Properties

Label 8092.2.a.z.1.16
Level $8092$
Weight $2$
Character 8092.1
Self dual yes
Analytic conductor $64.615$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8092,2,Mod(1,8092)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8092, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8092.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8092 = 2^{2} \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8092.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,8,0,8,0,20,0,28,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.6149453156\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{19} - 12 x^{18} + 240 x^{17} - 224 x^{16} - 2776 x^{15} + 5324 x^{14} + 15280 x^{13} + \cdots + 544 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 476)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Root \(2.76359\) of defining polynomial
Character \(\chi\) \(=\) 8092.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.76359 q^{3} -1.73772 q^{5} +1.00000 q^{7} +4.63745 q^{9} +5.10276 q^{11} +0.561096 q^{13} -4.80236 q^{15} +7.01515 q^{19} +2.76359 q^{21} +6.87639 q^{23} -1.98033 q^{25} +4.52525 q^{27} -7.63470 q^{29} +4.09027 q^{31} +14.1019 q^{33} -1.73772 q^{35} +5.85298 q^{37} +1.55064 q^{39} -12.4480 q^{41} -6.65715 q^{43} -8.05860 q^{45} +5.76036 q^{47} +1.00000 q^{49} +11.7885 q^{53} -8.86716 q^{55} +19.3870 q^{57} +2.65437 q^{59} +5.20183 q^{61} +4.63745 q^{63} -0.975028 q^{65} -11.9894 q^{67} +19.0035 q^{69} +4.46918 q^{71} -5.37549 q^{73} -5.47282 q^{75} +5.10276 q^{77} -9.17100 q^{79} -1.40640 q^{81} -0.667347 q^{83} -21.0992 q^{87} -1.94005 q^{89} +0.561096 q^{91} +11.3038 q^{93} -12.1904 q^{95} +16.3329 q^{97} +23.6638 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{3} + 8 q^{5} + 20 q^{7} + 28 q^{9} + 16 q^{11} + 8 q^{13} + 8 q^{15} + 8 q^{19} + 8 q^{21} + 40 q^{23} + 36 q^{25} + 32 q^{27} + 16 q^{29} + 16 q^{31} + 8 q^{33} + 8 q^{35} + 24 q^{37} + 16 q^{39}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.76359 1.59556 0.797781 0.602948i \(-0.206007\pi\)
0.797781 + 0.602948i \(0.206007\pi\)
\(4\) 0 0
\(5\) −1.73772 −0.777132 −0.388566 0.921421i \(-0.627030\pi\)
−0.388566 + 0.921421i \(0.627030\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 4.63745 1.54582
\(10\) 0 0
\(11\) 5.10276 1.53854 0.769269 0.638925i \(-0.220620\pi\)
0.769269 + 0.638925i \(0.220620\pi\)
\(12\) 0 0
\(13\) 0.561096 0.155620 0.0778100 0.996968i \(-0.475207\pi\)
0.0778100 + 0.996968i \(0.475207\pi\)
\(14\) 0 0
\(15\) −4.80236 −1.23996
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 7.01515 1.60939 0.804693 0.593691i \(-0.202330\pi\)
0.804693 + 0.593691i \(0.202330\pi\)
\(20\) 0 0
\(21\) 2.76359 0.603066
\(22\) 0 0
\(23\) 6.87639 1.43383 0.716913 0.697163i \(-0.245554\pi\)
0.716913 + 0.697163i \(0.245554\pi\)
\(24\) 0 0
\(25\) −1.98033 −0.396065
\(26\) 0 0
\(27\) 4.52525 0.870884
\(28\) 0 0
\(29\) −7.63470 −1.41773 −0.708864 0.705345i \(-0.750792\pi\)
−0.708864 + 0.705345i \(0.750792\pi\)
\(30\) 0 0
\(31\) 4.09027 0.734634 0.367317 0.930096i \(-0.380276\pi\)
0.367317 + 0.930096i \(0.380276\pi\)
\(32\) 0 0
\(33\) 14.1019 2.45483
\(34\) 0 0
\(35\) −1.73772 −0.293728
\(36\) 0 0
\(37\) 5.85298 0.962225 0.481112 0.876659i \(-0.340233\pi\)
0.481112 + 0.876659i \(0.340233\pi\)
\(38\) 0 0
\(39\) 1.55064 0.248301
\(40\) 0 0
\(41\) −12.4480 −1.94405 −0.972027 0.234869i \(-0.924534\pi\)
−0.972027 + 0.234869i \(0.924534\pi\)
\(42\) 0 0
\(43\) −6.65715 −1.01521 −0.507603 0.861591i \(-0.669468\pi\)
−0.507603 + 0.861591i \(0.669468\pi\)
\(44\) 0 0
\(45\) −8.05860 −1.20130
\(46\) 0 0
\(47\) 5.76036 0.840235 0.420118 0.907470i \(-0.361989\pi\)
0.420118 + 0.907470i \(0.361989\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.7885 1.61927 0.809636 0.586932i \(-0.199664\pi\)
0.809636 + 0.586932i \(0.199664\pi\)
\(54\) 0 0
\(55\) −8.86716 −1.19565
\(56\) 0 0
\(57\) 19.3870 2.56788
\(58\) 0 0
\(59\) 2.65437 0.345569 0.172785 0.984960i \(-0.444724\pi\)
0.172785 + 0.984960i \(0.444724\pi\)
\(60\) 0 0
\(61\) 5.20183 0.666027 0.333013 0.942922i \(-0.391935\pi\)
0.333013 + 0.942922i \(0.391935\pi\)
\(62\) 0 0
\(63\) 4.63745 0.584264
\(64\) 0 0
\(65\) −0.975028 −0.120937
