pi\)
0.319176 + 0.947696i \(0.396594\pi\)
\(618\) 0 0
\(619\) −12.9294 −0.519677 −0.259839 0.965652i \(-0.583669\pi\)
−0.259839 + 0.965652i \(0.583669\pi\)
\(620\) 0 0
\(621\) 23.5308 0.944259
\(622\) 0 0
\(623\) −8.10832 −0.324853
\(624\) 0 0
\(625\) −27.4207 −1.09683
\(626\) 0 0
\(627\) 9.64009 0.384988
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −43.4836 −1.73105 −0.865527 0.500862i \(-0.833016\pi\)
−0.865527 + 0.500862i \(0.833016\pi\)
\(632\) 0 0
\(633\) −25.9211 −1.03027
\(634\) 0 0
\(635\) 64.6913 2.56720
\(636\) 0 0
\(637\) 2.55706 0.101314
\(638\) 0 0
\(639\) −9.42544 −0.372865
\(640\) 0 0
\(641\) 17.3258 0.684328 0.342164 0.939640i \(-0.388840\pi\)
0.342164 + 0.939640i \(0.388840\pi\)
\(642\) 0 0
\(643\) −30.6710 −1.20954 −0.604772 0.796399i \(-0.706736\pi\)
−0.604772 + 0.796399i \(0.706736\pi\)
\(644\) 0 0
\(645\) 5.47590 0.215613
\(646\) 0 0
\(647\) 9.53013 0.374668 0.187334 0.982296i \(-0.440015\pi\)
0.187334 + 0.982296i \(0.440015\pi\)
\(648\) 0 0
\(649\) −1.20048 −0.0471230
\(650\) 0 0
\(651\) 1.42787 0.0559626
\(652\) 0 0
\(653\) −32.4206 −1.26872 −0.634358 0.773040i \(-0.718735\pi\)
−0.634358 + 0.773040i \(0.718735\pi\)
\(654\) 0 0
\(655\) −22.2212 −0.868252
\(656\) 0 0
\(657\) −11.6743 −0.455456
\(658\) 0 0
\(659\) 23.1542 0.901958 0.450979 0.892534i \(-0.351075\pi\)
0.450979 + 0.892534i \(0.351075\pi\)
\(660\) 0 0
\(661\) 36.7821 1.43066 0.715330 0.698787i \(-0.246277\pi\)
0.715330 + 0.698787i \(0.246277\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 15.9116 0.617027
\(666\) 0 0
\(667\) −4.21249 −0.163108
\(668\) 0 0
\(669\) −16.2649 −0.628836
\(670\) 0 0
\(671\) 10.5512 0.407326
\(672\) 0 0
\(673\) −6.03779 −0.232740 −0.116370 0.993206i \(-0.537126\pi\)
−0.116370 + 0.993206i \(0.537126\pi\)
\(674\) 0 0
\(675\) 21.5624 0.829938
\(676\) 0 0
\(677\) −49.4508 −1.90055 −0.950274 0.311414i \(-0.899197\pi\)
−0.950274 + 0.311414i \(0.899197\pi\)
\(678\) 0 0
\(679\) −19.1555 −0.735121
\(680\) 0 0
\(681\) 4.22306 0.161828
\(682\) 0 0
\(683\) 5.11632 0.195770 0.0978852 0.995198i \(-0.468792\pi\)
0.0978852 + 0.995198i \(0.468792\pi\)
\(684\) 0 0
\(685\) −67.1532 −2.56579
\(686\) 0 0
\(687\) −25.3856 −0.968519
\(688\) 0 0
\(689\) −21.3959 −0.815120
\(690\) 0 0
\(691\) 10.5046 0.399613 0.199807 0.979835i \(-0.435969\pi\)
0.199807 + 0.979835i \(0.435969\pi\)
\(692\) 0 0
\(693\) −4.12478 −0.156687
\(694\) 0 0
\(695\) −13.9203 −0.528028
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −9.21806 −0.348659
\(700\) 0 0
\(701\) −29.3140 −1.10717 −0.553587 0.832791i \(-0.686742\pi\)
−0.553587 + 0.832791i \(0.686742\pi\)
\(702\) 0 0
\(703\) 7.80485 0.294366
\(704\) 0 0
\(705\) −20.7507 −0.781516
\(706\) 0 0
\(707\) 18.3302 0.689377
\(708\) 0 0
\(709\) −0.624981 −0.0234716 −0.0117358 0.999931i \(-0.503736\pi\)
−0.0117358 + 0.999931i \(0.503736\pi\)
\(710\) 0 0
\(711\) 17.3955 0.652381
\(712\) 0 0
\(713\) −7.32098 −0.274173
\(714\) 0 0
\(715\) −15.4442 −0.577581
