Properties

Label 8092.2.a.z.1.6
Level $8092$
Weight $2$
Character 8092.1
Self dual yes
Analytic conductor $64.615$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8092,2,Mod(1,8092)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8092.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8092, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8092 = 2^{2} \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8092.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,8,0,8,0,20,0,28,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.6149453156\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{19} - 12 x^{18} + 240 x^{17} - 224 x^{16} - 2776 x^{15} + 5324 x^{14} + 15280 x^{13} + \cdots + 544 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 476)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.20917\) of defining polynomial
Character \(\chi\) \(=\) 8092.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.20917 q^{3} -3.53097 q^{5} +1.00000 q^{7} -1.53791 q^{9} +4.33450 q^{11} -1.06829 q^{13} +4.26954 q^{15} +0.865933 q^{19} -1.20917 q^{21} -1.81237 q^{23} +7.46774 q^{25} +5.48710 q^{27} +6.30913 q^{29} +6.66297 q^{31} -5.24115 q^{33} -3.53097 q^{35} -7.71962 q^{37} +1.29175 q^{39} -1.33942 q^{41} -3.35689 q^{43} +5.43031 q^{45} -11.4190 q^{47} +1.00000 q^{49} +13.3149 q^{53} -15.3050 q^{55} -1.04706 q^{57} -13.8098 q^{59} -6.86562 q^{61} -1.53791 q^{63} +3.77211 q^{65} -8.07908 q^{67} +2.19147 q^{69} +3.76828 q^{71} -2.16933 q^{73} -9.02977 q^{75} +4.33450 q^{77} -2.94643 q^{79} -2.02111 q^{81} +8.53177 q^{83} -7.62881 q^{87} -9.59243 q^{89} -1.06829 q^{91} -8.05666 q^{93} -3.05758 q^{95} +3.13292 q^{97} -6.66607 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{3} + 8 q^{5} + 20 q^{7} + 28 q^{9} + 16 q^{11} + 8 q^{13} + 8 q^{15} + 8 q^{19} + 8 q^{21} + 40 q^{23} + 36 q^{25} + 32 q^{27} + 16 q^{29} + 16 q^{31} + 8 q^{33} + 8 q^{35} + 24 q^{37} + 16 q^{39}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.20917 −0.698114 −0.349057 0.937101i \(-0.613498\pi\)
−0.349057 + 0.937101i \(0.613498\pi\)
\(4\) 0 0
\(5\) −3.53097 −1.57910 −0.789549 0.613688i \(-0.789685\pi\)
−0.789549 + 0.613688i \(0.789685\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −1.53791 −0.512636
\(10\) 0 0
\(11\) 4.33450 1.30690 0.653451 0.756969i \(-0.273321\pi\)
0.653451 + 0.756969i \(0.273321\pi\)
\(12\) 0 0
\(13\) −1.06829 −0.296291 −0.148146 0.988966i \(-0.547330\pi\)
−0.148146 + 0.988966i \(0.547330\pi\)
\(14\) 0 0
\(15\) 4.26954 1.10239
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 0.865933 0.198659 0.0993293 0.995055i \(-0.468330\pi\)
0.0993293 + 0.995055i \(0.468330\pi\)
\(20\) 0 0
\(21\) −1.20917 −0.263862
\(22\) 0 0
\(23\) −1.81237 −0.377906 −0.188953 0.981986i \(-0.560509\pi\)
−0.188953 + 0.981986i \(0.560509\pi\)
\(24\) 0 0
\(25\) 7.46774 1.49355
\(26\) 0 0
\(27\) 5.48710 1.05599
\(28\) 0 0
\(29\) 6.30913 1.17158 0.585788 0.810464i \(-0.300785\pi\)
0.585788 + 0.810464i \(0.300785\pi\)
\(30\) 0 0
\(31\) 6.66297 1.19670 0.598352 0.801233i \(-0.295822\pi\)
0.598352 + 0.801233i \(0.295822\pi\)
\(32\) 0 0
\(33\) −5.24115 −0.912367
\(34\) 0 0
\(35\) −3.53097 −0.596843
\(36\) 0 0
\(37\) −7.71962 −1.26910 −0.634549 0.772882i \(-0.718814\pi\)
−0.634549 + 0.772882i \(0.718814\pi\)
\(38\) 0 0
\(39\) 1.29175 0.206845
\(40\) 0 0
\(41\) −1.33942 −0.209183 −0.104591 0.994515i \(-0.533353\pi\)
−0.104591 + 0.994515i \(0.533353\pi\)
\(42\) 0 0
\(43\) −3.35689 −0.511921 −0.255961 0.966687i \(-0.582392\pi\)
−0.255961 + 0.966687i \(0.582392\pi\)
\(44\) 0 0
\(45\) 5.43031 0.809503
\(46\) 0 0
\(47\) −11.4190 −1.66563 −0.832816 0.553551i \(-0.813273\pi\)
−0.832816 + 0.553551i \(0.813273\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 13.3149 1.82895 0.914473 0.404646i \(-0.132605\pi\)
0.914473 + 0.404646i \(0.132605\pi\)
\(54\) 0 0
\(55\) −15.3050 −2.06372
\(56\) 0 0
\(57\) −1.04706 −0.138686
\(58\) 0 0
\(59\) −13.8098 −1.79788 −0.898939 0.438075i \(-0.855661\pi\)
−0.898939 + 0.438075i \(0.855661\pi\)
\(60\) 0 0
\(61\) −6.86562 −0.879053 −0.439527 0.898230i \(-0.644854\pi\)
−0.439527 + 0.898230i \(0.644854\pi\)
\(62\) 0 0
\(63\) −1.53791 −0.193758