\(66\) 0 0
\(67\) −11.9894 −1.46474 −0.732369 0.680908i \(-0.761585\pi\)
−0.732369 + 0.680908i \(0.761585\pi\)
\(68\) 0 0
\(69\) 19.0035 2.28776
\(70\) 0 0
\(71\) 4.46918 0.530394 0.265197 0.964194i \(-0.414563\pi\)
0.265197 + 0.964194i \(0.414563\pi\)
\(72\) 0 0
\(73\) −5.37549 −0.629153 −0.314577 0.949232i \(-0.601863\pi\)
−0.314577 + 0.949232i \(0.601863\pi\)
\(74\) 0 0
\(75\) −5.47282 −0.631946
\(76\) 0 0
\(77\) 5.10276 0.581513
\(78\) 0 0
\(79\) −9.17100 −1.03182 −0.515909 0.856643i \(-0.672546\pi\)
−0.515909 + 0.856643i \(0.672546\pi\)
\(80\) 0 0
\(81\) −1.40640 −0.156267
\(82\) 0 0
\(83\) −0.667347 −0.0732509 −0.0366254 0.999329i \(-0.511661\pi\)
−0.0366254 + 0.999329i \(0.511661\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −21.0992 −2.26207
\(88\) 0 0
\(89\) −1.94005 −0.205645 −0.102823 0.994700i \(-0.532787\pi\)
−0.102823 + 0.994700i \(0.532787\pi\)
\(90\) 0 0
\(91\) 0.561096 0.0588189
\(92\) 0 0
\(93\) 11.3038 1.17215
\(94\) 0 0
\(95\) −12.1904 −1.25071
\(96\) 0 0
\(97\) 16.3329 1.65835 0.829175 0.558989i \(-0.188811\pi\)
0.829175 + 0.558989i \(0.188811\pi\)
\(98\) 0 0
\(99\) 23.6638 2.37830
\(100\) 0 0
\(101\) −1.03096 −0.102584 −0.0512921 0.998684i \(-0.516334\pi\)
−0.0512921 + 0.998684i \(0.516334\pi\)
\(102\) 0 0
\(103\) 2.82191 0.278051 0.139026 0.990289i \(-0.455603\pi\)
0.139026 + 0.990289i \(0.455603\pi\)
\(104\) 0 0
\(105\) −4.80236 −0.468662
\(106\) 0 0
\(107\) −6.75748 −0.653270 −0.326635 0.945151i \(-0.605915\pi\)
−0.326635 + 0.945151i \(0.605915\pi\)
\(108\) 0 0
\(109\) −4.63805 −0.444245 −0.222122 0.975019i \(-0.571298\pi\)
−0.222122 + 0.975019i \(0.571298\pi\)
\(110\) 0 0
\(111\) 16.1753 1.53529
\(112\) 0 0
\(113\) 7.30142 0.686860 0.343430 0.939178i \(-0.388411\pi\)
0.343430 + 0.939178i \(0.388411\pi\)
\(114\) 0 0
\(115\) −11.9492 −1.11427
\(116\) 0 0
\(117\) 2.60206 0.240560
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 15.0381 1.36710
\(122\) 0 0
\(123\) −34.4013 −3.10186
\(124\) 0 0
\(125\) 12.1299 1.08493
\(126\) 0 0
\(127\) 12.2749 1.08922 0.544611 0.838689i \(-0.316677\pi\)
0.544611 + 0.838689i \(0.316677\pi\)
\(128\) 0 0
\(129\) −18.3977 −1.61982
\(130\) 0 0
\(131\) 3.35001 0.292692 0.146346 0.989233i \(-0.453249\pi\)
0.146346 + 0.989233i \(0.453249\pi\)
\(132\) 0 0
\(133\) 7.01515 0.608291
\(134\) 0 0
\(135\) −7.86362 −0.676793
\(136\) 0 0
\(137\) −1.81252 −0.154854 −0.0774270 0.996998i \(-0.524670\pi\)
−0.0774270 + 0.996998i \(0.524670\pi\)
\(138\) 0 0
\(139\) −7.45961 −0.632716 −0.316358 0.948640i \(-0.602460\pi\)
−0.316358 + 0.948640i \(0.602460\pi\)
\(140\) 0 0
\(141\) 15.9193 1.34065
\(142\) 0 0
\(143\) 2.86314 0.239427
\(144\) 0 0
\(145\) 13.2670 1.10176
\(146\) 0 0
\(147\) 2.76359 0.227937
\(148\) 0 0
\(149\) −8.70129 −0.712837 −0.356419 0.934326i \(-0.616002\pi\)
−0.356419 + 0.934326i \(0.616002\pi\)
\(150\) 0 0
\(151\) −1.67737 −0.136502 −0.0682512 0.997668i \(-0.521742\pi\)
−0.0682512 + 0.997668i \(0.521742\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −7.10775 −0.570908
\(156\) 0 0
\(157\) −7.45089 −0.594646 −0.297323 0.954777i \(-0.596094\pi\)
−0.297323 + 0.954777i \(0.596094\pi\)
\(158\) 0 0
\(159\) 32.5786 2.58365
\(160\) 0 0
\(161\) 6.87639 0.541935
\(162\) 0 0
\(163\) −0.0371483 −0.00290968 −0.00145484 0.999999i \(-0.500463\pi\)
−0.00145484 + 0.999999i \(0.500463\pi\)
\(164\) 0 0
\(165\) −24.5052 −1.90773
\(166\) 0 0
\(167\) −7.87688 −0.609531 −0.304766 0.952427i \(-0.598578\pi\)
−0.304766 + 0.952427i \(0.598578\pi\)
\(168\) 0 0
\(169\) −12.6852 −0.975782
\(170\) 0 0
\(171\) 32.5324 2.48782
\(172\) 0 0
\(173\) 4.33545 0.329618 0.164809 0.986325i \(-0.447299\pi\)
0.164809 + 0.986325i \(0.447299\pi\)
\(174\) 0 0
\(175\) −1.98033 −0.149699
\(176\) 0 0
\(177\) 7.33559 0.551377
\(178\) 0 0
\(179\) 22.0983 1.65170 0.825852 0.563887i \(-0.190695\pi\)
0.825852 + 0.563887i \(0.190695\pi\)
\(180\) 0 0
\(181\) −15.3679 −1.14228 −0.571142 0.820851i \(-0.693499\pi\)
−0.571142 + 0.820851i \(0.693499\pi\)
\(182\) 0 0
\(183\) 14.3758 1.06269
\(184\) 0 0
\(185\) −10.1709 −0.747776
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 4.52525 0.329163
\(190\) 0 0
\(191\) 17.8407 1.29090 0.645452 0.763801i \(-0.276669\pi\)