\(716\) 0 0
\(717\) −28.9765 −1.08215
\(718\) 0 0
\(719\) −27.7342 −1.03431 −0.517156 0.855891i \(-0.673009\pi\)
−0.517156 + 0.855891i \(0.673009\pi\)
\(720\) 0 0
\(721\) −9.14293 −0.340500
\(722\) 0 0
\(723\) −14.1860 −0.527583
\(724\) 0 0
\(725\) −3.86011 −0.143361
\(726\) 0 0
\(727\) −8.61018 −0.319334 −0.159667 0.987171i \(-0.551042\pi\)
−0.159667 + 0.987171i \(0.551042\pi\)
\(728\) 0 0
\(729\) 10.1748 0.376845
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −45.6053 −1.68447 −0.842235 0.539111i \(-0.818760\pi\)
−0.842235 + 0.539111i \(0.818760\pi\)
\(734\) 0 0
\(735\) 2.91716 0.107601
\(736\) 0 0
\(737\) 2.46734 0.0908857
\(738\) 0 0
\(739\) 24.5363 0.902583 0.451292 0.892376i \(-0.350963\pi\)
0.451292 + 0.892376i \(0.350963\pi\)
\(740\) 0 0
\(741\) 12.5507 0.461063
\(742\) 0 0
\(743\) 17.4318 0.639512 0.319756 0.947500i \(-0.396399\pi\)
0.319756 + 0.947500i \(0.396399\pi\)
\(744\) 0 0
\(745\) 25.9077 0.949184
\(746\) 0 0
\(747\) 27.5437 1.00777
\(748\) 0 0
\(749\) 3.48588 0.127371
\(750\) 0 0
\(751\) 38.4257 1.40217 0.701086 0.713076i \(-0.252699\pi\)
0.701086 + 0.713076i \(0.252699\pi\)
\(752\) 0 0
\(753\) 16.5019 0.601364
\(754\) 0 0
\(755\) −37.8895 −1.37894
\(756\) 0 0
\(757\) −11.8991 −0.432480 −0.216240 0.976340i \(-0.569379\pi\)
−0.216240 + 0.976340i \(0.569379\pi\)
\(758\) 0 0
\(759\) −9.06164 −0.328917
\(760\) 0 0
\(761\) 21.6526 0.784906 0.392453 0.919772i \(-0.371627\pi\)
0.392453 + 0.919772i \(0.371627\pi\)
\(762\) 0 0
\(763\) −3.05289 −0.110522
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.56294 −0.0564347
\(768\) 0 0
\(769\) −36.4694 −1.31512 −0.657560 0.753402i \(-0.728411\pi\)
−0.657560 + 0.753402i \(0.728411\pi\)
\(770\) 0 0
\(771\) 15.0811 0.543134
\(772\) 0 0
\(773\) −0.315668 −0.0113538 −0.00567689 0.999984i \(-0.501807\pi\)
−0.00567689 + 0.999984i \(0.501807\pi\)
\(774\) 0 0
\(775\) −6.70857 −0.240979
\(776\) 0 0
\(777\) 1.43090 0.0513333
\(778\) 0 0
\(779\) 3.70610 0.132785
\(780\) 0 0
\(781\) 8.81465 0.315413
\(782\) 0 0
\(783\) −4.19026 −0.149748
\(784\) 0 0
\(785\) 18.8675 0.673408
\(786\) 0 0
\(787\) 23.5689 0.840141 0.420070 0.907492i \(-0.362005\pi\)
0.420070 + 0.907492i \(0.362005\pi\)
\(788\) 0 0
\(789\) −26.3569 −0.938331
\(790\) 0 0
\(791\) 15.8578 0.563840
\(792\) 0 0
\(793\) 13.7370 0.487815
\(794\) 0 0
\(795\) −24.4091 −0.865700
\(796\) 0 0
\(797\) −5.74105 −0.203358 −0.101679 0.994817i \(-0.532422\pi\)
−0.101679 + 0.994817i \(0.532422\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 17.0286 0.601677
\(802\) 0 0
\(803\) 10.9177 0.385279
\(804\) 0 0
\(805\) −14.9569 −0.527161
\(806\) 0 0
\(807\) −0.366273 −0.0128934
\(808\) 0 0
\(809\) −33.0934 −1.16350 −0.581751 0.813367i \(-0.697632\pi\)
−0.581751 + 0.813367i \(0.697632\pi\)
\(810\) 0 0
\(811\) 38.6316 1.35654 0.678269 0.734813i \(-0.262730\pi\)
0.678269 + 0.734813i \(0.262730\pi\)
\(812\) 0 0
\(813\) 18.8875 0.662414
\(814\) 0 0