\(64\) 0 0
\(65\) 3.77211 0.467873
\(66\) 0 0
\(67\) −8.07908 −0.987016 −0.493508 0.869741i \(-0.664286\pi\)
−0.493508 + 0.869741i \(0.664286\pi\)
\(68\) 0 0
\(69\) 2.19147 0.263821
\(70\) 0 0
\(71\) 3.76828 0.447213 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(72\) 0 0
\(73\) −2.16933 −0.253901 −0.126951 0.991909i \(-0.540519\pi\)
−0.126951 + 0.991909i \(0.540519\pi\)
\(74\) 0 0
\(75\) −9.02977 −1.04267
\(76\) 0 0
\(77\) 4.33450 0.493962
\(78\) 0 0
\(79\) −2.94643 −0.331499 −0.165750 0.986168i \(-0.553004\pi\)
−0.165750 + 0.986168i \(0.553004\pi\)
\(80\) 0 0
\(81\) −2.02111 −0.224567
\(82\) 0 0
\(83\) 8.53177 0.936483 0.468241 0.883601i \(-0.344888\pi\)
0.468241 + 0.883601i \(0.344888\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −7.62881 −0.817894
\(88\) 0 0
\(89\) −9.59243 −1.01680 −0.508398 0.861122i \(-0.669762\pi\)
−0.508398 + 0.861122i \(0.669762\pi\)
\(90\) 0 0
\(91\) −1.06829 −0.111988
\(92\) 0 0
\(93\) −8.05666 −0.835436
\(94\) 0 0
\(95\) −3.05758 −0.313701
\(96\) 0 0
\(97\) 3.13292 0.318100 0.159050 0.987271i \(-0.449157\pi\)
0.159050 + 0.987271i \(0.449157\pi\)
\(98\) 0 0
\(99\) −6.66607 −0.669965
\(100\) 0 0
\(101\) −19.0001 −1.89058 −0.945291 0.326228i \(-0.894222\pi\)
−0.945291 + 0.326228i \(0.894222\pi\)
\(102\) 0 0
\(103\) −3.36940 −0.331997 −0.165998 0.986126i \(-0.553085\pi\)
−0.165998 + 0.986126i \(0.553085\pi\)
\(104\) 0 0
\(105\) 4.26954 0.416664
\(106\) 0 0
\(107\) −6.83117 −0.660394 −0.330197 0.943912i \(-0.607115\pi\)
−0.330197 + 0.943912i \(0.607115\pi\)
\(108\) 0 0
\(109\) 10.6389 1.01902 0.509510 0.860465i \(-0.329827\pi\)
0.509510 + 0.860465i \(0.329827\pi\)
\(110\) 0 0
\(111\) 9.33433 0.885976
\(112\) 0 0
\(113\) 14.4481 1.35916 0.679580 0.733601i \(-0.262162\pi\)
0.679580 + 0.733601i \(0.262162\pi\)
\(114\) 0 0
\(115\) 6.39943 0.596750
\(116\) 0 0
\(117\) 1.64294 0.151890
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.78790 0.707991
\(122\) 0 0
\(123\) 1.61959 0.146033
\(124\) 0 0
\(125\) −8.71352 −0.779361
\(126\) 0 0
\(127\) 17.0751 1.51517 0.757586 0.652735i \(-0.226379\pi\)
0.757586 + 0.652735i \(0.226379\pi\)
\(128\) 0 0
\(129\) 4.05905 0.357379
\(130\) 0 0
\(131\) 9.08989 0.794187 0.397093 0.917778i \(-0.370019\pi\)
0.397093 + 0.917778i \(0.370019\pi\)
\(132\) 0 0
\(133\) 0.865933 0.0750859
\(134\) 0 0
\(135\) −19.3748 −1.66752
\(136\) 0 0
\(137\) −0.472276 −0.0403493 −0.0201746 0.999796i \(-0.506422\pi\)
−0.0201746 + 0.999796i \(0.506422\pi\)
\(138\) 0 0
\(139\) 7.25396 0.615273 0.307636 0.951504i \(-0.400462\pi\)
0.307636 + 0.951504i \(0.400462\pi\)
\(140\) 0 0
\(141\) 13.8075 1.16280
\(142\) 0 0
\(143\) −4.63052 −0.387224
\(144\) 0 0
\(145\) −22.2773 −1.85003
\(146\) 0 0
\(147\) −1.20917 −0.0997306
\(148\) 0 0
\(149\) 15.2704 1.25100 0.625498 0.780226i \(-0.284896\pi\)
0.625498 + 0.780226i \(0.284896\pi\)
\(150\) 0 0
\(151\) −17.4012 −1.41609 −0.708047 0.706166i \(-0.750423\pi\)
−0.708047 + 0.706166i \(0.750423\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −23.5267 −1.88971
\(156\) 0 0
\(157\) 13.1413 1.04879 0.524396 0.851474i \(-0.324291\pi\)
0.524396 + 0.851474i \(0.324291\pi\)
\(158\) 0 0
\(159\) −16.1000 −1.27681
\(160\) 0 0
\(161\) −1.81237 −0.142835
\(162\) 0 0
\(163\) −14.8593 −1.16387 −0.581934 0.813236i \(-0.697704\pi\)
−0.581934 + 0.813236i \(0.697704\pi\)
\(164\) 0 0
\(165\) 18.5063 1.44072
\(166\) 0 0
\(167\) 8.44187 0.653251 0.326626 0.945154i \(-0.394088\pi\)
0.326626 + 0.945154i \(0.394088\pi\)
\(168\) 0 0
\(169\) −11.8587 −0.912211
\(170\) 0 0
\(171\) −1.33173 −0.101840
\(172\) 0 0
\(173\) 12.2065 0.928045 0.464022 0.885824i \(-0.346406\pi\)
0.464022 + 0.885824i \(0.346406\pi\)
\(174\) 0 0
\(175\) 7.46774 0.564508
\(176\) 0 0
\(177\) 16.6983 1.25512
\(178\) 0 0
\(179\) −7.18457 −0.537000 −0.268500 0.963280i \(-0.586528\pi\)
−0.268500 + 0.963280i \(0.586528\pi\)
\(180\) 0 0
\(181\) 11.6459 0.865635 0.432818 0.901481i \(-0.357519\pi\)
0.432818 + 0.901481i \(0.357519\pi\)
\(182\) 0 0
\(183\) 8.30170 0.613680
\(184\) 0 0
\(185\) 27.2578 2.00403
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 5.48710 0.399128
\(190\) 0 0
\(191\) −5.62558 −0.407053 −0.203526 0.979069i \(-0.565240\pi\)