0.645452 + 0.763801i \(0.276669\pi\)
\(192\) 0 0
\(193\) −22.1174 −1.59204 −0.796022 0.605268i \(-0.793066\pi\)
−0.796022 + 0.605268i \(0.793066\pi\)
\(194\) 0 0
\(195\) −2.69458 −0.192963
\(196\) 0 0
\(197\) 19.0706 1.35872 0.679362 0.733803i \(-0.262257\pi\)
0.679362 + 0.733803i \(0.262257\pi\)
\(198\) 0 0
\(199\) 6.84328 0.485108 0.242554 0.970138i \(-0.422015\pi\)
0.242554 + 0.970138i \(0.422015\pi\)
\(200\) 0 0
\(201\) −33.1338 −2.33708
\(202\) 0 0
\(203\) −7.63470 −0.535851
\(204\) 0 0
\(205\) 21.6312 1.51079
\(206\) 0 0
\(207\) 31.8889 2.21643
\(208\) 0 0
\(209\) 35.7966 2.47610
\(210\) 0 0
\(211\) −0.270884 −0.0186484 −0.00932421 0.999957i \(-0.502968\pi\)
−0.00932421 + 0.999957i \(0.502968\pi\)
\(212\) 0 0
\(213\) 12.3510 0.846276
\(214\) 0 0
\(215\) 11.5683 0.788950
\(216\) 0 0
\(217\) 4.09027 0.277666
\(218\) 0 0
\(219\) −14.8557 −1.00385
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −14.4758 −0.969373 −0.484686 0.874688i \(-0.661066\pi\)
−0.484686 + 0.874688i \(0.661066\pi\)
\(224\) 0 0
\(225\) −9.18366 −0.612244
\(226\) 0 0
\(227\) 10.0316 0.665820 0.332910 0.942959i \(-0.391969\pi\)
0.332910 + 0.942959i \(0.391969\pi\)
\(228\) 0 0
\(229\) 19.6530 1.29870 0.649352 0.760488i \(-0.275040\pi\)
0.649352 + 0.760488i \(0.275040\pi\)
\(230\) 0 0
\(231\) 14.1019 0.927840
\(232\) 0 0
\(233\) −12.9993 −0.851613 −0.425806 0.904814i \(-0.640009\pi\)
−0.425806 + 0.904814i \(0.640009\pi\)
\(234\) 0 0
\(235\) −10.0099 −0.652974
\(236\) 0 0
\(237\) −25.3449 −1.64633
\(238\) 0 0
\(239\) −14.5987 −0.944309 −0.472154 0.881516i \(-0.656524\pi\)
−0.472154 + 0.881516i \(0.656524\pi\)
\(240\) 0 0
\(241\) 14.2479 0.917788 0.458894 0.888491i \(-0.348246\pi\)
0.458894 + 0.888491i \(0.348246\pi\)
\(242\) 0 0
\(243\) −17.4625 −1.12022
\(244\) 0 0
\(245\) −1.73772 −0.111019
\(246\) 0 0
\(247\) 3.93618 0.250453
\(248\) 0 0
\(249\) −1.84428 −0.116876
\(250\) 0 0
\(251\) 2.88099 0.181846 0.0909231 0.995858i \(-0.471018\pi\)
0.0909231 + 0.995858i \(0.471018\pi\)
\(252\) 0 0
\(253\) 35.0885 2.20600
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.4037 0.711343 0.355671 0.934611i \(-0.384252\pi\)
0.355671 + 0.934611i \(0.384252\pi\)
\(258\) 0 0
\(259\) 5.85298 0.363687
\(260\) 0 0
\(261\) −35.4055 −2.19155
\(262\) 0 0
\(263\) −15.1008 −0.931154 −0.465577 0.885007i \(-0.654153\pi\)
−0.465577 + 0.885007i \(0.654153\pi\)
\(264\) 0 0
\(265\) −20.4851 −1.25839
\(266\) 0 0
\(267\) −5.36152 −0.328120
\(268\) 0 0
\(269\) 21.4708 1.30910 0.654548 0.756020i \(-0.272859\pi\)
0.654548 + 0.756020i \(0.272859\pi\)
\(270\) 0 0
\(271\) −4.10050 −0.249088 −0.124544 0.992214i \(-0.539747\pi\)
−0.124544 + 0.992214i \(0.539747\pi\)
\(272\) 0 0
\(273\) 1.55064 0.0938491
\(274\) 0 0
\(275\) −10.1051 −0.609361
\(276\) 0 0
\(277\) 26.3814 1.58510 0.792551 0.609805i \(-0.208752\pi\)
0.792551 + 0.609805i \(0.208752\pi\)
\(278\) 0 0
\(279\) 18.9684 1.13561
\(280\) 0 0
\(281\) −3.53361 −0.210797 −0.105399 0.994430i \(-0.533612\pi\)
−0.105399 + 0.994430i \(0.533612\pi\)
\(282\) 0 0
\(283\) −28.7263 −1.70760 −0.853801 0.520600i \(-0.825708\pi\)
−0.853801 + 0.520600i \(0.825708\pi\)
\(284\) 0 0
\(285\) −33.6893 −1.99558
\(286\) 0 0
\(287\) −12.4480 −0.734783
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 45.1374 2.64600
\(292\) 0 0
\(293\) −28.6986 −1.67659 −0.838294 0.545219i \(-0.816447\pi\)
−0.838294 + 0.545219i \(0.816447\pi\)
\(294\) 0 0
\(295\) −4.61255 −0.268553
\(296\) 0 0
\(297\) 23.0912 1.33989
\(298\) 0 0
\(299\) 3.85831 0.223132
\(300\) 0 0
\(301\) −6.65715 −0.383712
\(302\) 0 0
\(303\) −2.84915 −0.163679
\(304\) 0 0
\(305\) −9.03934 −0.517591
\(306\) 0 0
\(307\) −30.3698 −1.73330 −0.866648 0.498920i \(-0.833730\pi\)
−0.866648 + 0.498920i \(0.833730\pi\)
\(308\) 0 0
\(309\) 7.79862 0.443648
\(310\) 0 0
\(311\) 20.9900 1.19023 0.595116 0.803640i \(-0.297106\pi\)
0.595116 + 0.803640i \(0.297106\pi\)
\(312\) 0 0
\(313\) −2.65641 −0.150149 −0.0750747 0.997178i \(-0.523920\pi\)
−0.0750747 + 0.997178i \(0.523920\pi\)
\(314\) 0 0
\(315\) −8.05860 −0.454050
\(316\) 0 0
\(317\) 5.33352 0.299561 0.149780 0.988719i \(-0.452143\pi\)
0.149780 + 0.988719i \(0.452143\pi\)