\(815\) −42.1038 −1.47483
\(816\) 0 0
\(817\) −9.71264 −0.339802
\(818\) 0 0
\(819\) −5.37018 −0.187649
\(820\) 0 0
\(821\) 27.7502 0.968490 0.484245 0.874933i \(-0.339094\pi\)
0.484245 + 0.874933i \(0.339094\pi\)
\(822\) 0 0
\(823\) 46.2818 1.61328 0.806640 0.591042i \(-0.201283\pi\)
0.806640 + 0.591042i \(0.201283\pi\)
\(824\) 0 0
\(825\) −8.30362 −0.289095
\(826\) 0 0
\(827\) 26.5345 0.922694 0.461347 0.887220i \(-0.347366\pi\)
0.461347 + 0.887220i \(0.347366\pi\)
\(828\) 0 0
\(829\) 22.7980 0.791806 0.395903 0.918292i \(-0.370432\pi\)
0.395903 + 0.918292i \(0.370432\pi\)
\(830\) 0 0
\(831\) −23.0855 −0.800827
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 20.0097 0.692464
\(836\) 0 0
\(837\) −7.28234 −0.251715
\(838\) 0 0
\(839\) 35.3037 1.21882 0.609409 0.792856i \(-0.291407\pi\)
0.609409 + 0.792856i \(0.291407\pi\)
\(840\) 0 0
\(841\) −28.2499 −0.974133
\(842\) 0 0
\(843\) 11.1018 0.382366
\(844\) 0 0
\(845\) 19.8703 0.683558
\(846\) 0 0
\(847\) −7.14252 −0.245420
\(848\) 0 0
\(849\) 19.8422 0.680982
\(850\) 0 0
\(851\) −7.33653 −0.251493
\(852\) 0 0
\(853\) −15.7748 −0.540118 −0.270059 0.962844i \(-0.587043\pi\)
−0.270059 + 0.962844i \(0.587043\pi\)
\(854\) 0 0
\(855\) −33.4167 −1.14283
\(856\) 0 0
\(857\) −1.25187 −0.0427632 −0.0213816 0.999771i \(-0.506806\pi\)
−0.0213816 + 0.999771i \(0.506806\pi\)
\(858\) 0 0
\(859\) −7.33442 −0.250247 −0.125124 0.992141i \(-0.539933\pi\)
−0.125124 + 0.992141i \(0.539933\pi\)
\(860\) 0 0
\(861\) 0.679458 0.0231559
\(862\) 0 0
\(863\) 30.7762 1.04763 0.523817 0.851831i \(-0.324507\pi\)
0.523817 + 0.851831i \(0.324507\pi\)
\(864\) 0 0
\(865\) −64.9387 −2.20798
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −16.2682 −0.551861
\(870\) 0 0
\(871\) 3.21231 0.108845
\(872\) 0 0
\(873\) 40.2293 1.36156
\(874\) 0 0
\(875\) 1.67028 0.0564658
\(876\) 0 0
\(877\) 19.0041 0.641723 0.320861 0.947126i \(-0.396028\pi\)
0.320861 + 0.947126i \(0.396028\pi\)
\(878\) 0 0
\(879\) −8.55474 −0.288544
\(880\) 0 0
\(881\) −17.4376 −0.587488 −0.293744 0.955884i \(-0.594901\pi\)
−0.293744 + 0.955884i \(0.594901\pi\)
\(882\) 0 0
\(883\) 36.2538 1.22004 0.610020 0.792386i \(-0.291162\pi\)
0.610020 + 0.792386i \(0.291162\pi\)
\(884\) 0 0
\(885\) −1.78305 −0.0599366
\(886\) 0 0
\(887\) −16.3488 −0.548937 −0.274469 0.961596i \(-0.588502\pi\)
−0.274469 + 0.961596i \(0.588502\pi\)
\(888\) 0 0
\(889\) −21.0365 −0.705540
\(890\) 0 0
\(891\) 3.36053 0.112582
\(892\) 0 0
\(893\) 36.8056 1.23165
\(894\) 0 0
\(895\) 29.1166 0.973259
\(896\) 0 0
\(897\) −11.7976 −0.393911
\(898\) 0 0
\(899\) 1.30369 0.0434804
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −1.78067 −0.0592568
\(904\) 0 0
\(905\) 51.9170 1.72578
\(906\) 0 0
\(907\) 27.4870 0.912692 0.456346 0.889802i \(-0.349158\pi\)
0.456346 + 0.889802i \(0.349158\pi\)
\(908\) 0 0
\(909\) −38.4960 −1.27683
\(910\) 0 0
\(911\) 37.9207 1.25637 0.628184 0.778065i \(-0.283798\pi\)
0.628184 + 0.778065i \(0.283798\pi\)