−0.203526 + 0.979069i \(0.565240\pi\)
\(192\) 0 0
\(193\) 21.3297 1.53535 0.767674 0.640841i \(-0.221414\pi\)
0.767674 + 0.640841i \(0.221414\pi\)
\(194\) 0 0
\(195\) −4.56112 −0.326629
\(196\) 0 0
\(197\) 9.23183 0.657741 0.328870 0.944375i \(-0.393332\pi\)
0.328870 + 0.944375i \(0.393332\pi\)
\(198\) 0 0
\(199\) −14.3304 −1.01586 −0.507928 0.861399i \(-0.669588\pi\)
−0.507928 + 0.861399i \(0.669588\pi\)
\(200\) 0 0
\(201\) 9.76897 0.689050
\(202\) 0 0
\(203\) 6.30913 0.442814
\(204\) 0 0
\(205\) 4.72946 0.330320
\(206\) 0 0
\(207\) 2.78726 0.193728
\(208\) 0 0
\(209\) 3.75339 0.259627
\(210\) 0 0
\(211\) −2.30044 −0.158369 −0.0791843 0.996860i \(-0.525232\pi\)
−0.0791843 + 0.996860i \(0.525232\pi\)
\(212\) 0 0
\(213\) −4.55649 −0.312206
\(214\) 0 0
\(215\) 11.8531 0.808373
\(216\) 0 0
\(217\) 6.66297 0.452312
\(218\) 0 0
\(219\) 2.62309 0.177252
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −0.337611 −0.0226081 −0.0113041 0.999936i \(-0.503598\pi\)
−0.0113041 + 0.999936i \(0.503598\pi\)
\(224\) 0 0
\(225\) −11.4847 −0.765647
\(226\) 0 0
\(227\) 27.6897 1.83783 0.918914 0.394458i \(-0.129068\pi\)
0.918914 + 0.394458i \(0.129068\pi\)
\(228\) 0 0
\(229\) −27.3129 −1.80489 −0.902444 0.430807i \(-0.858229\pi\)
−0.902444 + 0.430807i \(0.858229\pi\)
\(230\) 0 0
\(231\) −5.24115 −0.344842
\(232\) 0 0
\(233\) −13.5802 −0.889667 −0.444833 0.895613i \(-0.646737\pi\)
−0.444833 + 0.895613i \(0.646737\pi\)
\(234\) 0 0
\(235\) 40.3201 2.63019
\(236\) 0 0
\(237\) 3.56274 0.231425
\(238\) 0 0
\(239\) −9.81066 −0.634599 −0.317300 0.948325i \(-0.602776\pi\)
−0.317300 + 0.948325i \(0.602776\pi\)
\(240\) 0 0
\(241\) −11.0844 −0.714010 −0.357005 0.934102i \(-0.616202\pi\)
−0.357005 + 0.934102i \(0.616202\pi\)
\(242\) 0 0
\(243\) −14.0174 −0.899219
\(244\) 0 0
\(245\) −3.53097 −0.225585
\(246\) 0 0
\(247\) −0.925071 −0.0588609
\(248\) 0 0
\(249\) −10.3164 −0.653772
\(250\) 0 0
\(251\) 5.50834 0.347683 0.173842 0.984774i \(-0.444382\pi\)
0.173842 + 0.984774i \(0.444382\pi\)
\(252\) 0 0
\(253\) −7.85573 −0.493886
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 16.9367 1.05648 0.528242 0.849094i \(-0.322851\pi\)
0.528242 + 0.849094i \(0.322851\pi\)
\(258\) 0 0
\(259\) −7.71962 −0.479674
\(260\) 0 0
\(261\) −9.70287 −0.600593
\(262\) 0 0
\(263\) 26.7181 1.64751 0.823753 0.566948i \(-0.191876\pi\)
0.823753 + 0.566948i \(0.191876\pi\)
\(264\) 0 0
\(265\) −47.0146 −2.88809
\(266\) 0 0
\(267\) 11.5989 0.709839
\(268\) 0 0
\(269\) −8.81502 −0.537461 −0.268731 0.963215i \(-0.586604\pi\)
−0.268731 + 0.963215i \(0.586604\pi\)
\(270\) 0 0
\(271\) 3.47254 0.210942 0.105471 0.994422i \(-0.466365\pi\)
0.105471 + 0.994422i \(0.466365\pi\)
\(272\) 0 0
\(273\) 1.29175 0.0781802
\(274\) 0 0
\(275\) 32.3689 1.95192
\(276\) 0 0
\(277\) −10.0420 −0.603366 −0.301683 0.953408i \(-0.597548\pi\)
−0.301683 + 0.953408i \(0.597548\pi\)
\(278\) 0 0
\(279\) −10.2470 −0.613474
\(280\) 0 0
\(281\) −31.1596 −1.85883 −0.929413 0.369041i \(-0.879686\pi\)
−0.929413 + 0.369041i \(0.879686\pi\)
\(282\) 0 0
\(283\) 2.21090 0.131424 0.0657122 0.997839i \(-0.479068\pi\)
0.0657122 + 0.997839i \(0.479068\pi\)
\(284\) 0 0
\(285\) 3.69714 0.218999
\(286\) 0 0
\(287\) −1.33942 −0.0790636
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −3.78823 −0.222070
\(292\) 0 0
\(293\) −15.4231 −0.901028 −0.450514 0.892769i \(-0.648759\pi\)
−0.450514 + 0.892769i \(0.648759\pi\)
\(294\) 0 0
\(295\) 48.7618 2.83902
\(296\) 0 0
\(297\) 23.7838 1.38008
\(298\) 0 0
\(299\) 1.93615 0.111970
\(300\) 0 0
\(301\) −3.35689 −0.193488
\(302\) 0 0
\(303\) 22.9744 1.31984
\(304\) 0 0
\(305\) 24.2423 1.38811
\(306\) 0 0
\(307\) −2.54658 −0.145341 −0.0726705 0.997356i \(-0.523152\pi\)
−0.0726705 + 0.997356i \(0.523152\pi\)
\(308\) 0 0
\(309\) 4.07417 0.231772
\(310\) 0 0
\(311\) 11.0161 0.624667 0.312334 0.949972i \(-0.398889\pi\)
0.312334 + 0.949972i \(0.398889\pi\)
\(312\) 0 0
\(313\) 2.16259 0.122237 0.0611185 0.998131i \(-0.480533\pi\)
0.0611185 + 0.998131i \(0.480533\pi\)
\(314\) 0 0
\(315\) 5.43031 0.305963
\(316\) 0 0
\(317\) 11.4180 0.641301 0.320650 0.947198i \(-0.396099\pi\)
0.320650 + 0.947198i \(0.396099\pi\)