\(318\) 0 0
\(319\) −38.9580 −2.18123
\(320\) 0 0
\(321\) −18.6749 −1.04233
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −1.11115 −0.0616357
\(326\) 0 0
\(327\) −12.8177 −0.708820
\(328\) 0 0
\(329\) 5.76036 0.317579
\(330\) 0 0
\(331\) 5.15506 0.283348 0.141674 0.989913i \(-0.454752\pi\)
0.141674 + 0.989913i \(0.454752\pi\)
\(332\) 0 0
\(333\) 27.1429 1.48742
\(334\) 0 0
\(335\) 20.8342 1.13829
\(336\) 0 0
\(337\) 22.4126 1.22089 0.610445 0.792058i \(-0.290991\pi\)
0.610445 + 0.792058i \(0.290991\pi\)
\(338\) 0 0
\(339\) 20.1782 1.09593
\(340\) 0 0
\(341\) 20.8716 1.13026
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −33.0229 −1.77789
\(346\) 0 0
\(347\) −4.61077 −0.247519 −0.123760 0.992312i \(-0.539495\pi\)
−0.123760 + 0.992312i \(0.539495\pi\)
\(348\) 0 0
\(349\) −15.0190 −0.803947 −0.401973 0.915651i \(-0.631676\pi\)
−0.401973 + 0.915651i \(0.631676\pi\)
\(350\) 0 0
\(351\) 2.53910 0.135527
\(352\) 0 0
\(353\) −18.5455 −0.987079 −0.493540 0.869723i \(-0.664297\pi\)
−0.493540 + 0.869723i \(0.664297\pi\)
\(354\) 0 0
\(355\) −7.76618 −0.412186
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.5890 0.558867 0.279433 0.960165i \(-0.409853\pi\)
0.279433 + 0.960165i \(0.409853\pi\)
\(360\) 0 0
\(361\) 30.2124 1.59013
\(362\) 0 0
\(363\) 41.5592 2.18129
\(364\) 0 0
\(365\) 9.34110 0.488935
\(366\) 0 0
\(367\) 27.3075 1.42544 0.712719 0.701450i \(-0.247464\pi\)
0.712719 + 0.701450i \(0.247464\pi\)
\(368\) 0 0
\(369\) −57.7271 −3.00515
\(370\) 0 0
\(371\) 11.7885 0.612028
\(372\) 0 0
\(373\) 31.4213 1.62693 0.813467 0.581612i \(-0.197578\pi\)
0.813467 + 0.581612i \(0.197578\pi\)
\(374\) 0 0
\(375\) 33.5220 1.73107
\(376\) 0 0
\(377\) −4.28380 −0.220627
\(378\) 0 0
\(379\) −0.806313 −0.0414175 −0.0207088 0.999786i \(-0.506592\pi\)
−0.0207088 + 0.999786i \(0.506592\pi\)
\(380\) 0 0
\(381\) 33.9229 1.73792
\(382\) 0 0
\(383\) −7.69358 −0.393124 −0.196562 0.980491i \(-0.562978\pi\)
−0.196562 + 0.980491i \(0.562978\pi\)
\(384\) 0 0
\(385\) −8.86716 −0.451913
\(386\) 0 0
\(387\) −30.8722 −1.56932
\(388\) 0 0
\(389\) 27.7323 1.40608 0.703042 0.711148i \(-0.251825\pi\)
0.703042 + 0.711148i \(0.251825\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 9.25807 0.467008
\(394\) 0 0
\(395\) 15.9366 0.801860
\(396\) 0 0
\(397\) −23.2174 −1.16525 −0.582625 0.812741i \(-0.697974\pi\)
−0.582625 + 0.812741i \(0.697974\pi\)
\(398\) 0 0
\(399\) 19.3870 0.970566
\(400\) 0 0
\(401\) 30.2217 1.50920 0.754600 0.656185i \(-0.227831\pi\)
0.754600 + 0.656185i \(0.227831\pi\)
\(402\) 0 0
\(403\) 2.29503 0.114324
\(404\) 0 0
\(405\) 2.44394 0.121440
\(406\) 0 0
\(407\) 29.8663 1.48042
\(408\) 0 0
\(409\) 0.590806 0.0292135 0.0146067 0.999893i \(-0.495350\pi\)
0.0146067 + 0.999893i \(0.495350\pi\)
\(410\) 0 0
\(411\) −5.00907 −0.247079
\(412\) 0 0
\(413\) 2.65437 0.130613
\(414\) 0 0
\(415\) 1.15966 0.0569256
\(416\) 0 0
\(417\) −20.6153 −1.00954
\(418\) 0 0
\(419\) 20.3379 0.993571 0.496785 0.867873i \(-0.334514\pi\)
0.496785 + 0.867873i \(0.334514\pi\)
\(420\) 0 0
\(421\) 25.7759 1.25624 0.628120 0.778117i \(-0.283825\pi\)
0.628120 + 0.778117i \(0.283825\pi\)
\(422\) 0 0
\(423\) 26.7134 1.29885
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5.20183 0.251734
\(428\) 0 0
\(429\) 7.91254 0.382021
\(430\) 0 0
\(431\) 10.1811 0.490408 0.245204 0.969472i \(-0.421145\pi\)
0.245204 + 0.969472i \(0.421145\pi\)
\(432\) 0 0
\(433\) 41.3181 1.98562 0.992810 0.119701i \(-0.0381936\pi\)
0.992810 + 0.119701i \(0.0381936\pi\)
\(434\) 0 0
\(435\) 36.6645 1.75793
\(436\) 0 0
\(437\) 48.2389 2.30758
\(438\) 0 0
\(439\) −13.7822 −0.657787 −0.328893 0.944367i \(-0.606676\pi\)
−0.328893 + 0.944367i \(0.606676\pi\)
\(440\) 0 0
\(441\) 4.63745 0.220831
\(442\) 0 0
\(443\) −25.6596 −1.21912 −0.609562 0.792738i \(-0.708655\pi\)
−0.609562 + 0.792738i \(0.708655\pi\)
\(444\) 0 0
\(445\) 3.37127 0.159814
\(446\) 0 0
\(447\) −24.0468 −1.13738
\(448\) 0 0
\(449\) 15.0919 0.712230 0.356115 0.934442i \(-0.384101\pi\)
0.356115 + 0.934442i \(0.384101\pi\)
\(450\) 0 0
\(451\) −63.5192 −2.99100
\(452\) 0 0
\(453\) −4.63557 −0.217798
\(454\) 0 0
\(455\) −0.975028 −0.0457100
\(456\) 0 0