\(912\) 0 0
\(913\) −25.7588 −0.852492
\(914\) 0 0
\(915\) 15.6715 0.518085
\(916\) 0 0
\(917\) 7.22592 0.238621
\(918\) 0 0
\(919\) −27.3818 −0.903242 −0.451621 0.892210i \(-0.649154\pi\)
−0.451621 + 0.892210i \(0.649154\pi\)
\(920\) 0 0
\(921\) 11.9978 0.395341
\(922\) 0 0
\(923\) 11.4761 0.377740
\(924\) 0 0
\(925\) −6.72282 −0.221045
\(926\) 0 0
\(927\) 19.2015 0.630658
\(928\) 0 0
\(929\) 44.5007 1.46002 0.730010 0.683437i \(-0.239515\pi\)
0.730010 + 0.683437i \(0.239515\pi\)
\(930\) 0 0
\(931\) −5.17418 −0.169577
\(932\) 0 0
\(933\) −16.1490 −0.528696
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −22.8667 −0.747023 −0.373512 0.927626i \(-0.621846\pi\)
−0.373512 + 0.927626i \(0.621846\pi\)
\(938\) 0 0
\(939\) 21.0075 0.685555
\(940\) 0 0
\(941\) −37.8614 −1.23425 −0.617124 0.786866i \(-0.711702\pi\)
−0.617124 + 0.786866i \(0.711702\pi\)
\(942\) 0 0
\(943\) −3.48372 −0.113445
\(944\) 0 0
\(945\) −14.8779 −0.483979
\(946\) 0 0
\(947\) −0.854066 −0.0277534 −0.0138767 0.999904i \(-0.504417\pi\)
−0.0138767 + 0.999904i \(0.504417\pi\)
\(948\) 0 0
\(949\) 14.2142 0.461411
\(950\) 0 0
\(951\) 24.5075 0.794711
\(952\) 0 0
\(953\) 21.8074 0.706410 0.353205 0.935546i \(-0.385092\pi\)
0.353205 + 0.935546i \(0.385092\pi\)
\(954\) 0 0
\(955\) 29.3063 0.948331
\(956\) 0 0
\(957\) 1.61366 0.0521621
\(958\) 0 0
\(959\) 21.8370 0.705154
\(960\) 0 0
\(961\) −28.7343 −0.926913
\(962\) 0 0
\(963\) −7.32085 −0.235911
\(964\) 0 0
\(965\) −6.53009 −0.210211
\(966\) 0 0
\(967\) 36.5451 1.17521 0.587606 0.809147i \(-0.300071\pi\)
0.587606 + 0.809147i \(0.300071\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −37.7727 −1.21218 −0.606092 0.795395i \(-0.707264\pi\)
−0.606092 + 0.795395i \(0.707264\pi\)
\(972\) 0 0
\(973\) 4.52664 0.145118
\(974\) 0 0
\(975\) −10.8107 −0.346221
\(976\) 0 0
\(977\) −55.8437 −1.78660 −0.893300 0.449461i \(-0.851616\pi\)
−0.893300 + 0.449461i \(0.851616\pi\)
\(978\) 0 0
\(979\) −15.9251 −0.508969
\(980\) 0 0
\(981\) 6.41151 0.204704
\(982\) 0 0
\(983\) 26.3263 0.839678 0.419839 0.907599i \(-0.362087\pi\)
0.419839 + 0.907599i \(0.362087\pi\)
\(984\) 0 0
\(985\) −11.3018 −0.360106
\(986\) 0 0
\(987\) 6.74775 0.214783
\(988\) 0 0
\(989\) 9.12983 0.290312
\(990\) 0 0
\(991\) −12.6119 −0.400632 −0.200316 0.979731i \(-0.564197\pi\)
−0.200316 + 0.979731i \(0.564197\pi\)
\(992\) 0 0
\(993\) −27.4496 −0.871086
\(994\) 0 0
\(995\) 27.4720 0.870921
\(996\) 0 0
\(997\) −20.3000 −0.642906 −0.321453 0.946926i \(-0.604171\pi\)
−0.321453 + 0.946926i \(0.604171\pi\)
\(998\) 0 0
\(999\) −7.29780 −0.230892
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8092.2.a.z.1.7 20
17.5 odd 16 476.2.u.a.365.7 yes 40
17.7 odd 16 476.2.u.a.253.7 40
17.16 even 2 8092.2.a.y.1.14 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
476.2.u.a.253.7 40 17.7 odd 16
476.2.u.a.365.7 yes 40 17.5 odd 16
8092.2.a.y.1.14 20 17.16 even 2
8092.2.a.z.1.7 20 1.1 even 1 trivial