\(318\) 0 0
\(319\) 27.3469 1.53113
\(320\) 0 0
\(321\) 8.26004 0.461030
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −7.97774 −0.442526
\(326\) 0 0
\(327\) −12.8642 −0.711393
\(328\) 0 0
\(329\) −11.4190 −0.629549
\(330\) 0 0
\(331\) 0.846845 0.0465468 0.0232734 0.999729i \(-0.492591\pi\)
0.0232734 + 0.999729i \(0.492591\pi\)
\(332\) 0 0
\(333\) 11.8721 0.650586
\(334\) 0 0
\(335\) 28.5270 1.55860
\(336\) 0 0
\(337\) 4.47432 0.243732 0.121866 0.992547i \(-0.461112\pi\)
0.121866 + 0.992547i \(0.461112\pi\)
\(338\) 0 0
\(339\) −17.4702 −0.948849
\(340\) 0 0
\(341\) 28.8806 1.56397
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −7.73800 −0.416600
\(346\) 0 0
\(347\) 11.3776 0.610782 0.305391 0.952227i \(-0.401213\pi\)
0.305391 + 0.952227i \(0.401213\pi\)
\(348\) 0 0
\(349\) 25.4509 1.36236 0.681179 0.732117i \(-0.261468\pi\)
0.681179 + 0.732117i \(0.261468\pi\)
\(350\) 0 0
\(351\) −5.86184 −0.312882
\(352\) 0 0
\(353\) 28.8137 1.53360 0.766800 0.641887i \(-0.221848\pi\)
0.766800 + 0.641887i \(0.221848\pi\)
\(354\) 0 0
\(355\) −13.3057 −0.706193
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.4745 0.658380 0.329190 0.944264i \(-0.393224\pi\)
0.329190 + 0.944264i \(0.393224\pi\)
\(360\) 0 0
\(361\) −18.2502 −0.960535
\(362\) 0 0
\(363\) −9.41690 −0.494259
\(364\) 0 0
\(365\) 7.65984 0.400935
\(366\) 0 0
\(367\) −31.8914 −1.66472 −0.832360 0.554235i \(-0.813011\pi\)
−0.832360 + 0.554235i \(0.813011\pi\)
\(368\) 0 0
\(369\) 2.05991 0.107235
\(370\) 0 0
\(371\) 13.3149 0.691277
\(372\) 0 0
\(373\) 32.3338 1.67418 0.837090 0.547066i \(-0.184255\pi\)
0.837090 + 0.547066i \(0.184255\pi\)
\(374\) 0 0
\(375\) 10.5361 0.544083
\(376\) 0 0
\(377\) −6.74000 −0.347128
\(378\) 0 0
\(379\) 27.4866 1.41189 0.705947 0.708265i \(-0.250522\pi\)
0.705947 + 0.708265i \(0.250522\pi\)
\(380\) 0 0
\(381\) −20.6467 −1.05776
\(382\) 0 0
\(383\) 24.5806 1.25601 0.628004 0.778210i \(-0.283872\pi\)
0.628004 + 0.778210i \(0.283872\pi\)
\(384\) 0 0
\(385\) −15.3050 −0.780015
\(386\) 0 0
\(387\) 5.16259 0.262429
\(388\) 0 0
\(389\) 31.1352 1.57862 0.789308 0.613998i \(-0.210440\pi\)
0.789308 + 0.613998i \(0.210440\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −10.9912 −0.554433
\(394\) 0 0
\(395\) 10.4038 0.523470
\(396\) 0 0
\(397\) −4.65419 −0.233587 −0.116793 0.993156i \(-0.537262\pi\)
−0.116793 + 0.993156i \(0.537262\pi\)
\(398\) 0 0
\(399\) −1.04706 −0.0524186
\(400\) 0 0
\(401\) −13.9586 −0.697058 −0.348529 0.937298i \(-0.613319\pi\)
−0.348529 + 0.937298i \(0.613319\pi\)
\(402\) 0 0
\(403\) −7.11801 −0.354573
\(404\) 0 0
\(405\) 7.13647 0.354614
\(406\) 0 0
\(407\) −33.4607 −1.65859
\(408\) 0 0
\(409\) 18.9180 0.935433 0.467717 0.883878i \(-0.345077\pi\)
0.467717 + 0.883878i \(0.345077\pi\)
\(410\) 0 0
\(411\) 0.571062 0.0281684
\(412\) 0 0
\(413\) −13.8098 −0.679534
\(414\) 0 0
\(415\) −30.1254 −1.47880
\(416\) 0 0
\(417\) −8.77126 −0.429531
\(418\) 0 0
\(419\) −38.7131 −1.89126 −0.945629 0.325247i \(-0.894553\pi\)
−0.945629 + 0.325247i \(0.894553\pi\)
\(420\) 0 0
\(421\) 26.4823 1.29067 0.645333 0.763901i \(-0.276718\pi\)
0.645333 + 0.763901i \(0.276718\pi\)
\(422\) 0 0
\(423\) 17.5614 0.853863
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −6.86562 −0.332251
\(428\) 0 0
\(429\) 5.59908 0.270326
\(430\) 0 0
\(431\) 31.4453 1.51467 0.757334 0.653028i \(-0.226501\pi\)
0.757334 + 0.653028i \(0.226501\pi\)
\(432\) 0 0
\(433\) −16.7690 −0.805868 −0.402934 0.915229i \(-0.632010\pi\)
−0.402934 + 0.915229i \(0.632010\pi\)
\(434\) 0 0
\(435\) 26.9371 1.29153
\(436\) 0 0
\(437\) −1.56939 −0.0750743
\(438\) 0 0
\(439\) 8.77883 0.418991 0.209495 0.977810i \(-0.432818\pi\)
0.209495 + 0.977810i \(0.432818\pi\)
\(440\) 0 0
\(441\) −1.53791 −0.0732338
\(442\) 0 0
\(443\) 35.9940 1.71013 0.855063 0.518524i \(-0.173518\pi\)
0.855063 + 0.518524i \(0.173518\pi\)
\(444\) 0 0
\(445\) 33.8706 1.60562
\(446\) 0 0
\(447\) −18.4644 −0.873338
\(448\) 0 0
\(449\) 8.83589 0.416991 0.208496 0.978023i \(-0.433143\pi\)
0.208496 + 0.978023i \(0.433143\pi\)
\(450\) 0 0
\(451\) −5.80573 −0.273381
\(452\) 0 0
\(453\) 21.0411 0.988595
\(454\) 0 0
\(455\) 3.77211 0.176839
\(456\) 0 0