\(457\) 3.86976 0.181020 0.0905099 0.995896i \(-0.471150\pi\)
0.0905099 + 0.995896i \(0.471150\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −32.9729 −1.53570 −0.767851 0.640629i \(-0.778674\pi\)
−0.767851 + 0.640629i \(0.778674\pi\)
\(462\) 0 0
\(463\) −1.29237 −0.0600613 −0.0300306 0.999549i \(-0.509560\pi\)
−0.0300306 + 0.999549i \(0.509560\pi\)
\(464\) 0 0
\(465\) −19.6429 −0.910919
\(466\) 0 0
\(467\) −16.9911 −0.786255 −0.393127 0.919484i \(-0.628607\pi\)
−0.393127 + 0.919484i \(0.628607\pi\)
\(468\) 0 0
\(469\) −11.9894 −0.553619
\(470\) 0 0
\(471\) −20.5912 −0.948794
\(472\) 0 0
\(473\) −33.9698 −1.56193
\(474\) 0 0
\(475\) −13.8923 −0.637422
\(476\) 0 0
\(477\) 54.6685 2.50310
\(478\) 0 0
\(479\) 16.9471 0.774333 0.387167 0.922010i \(-0.373454\pi\)
0.387167 + 0.922010i \(0.373454\pi\)
\(480\) 0 0
\(481\) 3.28409 0.149741
\(482\) 0 0
\(483\) 19.0035 0.864691
\(484\) 0 0
\(485\) −28.3819 −1.28876
\(486\) 0 0
\(487\) 16.4316 0.744586 0.372293 0.928115i \(-0.378572\pi\)
0.372293 + 0.928115i \(0.378572\pi\)
\(488\) 0 0
\(489\) −0.102663 −0.00464257
\(490\) 0 0
\(491\) −32.3194 −1.45855 −0.729276 0.684220i \(-0.760143\pi\)
−0.729276 + 0.684220i \(0.760143\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −41.1210 −1.84825
\(496\) 0 0
\(497\) 4.46918 0.200470
\(498\) 0 0
\(499\) 42.0042 1.88036 0.940182 0.340672i \(-0.110655\pi\)
0.940182 + 0.340672i \(0.110655\pi\)
\(500\) 0 0
\(501\) −21.7685 −0.972545
\(502\) 0 0
\(503\) 18.4516 0.822716 0.411358 0.911474i \(-0.365055\pi\)
0.411358 + 0.911474i \(0.365055\pi\)
\(504\) 0 0
\(505\) 1.79152 0.0797215
\(506\) 0 0
\(507\) −35.0567 −1.55692
\(508\) 0 0
\(509\) −6.99787 −0.310175 −0.155088 0.987901i \(-0.549566\pi\)
−0.155088 + 0.987901i \(0.549566\pi\)
\(510\) 0 0
\(511\) −5.37549 −0.237798
\(512\) 0 0
\(513\) 31.7453 1.40159
\(514\) 0 0
\(515\) −4.90370 −0.216083
\(516\) 0 0
\(517\) 29.3937 1.29273
\(518\) 0 0
\(519\) 11.9814 0.525927
\(520\) 0 0
\(521\) −27.9243 −1.22339 −0.611693 0.791096i \(-0.709511\pi\)
−0.611693 + 0.791096i \(0.709511\pi\)
\(522\) 0 0
\(523\) −12.4125 −0.542761 −0.271380 0.962472i \(-0.587480\pi\)
−0.271380 + 0.962472i \(0.587480\pi\)
\(524\) 0 0
\(525\) −5.47282 −0.238853
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 24.2847 1.05586
\(530\) 0 0
\(531\) 12.3095 0.534187
\(532\) 0 0
\(533\) −6.98453 −0.302534
\(534\) 0 0
\(535\) 11.7426 0.507678
\(536\) 0 0
\(537\) 61.0707 2.63540
\(538\) 0 0
\(539\) 5.10276 0.219791
\(540\) 0 0
\(541\) 24.6130 1.05820 0.529098 0.848561i \(-0.322531\pi\)
0.529098 + 0.848561i \(0.322531\pi\)
\(542\) 0 0
\(543\) −42.4705 −1.82258
\(544\) 0 0
\(545\) 8.05964 0.345237
\(546\) 0 0
\(547\) −35.3223 −1.51027 −0.755136 0.655569i \(-0.772429\pi\)
−0.755136 + 0.655569i \(0.772429\pi\)
\(548\) 0 0
\(549\) 24.1232 1.02956
\(550\) 0 0
\(551\) −53.5586 −2.28167
\(552\) 0 0
\(553\) −9.17100 −0.389991
\(554\) 0 0
\(555\) −28.1081 −1.19312
\(556\) 0 0
\(557\) −37.4499 −1.58680 −0.793402 0.608699i \(-0.791692\pi\)
−0.793402 + 0.608699i \(0.791692\pi\)
\(558\) 0 0
\(559\) −3.73530 −0.157986
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −13.7093 −0.577779 −0.288889 0.957363i \(-0.593286\pi\)
−0.288889 + 0.957363i \(0.593286\pi\)
\(564\) 0 0
\(565\) −12.6878 −0.533781
\(566\) 0 0
\(567\) −1.40640 −0.0590634
\(568\) 0 0
\(569\) 8.06785 0.338222 0.169111 0.985597i \(-0.445910\pi\)
0.169111 + 0.985597i \(0.445910\pi\)
\(570\) 0 0
\(571\) 31.9855 1.33855 0.669275 0.743014i \(-0.266605\pi\)
0.669275 + 0.743014i \(0.266605\pi\)
\(572\) 0 0
\(573\) 49.3043 2.05972
\(574\) 0 0
\(575\) −13.6175 −0.567888
\(576\) 0 0
\(577\) −12.7661 −0.531461 −0.265730 0.964047i \(-0.585613\pi\)
−0.265730 + 0.964047i \(0.585613\pi\)
\(578\) 0 0
\(579\) −61.1235 −2.54020
\(580\) 0 0
\(581\) −0.667347 −0.0276862
\(582\) 0 0
\(583\) 60.1537 2.49131
\(584\) 0 0
\(585\) −4.52165 −0.186947
\(586\) 0 0
\(587\) −4.83699 −0.199644 −0.0998219 0.995005i \(-0.531827\pi\)
−0.0998219 + 0.995005i \(0.531827\pi\)
\(588\) 0 0
\(589\) 28.6939 1.18231
\(590\) 0 0
\(591\) 52.7034 2.16793
\(592\) 0 0
\(593\) −37.8310 −1.55353 −0.776766 0.629789i \(-0.783141\pi\)
−0.776766 + 0.629789i \(0.783141\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 18.9121 0.774019
\(598\) 0 0
\(599\) −3.91799 −0.160085 −0.0800424 0.996791i \(-0.525506\pi\)
−0.0800424 + 0.996791i \(0.525506\pi\)
\(600\) 0 0
\(601\) −1.37398 −0.0560458 −0.0280229 0.999607i \(-0.508921\pi\)
−0.0280229 + 0.999607i \(0.508921\pi\)
\(602\) 0 0
\(603\) −55.6002 −2.26422
\(604\) 0 0
\(605\) −26.1320 −1.06242
\(606\) 0 0
\(607\) −37.1829 −1.50921 −0.754605 0.656180i \(-0.772171\pi\)
−0.754605 + 0.656180i \(0.772171\pi\)
\(608\) 0 0
\(609\) −21.0992 −0.854983
\(610\) 0 0
\(611\) 3.23212 0.130757
\(612\) 0 0
\(613\) −11.6669 −0.471221 −0.235610 0.971848i \(-0.575709\pi\)
−0.235610 + 0.971848i \(0.575709\pi\)
\(614\) 0 0
\(615\) 59.7798 2.41055
\(616\) 0 0
\(617\) 20.0304 0.806392 0.403196 0.915114i \(-0.367899\pi\)
0.403196 + 0.915114i \(0.367899\pi\)
\(618\) 0 0
\(619\) 26.0880 1.04857 0.524283 0.851544i \(-0.324333\pi\)
0.524283 + 0.851544i \(0.324333\pi\)
\(620\) 0 0
\(621\) 31.1174 1.24870
\(622\) 0 0
\(623\) −1.94005 −0.0777266
\(624\) 0 0
\(625\) −11.1767 −0.447067
\(626\) 0 0
\(627\) 98.9273 3.95078
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −33.7273 −1.34266 −0.671330 0.741158i \(-0.734277\pi\)
−0.671330 + 0.741158i \(0.734277\pi\)
\(632\) 0 0
\(633\) −0.748613 −0.0297547
\(634\) 0 0
\(635\) −21.3304 −0.846470
\(636\) 0 0
\(637\) 0.561096 0.0222314
\(638\) 0 0
\(639\) 20.7256 0.819891
\(640\) 0 0
\(641\) −26.8691 −1.06126 −0.530632 0.847602i \(-0.678045\pi\)
−0.530632 + 0.847602i \(0.678045\pi\)
\(642\) 0 0
\(643\) −32.9547 −1.29961 −0.649803 0.760102i \(-0.725149\pi\)
−0.649803 + 0.760102i \(0.725149\pi\)
\(644\) 0 0
\(645\) 31.9700 1.25882
\(646\) 0 0
\(647\) −6.21592 −0.244373 −0.122186 0.992507i \(-0.538991\pi\)
−0.122186 + 0.992507i \(0.538991\pi\)
\(648\) 0 0
\(649\) 13.5446 0.531671
\(650\) 0 0
\(651\) 11.3038 0.443032
\(652\) 0 0
\(653\) 7.58890 0.296977 0.148488 0.988914i \(-0.452559\pi\)
0.148488 + 0.988914i \(0.452559\pi\)
\(654\) 0 0
\(655\) −5.82139 −0.227460
\(656\) 0 0
\(657\) −24.9286 −0.972556
\(658\) 0 0
\(659\) −34.9451 −1.36127 −0.680634 0.732623i \(-0.738296\pi\)
−0.680634 + 0.732623i \(0.738296\pi\)
\(660\) 0 0
\(661\) −36.7390 −1.42898 −0.714492 0.699644i \(-0.753342\pi\)
−0.714492 + 0.699644i \(0.753342\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −12.1904 −0.472723
\(666\) 0 0
\(667\) −52.4991 −2.03277
\(668\) 0 0
\(669\) −40.0053 −1.54669
\(670\) 0 0
\(671\) 26.5437 1.02471
\(672\) 0 0
\(673\) −28.3186 −1.09160 −0.545802 0.837914i \(-0.683775\pi\)
−0.545802 + 0.837914i \(0.683775\pi\)
\(674\) 0 0
\(675\) −8.96146 −0.344927
\(676\) 0 0
\(677\) 26.0492 1.00115 0.500577 0.865692i \(-0.333121\pi\)
0.500577 + 0.865692i \(0.333121\pi\)
\(678\) 0 0
\(679\) 16.3329 0.626797
\(680\) 0 0
\(681\) 27.7232 1.06236
\(682\) 0 0
\(683\) −3.34382 −0.127948 −0.0639738 0.997952i \(-0.520377\pi\)
−0.0639738 + 0.997952i \(0.520377\pi\)
\(684\) 0 0
\(685\) 3.14965 0.120342
\(686\) 0 0
\(687\) 54.3128 2.07216
\(688\) 0 0
\(689\) 6.61447 0.251991
\(690\) 0 0
\(691\) 15.5473 0.591448 0.295724 0.955273i \(-0.404439\pi\)
0.295724 + 0.955273i \(0.404439\pi\)
\(692\) 0 0
\(693\) 23.6638 0.898912
\(694\) 0 0
\(695\) 12.9627 0.491704
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −35.9248 −1.35880
\(700\) 0 0
\(701\) 8.46852 0.319852 0.159926 0.987129i \(-0.448875\pi\)
0.159926 + 0.987129i \(0.448875\pi\)
\(702\) 0 0
\(703\) 41.0596 1.54859
\(704\) 0 0
\(705\) −27.6633 −1.04186
\(706\) 0 0
\(707\) −1.03096 −0.0387732
\(708\) 0 0
\(709\) −14.2678 −0.535837 −0.267918 0.963442i \(-0.586336\pi\)
−0.267918 + 0.963442i \(0.586336\pi\)
\(710\) 0 0
\(711\) −42.5301 −1.59500
\(712\) 0 0
\(713\) 28.1263 1.05334
\(714\) 0 0
\(715\) −4.97533 −0.186067
\(716\) 0 0
\(717\) −40.3448 −1.50670
\(718\) 0 0
\(719\) −49.0421 −1.82896 −0.914480 0.404630i \(-0.867400\pi\)
−0.914480 + 0.404630i \(0.867400\pi\)
\(720\) 0 0
\(721\) 2.82191 0.105094
\(722\) 0 0
\(723\) 39.3754 1.46439
\(724\) 0 0
\(725\) 15.1192 0.561513
\(726\) 0 0
\(727\) −1.83148 −0.0679259 −0.0339630 0.999423i \(-0.510813\pi\)
−0.0339630 + 0.999423i \(0.510813\pi\)
\(728\) 0 0
\(729\) −44.0400 −1.63111