\(457\) 15.8172 0.739898 0.369949 0.929052i \(-0.379375\pi\)
0.369949 + 0.929052i \(0.379375\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.8173 0.969557 0.484779 0.874637i \(-0.338900\pi\)
0.484779 + 0.874637i \(0.338900\pi\)
\(462\) 0 0
\(463\) 39.9133 1.85493 0.927464 0.373914i \(-0.121984\pi\)
0.927464 + 0.373914i \(0.121984\pi\)
\(464\) 0 0
\(465\) 28.4478 1.31924
\(466\) 0 0
\(467\) 3.99404 0.184822 0.0924110 0.995721i \(-0.470543\pi\)
0.0924110 + 0.995721i \(0.470543\pi\)
\(468\) 0 0
\(469\) −8.07908 −0.373057
\(470\) 0 0
\(471\) −15.8901 −0.732177
\(472\) 0 0
\(473\) −14.5505 −0.669031
\(474\) 0 0
\(475\) 6.46657 0.296706
\(476\) 0 0
\(477\) −20.4772 −0.937585
\(478\) 0 0
\(479\) −1.54405 −0.0705494 −0.0352747 0.999378i \(-0.511231\pi\)
−0.0352747 + 0.999378i \(0.511231\pi\)
\(480\) 0 0
\(481\) 8.24683 0.376023
\(482\) 0 0
\(483\) 2.19147 0.0997151
\(484\) 0 0
\(485\) −11.0623 −0.502311
\(486\) 0 0
\(487\) −2.20153 −0.0997608 −0.0498804 0.998755i \(-0.515884\pi\)
−0.0498804 + 0.998755i \(0.515884\pi\)
\(488\) 0 0
\(489\) 17.9674 0.812514
\(490\) 0 0
\(491\) 38.0842 1.71871 0.859357 0.511376i \(-0.170864\pi\)
0.859357 + 0.511376i \(0.170864\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 23.5377 1.05794
\(496\) 0 0
\(497\) 3.76828 0.169031
\(498\) 0 0
\(499\) 36.2687 1.62361 0.811806 0.583927i \(-0.198485\pi\)
0.811806 + 0.583927i \(0.198485\pi\)
\(500\) 0 0
\(501\) −10.2076 −0.456044
\(502\) 0 0
\(503\) 14.6396 0.652746 0.326373 0.945241i \(-0.394174\pi\)
0.326373 + 0.945241i \(0.394174\pi\)
\(504\) 0 0
\(505\) 67.0888 2.98541
\(506\) 0 0
\(507\) 14.3392 0.636828
\(508\) 0 0
\(509\) −8.33470 −0.369429 −0.184715 0.982792i \(-0.559136\pi\)
−0.184715 + 0.982792i \(0.559136\pi\)
\(510\) 0 0
\(511\) −2.16933 −0.0959656
\(512\) 0 0
\(513\) 4.75146 0.209782
\(514\) 0 0
\(515\) 11.8972 0.524255
\(516\) 0 0
\(517\) −49.4956 −2.17682
\(518\) 0 0
\(519\) −14.7598 −0.647881
\(520\) 0 0
\(521\) −8.21783 −0.360030 −0.180015 0.983664i \(-0.557615\pi\)
−0.180015 + 0.983664i \(0.557615\pi\)
\(522\) 0 0
\(523\) −9.82413 −0.429579 −0.214790 0.976660i \(-0.568907\pi\)
−0.214790 + 0.976660i \(0.568907\pi\)
\(524\) 0 0
\(525\) −9.02977 −0.394091
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −19.7153 −0.857187
\(530\) 0 0
\(531\) 21.2382 0.921657
\(532\) 0 0
\(533\) 1.43090 0.0619790
\(534\) 0 0
\(535\) 24.1206 1.04283
\(536\) 0 0
\(537\) 8.68736 0.374887
\(538\) 0 0
\(539\) 4.33450 0.186700
\(540\) 0 0
\(541\) 17.6235 0.757693 0.378847 0.925459i \(-0.376321\pi\)
0.378847 + 0.925459i \(0.376321\pi\)
\(542\) 0 0
\(543\) −14.0819 −0.604312
\(544\) 0 0
\(545\) −37.5656 −1.60913
\(546\) 0 0
\(547\) −19.5130 −0.834314 −0.417157 0.908834i \(-0.636973\pi\)
−0.417157 + 0.908834i \(0.636973\pi\)
\(548\) 0 0
\(549\) 10.5587 0.450635
\(550\) 0 0
\(551\) 5.46329 0.232744
\(552\) 0 0
\(553\) −2.94643 −0.125295
\(554\) 0 0
\(555\) −32.9592 −1.39904
\(556\) 0 0
\(557\) 16.4920 0.698787 0.349393 0.936976i \(-0.386388\pi\)
0.349393 + 0.936976i \(0.386388\pi\)
\(558\) 0 0
\(559\) 3.58615 0.151678
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −21.6951 −0.914339 −0.457169 0.889380i \(-0.651137\pi\)
−0.457169 + 0.889380i \(0.651137\pi\)
\(564\) 0 0
\(565\) −51.0157 −2.14625
\(566\) 0 0
\(567\) −2.02111 −0.0848785
\(568\) 0 0
\(569\) −9.31653 −0.390569 −0.195285 0.980747i \(-0.562563\pi\)
−0.195285 + 0.980747i \(0.562563\pi\)
\(570\) 0 0
\(571\) 13.4541 0.563036 0.281518 0.959556i \(-0.409162\pi\)
0.281518 + 0.959556i \(0.409162\pi\)
\(572\) 0 0
\(573\) 6.80228 0.284169
\(574\) 0 0
\(575\) −13.5343 −0.564421
\(576\) 0 0
\(577\) −5.13162 −0.213632 −0.106816 0.994279i \(-0.534066\pi\)
−0.106816 + 0.994279i \(0.534066\pi\)
\(578\) 0 0
\(579\) −25.7913 −1.07185
\(580\) 0 0
\(581\) 8.53177 0.353957
\(582\) 0 0
\(583\) 57.7136 2.39025
\(584\) 0 0
\(585\) −5.80117 −0.239849
\(586\) 0 0
\(587\) −2.24329 −0.0925905 −0.0462953 0.998928i \(-0.514742\pi\)
−0.0462953 + 0.998928i \(0.514742\pi\)
\(588\) 0 0
\(589\) 5.76968 0.237736
\(590\) 0 0
\(591\) −11.1628 −0.459178
\(592\) 0 0
\(593\) 21.9578 0.901698 0.450849 0.892600i \(-0.351121\pi\)