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −12.8655 −0.475198 −0.237599 0.971363i \(-0.576360\pi\)
−0.237599 + 0.971363i \(0.576360\pi\)
\(734\) 0 0
\(735\) −4.80236 −0.177138
\(736\) 0 0
\(737\) −61.1789 −2.25355
\(738\) 0 0
\(739\) −39.3486 −1.44746 −0.723731 0.690082i \(-0.757574\pi\)
−0.723731 + 0.690082i \(0.757574\pi\)
\(740\) 0 0
\(741\) 10.8780 0.399613
\(742\) 0 0
\(743\) 38.9850 1.43022 0.715110 0.699012i \(-0.246376\pi\)
0.715110 + 0.699012i \(0.246376\pi\)
\(744\) 0 0
\(745\) 15.1204 0.553969
\(746\) 0 0
\(747\) −3.09479 −0.113232
\(748\) 0 0
\(749\) −6.75748 −0.246913
\(750\) 0 0
\(751\) −14.4585 −0.527600 −0.263800 0.964577i \(-0.584976\pi\)
−0.263800 + 0.964577i \(0.584976\pi\)
\(752\) 0 0
\(753\) 7.96188 0.290147
\(754\) 0 0
\(755\) 2.91480 0.106080
\(756\) 0 0
\(757\) −38.8314 −1.41135 −0.705676 0.708535i \(-0.749357\pi\)
−0.705676 + 0.708535i \(0.749357\pi\)
\(758\) 0 0
\(759\) 96.9704 3.51980
\(760\) 0 0
\(761\) −23.0643 −0.836080 −0.418040 0.908429i \(-0.637283\pi\)
−0.418040 + 0.908429i \(0.637283\pi\)
\(762\) 0 0
\(763\) −4.63805 −0.167909
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.48935 0.0537775
\(768\) 0 0
\(769\) −38.7458 −1.39721 −0.698605 0.715507i \(-0.746196\pi\)
−0.698605 + 0.715507i \(0.746196\pi\)
\(770\) 0 0
\(771\) 31.5152 1.13499
\(772\) 0 0
\(773\) −17.9149 −0.644355 −0.322177 0.946679i \(-0.604415\pi\)
−0.322177 + 0.946679i \(0.604415\pi\)
\(774\) 0 0
\(775\) −8.10006 −0.290963
\(776\) 0 0
\(777\) 16.1753 0.580285
\(778\) 0 0
\(779\) −87.3248 −3.12873
\(780\) 0 0
\(781\) 22.8051 0.816031
\(782\) 0 0
\(783\) −34.5489 −1.23468
\(784\) 0 0
\(785\) 12.9476 0.462119
\(786\) 0 0
\(787\) 13.0117 0.463816 0.231908 0.972738i \(-0.425503\pi\)
0.231908 + 0.972738i \(0.425503\pi\)
\(788\) 0 0
\(789\) −41.7324 −1.48571
\(790\) 0 0
\(791\) 7.30142 0.259609
\(792\) 0 0
\(793\) 2.91873 0.103647
\(794\) 0 0
\(795\) −56.6125 −2.00784
\(796\) 0 0
\(797\) −7.69443 −0.272551 −0.136275 0.990671i \(-0.543513\pi\)
−0.136275 + 0.990671i \(0.543513\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −8.99691 −0.317890
\(802\) 0 0
\(803\) −27.4298 −0.967977
\(804\) 0 0
\(805\) −11.9492 −0.421155
\(806\) 0 0
\(807\) 59.3365 2.08874
\(808\) 0 0
\(809\) −1.23286 −0.0433451 −0.0216726 0.999765i \(-0.506899\pi\)
−0.0216726 + 0.999765i \(0.506899\pi\)
\(810\) 0 0
\(811\) −32.4554 −1.13966 −0.569831 0.821762i \(-0.692991\pi\)
−0.569831 + 0.821762i \(0.692991\pi\)
\(812\) 0 0
\(813\) −11.3321 −0.397435
\(814\) 0 0
\(815\) 0.0645534 0.00226121
\(816\) 0 0
\(817\) −46.7010 −1.63386
\(818\) 0 0
\(819\) 2.60206 0.0909232
\(820\) 0 0
\(821\) 52.9470 1.84786 0.923932 0.382556i \(-0.124956\pi\)
0.923932 + 0.382556i \(0.124956\pi\)
\(822\) 0 0
\(823\) −45.8098 −1.59683 −0.798415 0.602108i \(-0.794328\pi\)
−0.798415 + 0.602108i \(0.794328\pi\)
\(824\) 0 0
\(825\) −27.9264 −0.972274
\(826\) 0 0
\(827\) 35.1923 1.22376 0.611878 0.790952i \(-0.290414\pi\)
0.611878 + 0.790952i \(0.290414\pi\)
\(828\) 0 0
\(829\) −13.1718 −0.457476 −0.228738 0.973488i \(-0.573460\pi\)
−0.228738 + 0.973488i \(0.573460\pi\)
\(830\) 0 0
\(831\) 72.9074 2.52913
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 13.6878 0.473687
\(836\) 0 0
\(837\) 18.5095 0.639781
\(838\) 0 0
\(839\) −25.9218 −0.894920 −0.447460 0.894304i \(-0.647671\pi\)
−0.447460 + 0.894304i \(0.647671\pi\)
\(840\) 0 0
\(841\) 29.2886 1.00995
\(842\) 0 0
\(843\) −9.76546 −0.336340
\(844\) 0 0
\(845\) 22.0433 0.758312
\(846\) 0 0
\(847\) 15.0381 0.516716
\(848\) 0 0
\(849\) −79.3878 −2.72458
\(850\) 0 0
\(851\) 40.2474 1.37966
\(852\) 0 0
\(853\) −20.7962 −0.712050 −0.356025 0.934476i \(-0.615868\pi\)
−0.356025 + 0.934476i \(0.615868\pi\)
\(854\) 0 0
\(855\) −56.5323 −1.93336
\(856\) 0 0
\(857\) 23.6143 0.806649 0.403324 0.915057i \(-0.367855\pi\)
0.403324 + 0.915057i \(0.367855\pi\)
\(858\) 0 0
\(859\) −17.1481 −0.585085 −0.292543 0.956252i \(-0.594501\pi\)
−0.292543 + 0.956252i \(0.594501\pi\)
\(860\) 0 0
\(861\) −34.4013 −1.17239
\(862\) 0 0
\(863\) −15.9665 −0.543506 −0.271753 0.962367i \(-0.587603\pi\)
−0.271753 + 0.962367i \(0.587603\pi\)
\(864\) 0 0
\(865\) −7.53381 −0.256157
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −46.7974 −1.58749
\(870\) 0 0
\(871\) −6.72720 −0.227942
\(872\) 0 0
\(873\) 75.7428 2.56351
\(874\) 0 0
\(875\) 12.1299 0.410064
\(876\) 0 0
\(877\) −8.26638 −0.279136 −0.139568 0.990213i \(-0.544571\pi\)
−0.139568 + 0.990213i \(0.544571\pi\)
\(878\) 0 0
\(879\) −79.3112 −2.67510
\(880\) 0 0
\(881\) 21.3991 0.720955 0.360478 0.932768i \(-0.382614\pi\)
0.360478 + 0.932768i \(0.382614\pi\)
\(882\) 0 0
\(883\) −42.2441 −1.42163 −0.710813 0.703381i \(-0.751673\pi\)
−0.710813 + 0.703381i \(0.751673\pi\)
\(884\) 0 0
\(885\) −12.7472 −0.428493
\(886\) 0 0
\(887\) 17.3563 0.582768 0.291384 0.956606i \(-0.405884\pi\)
0.291384 + 0.956606i \(0.405884\pi\)
\(888\) 0 0
\(889\) 12.2749 0.411687
\(890\) 0 0
\(891\) −7.17654 −0.240423
\(892\) 0 0
\(893\) 40.4098 1.35226
\(894\) 0 0
\(895\) −38.4007 −1.28359
\(896\) 0 0
\(897\) 10.6628 0.356021
\(898\) 0 0
\(899\) −31.2280 −1.04151
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −18.3977 −0.612236
\(904\) 0 0
\(905\) 26.7051 0.887706
\(906\) 0 0
\(907\) −24.2818 −0.806263 −0.403132 0.915142i \(-0.632078\pi\)
−0.403132 + 0.915142i \(0.632078\pi\)
\(908\) 0 0
\(909\) −4.78102 −0.158576
\(910\) 0 0
\(911\) −50.4775 −1.67239 −0.836197 0.548430i \(-0.815226\pi\)
−0.836197 + 0.548430i \(0.815226\pi\)
\(912\) 0 0
\(913\) −3.40531 −0.112699
\(914\) 0 0
\(915\) −24.9811 −0.825848
\(916\) 0 0
\(917\) 3.35001 0.110627
\(918\) 0 0
\(919\) 2.03508 0.0671310 0.0335655 0.999437i \(-0.489314\pi\)
0.0335655 + 0.999437i \(0.489314\pi\)
\(920\) 0 0
\(921\) −83.9298 −2.76558
\(922\) 0 0
\(923\) 2.50764 0.0825399
\(924\) 0 0
\(925\) −11.5908 −0.381104
\(926\) 0 0
\(927\) 13.0865 0.429816
\(928\) 0 0
\(929\) −7.61578 −0.249866 −0.124933 0.992165i \(-0.539872\pi\)
−0.124933 + 0.992165i \(0.539872\pi\)
\(930\) 0 0
\(931\) 7.01515 0.229912
\(932\) 0 0
\(933\) 58.0078 1.89909
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 17.1317 0.559667 0.279833 0.960049i \(-0.409721\pi\)
0.279833 + 0.960049i \(0.409721\pi\)
\(938\) 0 0
\(939\) −7.34125 −0.239573
\(940\) 0 0
\(941\) −23.1803 −0.755657 −0.377829 0.925876i \(-0.623329\pi\)
−0.377829 + 0.925876i \(0.623329\pi\)
\(942\) 0 0
\(943\) −85.5974 −2.78743
\(944\) 0 0
\(945\) −7.86362 −0.255804
\(946\) 0 0
\(947\) −4.50836 −0.146502 −0.0732510 0.997314i \(-0.523337\pi\)
−0.0732510 + 0.997314i \(0.523337\pi\)
\(948\) 0 0
\(949\) −3.01617 −0.0979089
\(950\) 0 0
\(951\) 14.7397 0.477967
\(952\) 0 0
\(953\) 21.1276 0.684391 0.342196 0.939629i \(-0.388829\pi\)
0.342196 + 0.939629i \(0.388829\pi\)
\(954\) 0 0
\(955\) −31.0021 −1.00320
\(956\) 0 0
\(957\) −107.664 −3.48029
\(958\) 0 0
\(959\) −1.81252 −0.0585293
\(960\) 0 0
\(961\) −14.2697 −0.460313
\(962\) 0 0
\(963\) −31.3375 −1.00984
\(964\) 0 0
\(965\) 38.4338 1.23723
\(966\) 0 0
\(967\) 6.46713 0.207969 0.103984 0.994579i \(-0.466841\pi\)
0.103984 + 0.994579i \(0.466841\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 21.9855 0.705550 0.352775 0.935708i \(-0.385238\pi\)
0.352775 + 0.935708i \(0.385238\pi\)
\(972\) 0 0
\(973\) −7.45961 −0.239144
\(974\) 0 0
\(975\) −3.07078 −0.0983435
\(976\) 0 0
\(977\) 9.05212 0.289603 0.144802 0.989461i \(-0.453746\pi\)
0.144802 + 0.989461i \(0.453746\pi\)
\(978\) 0 0
\(979\) −9.89962 −0.316393
\(980\) 0 0
\(981\) −21.5087 −0.686721
\(982\) 0 0
\(983\) 38.1934 1.21818 0.609090 0.793101i \(-0.291535\pi\)
0.609090 + 0.793101i \(0.291535\pi\)
\(984\) 0 0
\(985\) −33.1394 −1.05591
\(986\) 0 0
\(987\) 15.9193 0.506717
\(988\) 0 0
\(989\) −45.7772 −1.45563
\(990\) 0 0
\(991\) −48.9693 −1.55556 −0.777780 0.628536i \(-0.783654\pi\)
−0.777780 + 0.628536i \(0.783654\pi\)
\(992\) 0 0
\(993\) 14.2465 0.452099
\(994\) 0 0
\(995\) −11.8917 −0.376993
\(996\) 0 0
\(997\) 3.83570 0.121478 0.0607389 0.998154i \(-0.480654\pi\)
0.0607389 + 0.998154i \(0.480654\pi\)
\(998\) 0 0
\(999\) 26.4862 0.837986
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8092.2.a.z.1.16 20
17.5 odd 16 476.2.u.a.365.1 yes 40
17.7 odd 16 476.2.u.a.253.1 40
17.16 even 2 8092.2.a.y.1.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
476.2.u.a.253.1 40 17.7 odd 16
476.2.u.a.365.1 yes 40 17.5 odd 16
8092.2.a.y.1.5 20 17.16 even 2
8092.2.a.z.1.16 20 1.1 even 1 trivial