0.450849 + 0.892600i \(0.351121\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 17.3279 0.709184
\(598\) 0 0
\(599\) −21.9301 −0.896039 −0.448020 0.894024i \(-0.647871\pi\)
−0.448020 + 0.894024i \(0.647871\pi\)
\(600\) 0 0
\(601\) −22.5628 −0.920355 −0.460178 0.887827i \(-0.652214\pi\)
−0.460178 + 0.887827i \(0.652214\pi\)
\(602\) 0 0
\(603\) 12.4249 0.505981
\(604\) 0 0
\(605\) −27.4988 −1.11799
\(606\) 0 0
\(607\) −34.5481 −1.40227 −0.701133 0.713031i \(-0.747322\pi\)
−0.701133 + 0.713031i \(0.747322\pi\)
\(608\) 0 0
\(609\) −7.62881 −0.309135
\(610\) 0 0
\(611\) 12.1988 0.493512
\(612\) 0 0
\(613\) 37.5011 1.51466 0.757328 0.653035i \(-0.226504\pi\)
0.757328 + 0.653035i \(0.226504\pi\)
\(614\) 0 0
\(615\) −5.71871 −0.230601
\(616\) 0 0
\(617\) −5.04568 −0.203132 −0.101566 0.994829i \(-0.532385\pi\)
−0.101566 + 0.994829i \(0.532385\pi\)
\(618\) 0 0
\(619\) 24.1657 0.971300 0.485650 0.874153i \(-0.338583\pi\)
0.485650 + 0.874153i \(0.338583\pi\)
\(620\) 0 0
\(621\) −9.94467 −0.399066
\(622\) 0 0
\(623\) −9.59243 −0.384312
\(624\) 0 0
\(625\) −6.57153 −0.262861
\(626\) 0 0
\(627\) −4.53848 −0.181250
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.767437 0.0305512 0.0152756 0.999883i \(-0.495137\pi\)
0.0152756 + 0.999883i \(0.495137\pi\)
\(632\) 0 0
\(633\) 2.78162 0.110559
\(634\) 0 0
\(635\) −60.2917 −2.39260
\(636\) 0 0
\(637\) −1.06829 −0.0423273
\(638\) 0 0
\(639\) −5.79528 −0.229258
\(640\) 0 0
\(641\) −45.6602 −1.80347 −0.901735 0.432290i \(-0.857706\pi\)
−0.901735 + 0.432290i \(0.857706\pi\)
\(642\) 0 0
\(643\) 44.3325 1.74830 0.874152 0.485652i \(-0.161418\pi\)
0.874152 + 0.485652i \(0.161418\pi\)
\(644\) 0 0
\(645\) −14.3324 −0.564337
\(646\) 0 0
\(647\) 8.61462 0.338676 0.169338 0.985558i \(-0.445837\pi\)
0.169338 + 0.985558i \(0.445837\pi\)
\(648\) 0 0
\(649\) −59.8584 −2.34965
\(650\) 0 0
\(651\) −8.05666 −0.315765
\(652\) 0 0
\(653\) 1.61420 0.0631687 0.0315843 0.999501i \(-0.489945\pi\)
0.0315843 + 0.999501i \(0.489945\pi\)
\(654\) 0 0
\(655\) −32.0961 −1.25410
\(656\) 0 0
\(657\) 3.33624 0.130159
\(658\) 0 0
\(659\) −23.3794 −0.910732 −0.455366 0.890304i \(-0.650492\pi\)
−0.455366 + 0.890304i \(0.650492\pi\)
\(660\) 0 0
\(661\) −41.7893 −1.62542 −0.812708 0.582671i \(-0.802008\pi\)
−0.812708 + 0.582671i \(0.802008\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.05758 −0.118568
\(666\) 0 0
\(667\) −11.4345 −0.442745
\(668\) 0 0
\(669\) 0.408229 0.0157831
\(670\) 0 0
\(671\) −29.7591 −1.14884
\(672\) 0 0
\(673\) 2.85786 0.110162 0.0550812 0.998482i \(-0.482458\pi\)
0.0550812 + 0.998482i \(0.482458\pi\)
\(674\) 0 0
\(675\) 40.9763 1.57718
\(676\) 0 0
\(677\) 42.2233 1.62277 0.811386 0.584511i \(-0.198713\pi\)
0.811386 + 0.584511i \(0.198713\pi\)
\(678\) 0 0
\(679\) 3.13292 0.120231
\(680\) 0 0
\(681\) −33.4815 −1.28301
\(682\) 0 0
\(683\) 6.97143 0.266754 0.133377 0.991065i \(-0.457418\pi\)
0.133377 + 0.991065i \(0.457418\pi\)
\(684\) 0 0
\(685\) 1.66759 0.0637154
\(686\) 0 0
\(687\) 33.0259 1.26002
\(688\) 0 0
\(689\) −14.2243 −0.541901
\(690\) 0 0
\(691\) 9.68902 0.368588 0.184294 0.982871i \(-0.441000\pi\)
0.184294 + 0.982871i \(0.441000\pi\)
\(692\) 0 0
\(693\) −6.66607 −0.253223
\(694\) 0 0
\(695\) −25.6135 −0.971575
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 16.4207 0.621089
\(700\) 0 0
\(701\) 47.7392 1.80308 0.901542 0.432692i \(-0.142436\pi\)
0.901542 + 0.432692i \(0.142436\pi\)
\(702\) 0 0
\(703\) −6.68468 −0.252117
\(704\) 0 0
\(705\) −48.7538 −1.83618
\(706\) 0 0
\(707\) −19.0001 −0.714573
\(708\) 0 0
\(709\) 2.16659 0.0813680 0.0406840 0.999172i \(-0.487046\pi\)
0.0406840 + 0.999172i \(0.487046\pi\)
\(710\) 0 0
\(711\) 4.53135 0.169939
\(712\) 0 0
\(713\) −12.0758 −0.452242
\(714\) 0 0
\(715\) 16.3502 0.611464
\(716\) 0 0
\(717\) 11.8628 0.443023
\(718\) 0 0
\(719\) 21.2309 0.791778 0.395889 0.918298i \(-0.370437\pi\)
0.395889 + 0.918298i \(0.370437\pi\)
\(720\) 0 0
\(721\) −3.36940 −0.125483
\(722\) 0 0
\(723\) 13.4029 0.498461
\(724\) 0 0
\(725\) 47.1150 1.74981
\(726\) 0 0
\(727\) −35.0863 −1.30128 −0.650639 0.759387i \(-0.725499\pi\)
−0.650639 + 0.759387i \(0.725499\pi\)
\(728\) 0 0
\(729\) 23.0128 0.852325
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 48.1243 1.77751 0.888756 0.458380i \(-0.151570\pi\)
0.888756 + 0.458380i \(0.151570\pi\)
\(734\) 0 0
\(735\) 4.26954 0.157484
\(736\) 0 0
\(737\) −35.0188 −1.28993
\(738\) 0 0
\(739\) −9.08895 −0.334343 −0.167171 0.985928i \(-0.553463\pi\)
−0.167171 + 0.985928i \(0.553463\pi\)
\(740\) 0 0
\(741\) 1.11857 0.0410916
\(742\) 0 0
\(743\) −15.8471 −0.581373 −0.290686 0.956818i \(-0.593884\pi\)
−0.290686 + 0.956818i \(0.593884\pi\)
\(744\) 0 0
\(745\) −53.9192 −1.97544
\(746\) 0 0
\(747\) −13.1211 −0.480075
\(748\) 0 0
\(749\) −6.83117 −0.249605
\(750\) 0 0
\(751\) 21.7164 0.792443 0.396222 0.918155i \(-0.370321\pi\)
0.396222 + 0.918155i \(0.370321\pi\)
\(752\) 0 0
\(753\) −6.66052 −0.242723
\(754\) 0 0
\(755\) 61.4433 2.23615
\(756\) 0 0
\(757\) −33.4660 −1.21634 −0.608172 0.793805i \(-0.708097\pi\)
−0.608172 + 0.793805i \(0.708097\pi\)
\(758\) 0 0
\(759\) 9.49891 0.344789
\(760\) 0 0
\(761\) −41.0963 −1.48974 −0.744870 0.667209i \(-0.767489\pi\)
−0.744870 + 0.667209i \(0.767489\pi\)
\(762\) 0 0
\(763\) 10.6389 0.385153
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14.7529 0.532695
\(768\) 0 0
\(769\) −33.5980 −1.21157 −0.605787 0.795627i \(-0.707142\pi\)
−0.605787 + 0.795627i \(0.707142\pi\)
\(770\) 0 0
\(771\) −20.4794 −0.737546
\(772\) 0 0
\(773\) 10.2680 0.369314 0.184657 0.982803i \(-0.440883\pi\)
0.184657 + 0.982803i \(0.440883\pi\)
\(774\) 0 0
\(775\) 49.7573 1.78734
\(776\) 0 0
\(777\) 9.33433 0.334867
\(778\) 0 0
\(779\) −1.15985 −0.0415559
\(780\) 0 0
\(781\) 16.3336 0.584463
\(782\) 0 0
\(783\) 34.6188 1.23718
\(784\) 0 0
\(785\) −46.4016 −1.65614
\(786\) 0 0
\(787\) 14.4117 0.513722 0.256861 0.966448i \(-0.417312\pi\)
0.256861 + 0.966448i \(0.417312\pi\)
\(788\) 0 0
\(789\) −32.3067 −1.15015
\(790\) 0 0
\(791\) 14.4481 0.513714
\(792\) 0 0
\(793\) 7.33450 0.260456
\(794\) 0 0
\(795\) 56.8486 2.01621
\(796\) 0 0
\(797\) 9.69924 0.343565 0.171782 0.985135i \(-0.445047\pi\)
0.171782 + 0.985135i \(0.445047\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 14.7523 0.521246
\(802\) 0 0
\(803\) −9.40297 −0.331824
\(804\) 0 0
\(805\) 6.39943 0.225550
\(806\) 0 0
\(807\) 10.6588 0.375209
\(808\) 0 0
\(809\) 56.1783 1.97513 0.987563 0.157226i \(-0.0502551\pi\)
0.987563 + 0.157226i \(0.0502551\pi\)
\(810\) 0 0
\(811\) −15.0603 −0.528838 −0.264419 0.964408i \(-0.585180\pi\)
−0.264419 + 0.964408i \(0.585180\pi\)
\(812\) 0 0
\(813\) −4.19889 −0.147262
\(814\) 0 0
\(815\) 52.4677 1.83786
\(816\) 0 0
\(817\) −2.90684 −0.101698
\(818\) 0 0
\(819\) 1.64294 0.0574089
\(820\) 0 0
\(821\) −47.2701 −1.64974 −0.824870 0.565323i \(-0.808752\pi\)
−0.824870 + 0.565323i \(0.808752\pi\)
\(822\) 0 0
\(823\) −46.6576 −1.62638 −0.813190 0.581998i \(-0.802271\pi\)
−0.813190 + 0.581998i \(0.802271\pi\)
\(824\) 0 0
\(825\) −39.1395 −1.36266
\(826\) 0 0
\(827\) 28.7773 1.00068 0.500342 0.865828i \(-0.333208\pi\)
0.500342 + 0.865828i \(0.333208\pi\)
\(828\) 0 0
\(829\) 4.59550 0.159608 0.0798042 0.996811i \(-0.474570\pi\)
0.0798042 + 0.996811i \(0.474570\pi\)
\(830\) 0 0
\(831\) 12.1425 0.421218
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −29.8080 −1.03155
\(836\) 0 0
\(837\) 36.5604 1.26371
\(838\) 0 0
\(839\) 16.1546 0.557717 0.278859 0.960332i \(-0.410044\pi\)
0.278859 + 0.960332i \(0.410044\pi\)
\(840\) 0 0
\(841\) 10.8051 0.372591
\(842\) 0 0
\(843\) 37.6772 1.29767
\(844\) 0 0
\(845\) 41.8729 1.44047
\(846\) 0 0
\(847\) 7.78790 0.267596
\(848\) 0 0
\(849\) −2.67335 −0.0917493
\(850\) 0 0
\(851\) 13.9908 0.479600
\(852\) 0 0
\(853\) −23.1870 −0.793908 −0.396954 0.917838i \(-0.629933\pi\)
−0.396954 + 0.917838i \(0.629933\pi\)
\(854\) 0 0
\(855\) 4.70229 0.160815
\(856\) 0 0
\(857\) 24.3105 0.830430 0.415215 0.909723i \(-0.363706\pi\)
0.415215 + 0.909723i \(0.363706\pi\)
\(858\) 0 0
\(859\) −1.83430 −0.0625856 −0.0312928 0.999510i \(-0.509962\pi\)
−0.0312928 + 0.999510i \(0.509962\pi\)
\(860\) 0 0
\(861\) 1.61959 0.0551954
\(862\) 0 0
\(863\) 25.5721 0.870485 0.435243 0.900313i \(-0.356663\pi\)
0.435243 + 0.900313i \(0.356663\pi\)
\(864\) 0 0
\(865\) −43.1008 −1.46547
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −12.7713 −0.433237
\(870\) 0 0
\(871\) 8.63083 0.292444
\(872\) 0 0
\(873\) −4.81815 −0.163070
\(874\) 0 0
\(875\) −8.71352 −0.294571
\(876\) 0 0
\(877\) 1.16799 0.0394404 0.0197202 0.999806i \(-0.493722\pi\)
0.0197202 + 0.999806i \(0.493722\pi\)
\(878\) 0 0
\(879\) 18.6492 0.629021
\(880\) 0 0
\(881\) −40.2931 −1.35751 −0.678755 0.734365i \(-0.737480\pi\)
−0.678755 + 0.734365i \(0.737480\pi\)
\(882\) 0 0
\(883\) −44.5385 −1.49884 −0.749421 0.662094i \(-0.769668\pi\)
−0.749421 + 0.662094i \(0.769668\pi\)
\(884\) 0 0
\(885\) −58.9613 −1.98196
\(886\) 0 0
\(887\) −1.06222 −0.0356659 −0.0178329 0.999841i \(-0.505677\pi\)
−0.0178329 + 0.999841i \(0.505677\pi\)
\(888\) 0 0
\(889\) 17.0751 0.572681
\(890\) 0 0
\(891\) −8.76049 −0.293488
\(892\) 0 0
\(893\) −9.88808 −0.330892
\(894\) 0 0
\(895\) 25.3685 0.847975
\(896\) 0 0
\(897\) −2.34113 −0.0781680
\(898\) 0 0
\(899\) 42.0375 1.40203
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 4.05905 0.135077
\(904\) 0 0
\(905\) −41.1214 −1.36692
\(906\) 0 0
\(907\) −32.8756 −1.09162 −0.545808 0.837910i \(-0.683777\pi\)
−0.545808 + 0.837910i \(0.683777\pi\)
\(908\) 0 0
\(909\) 29.2205 0.969181
\(910\) 0 0
\(911\) 27.1282 0.898799 0.449399 0.893331i \(-0.351638\pi\)
0.449399 + 0.893331i \(0.351638\pi\)
\(912\) 0 0
\(913\) 36.9810 1.22389
\(914\) 0 0
\(915\) −29.3131 −0.969060
\(916\) 0 0
\(917\) 9.08989 0.300174
\(918\) 0 0
\(919\) −13.3575 −0.440624 −0.220312 0.975429i \(-0.570708\pi\)
−0.220312 + 0.975429i \(0.570708\pi\)
\(920\) 0 0
\(921\) 3.07925 0.101465
\(922\) 0 0
\(923\) −4.02564 −0.132505
\(924\) 0 0
\(925\) −57.6482 −1.89546
\(926\) 0 0
\(927\) 5.18183 0.170194
\(928\) 0 0
\(929\) −6.61737 −0.217109 −0.108554 0.994090i \(-0.534622\pi\)
−0.108554 + 0.994090i \(0.534622\pi\)
\(930\) 0 0
\(931\) 0.865933 0.0283798
\(932\) 0 0
\(933\) −13.3204 −0.436089
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 39.8317 1.30125 0.650623 0.759401i \(-0.274508\pi\)
0.650623 + 0.759401i \(0.274508\pi\)
\(938\) 0 0
\(939\) −2.61494 −0.0853354
\(940\) 0 0
\(941\) 11.1026 0.361934 0.180967 0.983489i \(-0.442077\pi\)
0.180967 + 0.983489i \(0.442077\pi\)
\(942\) 0 0
\(943\) 2.42753 0.0790513
\(944\) 0 0
\(945\) −19.3748 −0.630262
\(946\) 0 0
\(947\) 27.4531 0.892106 0.446053 0.895007i \(-0.352829\pi\)
0.446053 + 0.895007i \(0.352829\pi\)
\(948\) 0 0
\(949\) 2.31748 0.0752287
\(950\) 0 0
\(951\) −13.8063 −0.447701
\(952\) 0 0
\(953\) 11.7203 0.379658 0.189829 0.981817i \(-0.439207\pi\)
0.189829 + 0.981817i \(0.439207\pi\)
\(954\) 0 0
\(955\) 19.8638 0.642776
\(956\) 0 0
\(957\) −33.0671 −1.06891
\(958\) 0 0
\(959\) −0.472276 −0.0152506
\(960\) 0 0
\(961\) 13.3951 0.432101
\(962\) 0 0
\(963\) 10.5057 0.338542
\(964\) 0 0
\(965\) −75.3146 −2.42446
\(966\) 0 0
\(967\) −16.4982 −0.530547 −0.265273 0.964173i \(-0.585462\pi\)
−0.265273 + 0.964173i \(0.585462\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 59.0436 1.89480 0.947400 0.320051i \(-0.103700\pi\)
0.947400 + 0.320051i \(0.103700\pi\)
\(972\) 0 0
\(973\) 7.25396 0.232551
\(974\) 0 0
\(975\) 9.64644 0.308933
\(976\) 0 0
\(977\) −11.9321 −0.381742 −0.190871 0.981615i \(-0.561131\pi\)
−0.190871 + 0.981615i \(0.561131\pi\)
\(978\) 0 0
\(979\) −41.5784 −1.32885
\(980\) 0 0
\(981\) −16.3616 −0.522387
\(982\) 0 0
\(983\) 37.7789 1.20496 0.602479 0.798135i \(-0.294180\pi\)
0.602479 + 0.798135i \(0.294180\pi\)
\(984\) 0 0
\(985\) −32.5973 −1.03864
\(986\) 0 0
\(987\) 13.8075 0.439497
\(988\) 0 0
\(989\) 6.08394 0.193458
\(990\) 0 0
\(991\) 43.8544 1.39308 0.696540 0.717517i \(-0.254722\pi\)
0.696540 + 0.717517i \(0.254722\pi\)
\(992\) 0 0
\(993\) −1.02398 −0.0324950
\(994\) 0 0
\(995\) 50.6003 1.60414
\(996\) 0 0
\(997\) −49.7475 −1.57552 −0.787759 0.615984i \(-0.788759\pi\)
−0.787759 + 0.615984i \(0.788759\pi\)
\(998\) 0 0
\(999\) −42.3584 −1.34016
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8092.2.a.z.1.6 20
17.3 odd 16 476.2.u.a.281.5 40
17.6 odd 16 476.2.u.a.393.5 yes 40
17.16 even 2 8092.2.a.y.1.15 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
476.2.u.a.281.5 40 17.3 odd 16
476.2.u.a.393.5 yes 40 17.6 odd 16
8092.2.a.y.1.15 20 17.16 even 2
8092.2.a.z.1.6 20 1.1 even 1 trivial