Properties

Label 8092.2.a.z.1.13
Level $8092$
Weight $2$
Character 8092.1
Self dual yes
Analytic conductor $64.615$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8092,2,Mod(1,8092)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8092.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8092, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8092 = 2^{2} \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8092.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,8,0,8,0,20,0,28,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.6149453156\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{19} - 12 x^{18} + 240 x^{17} - 224 x^{16} - 2776 x^{15} + 5324 x^{14} + 15280 x^{13} + \cdots + 544 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 476)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(1.28083\) of defining polynomial
Character \(\chi\) \(=\) 8092.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.28083 q^{3} -3.03609 q^{5} +1.00000 q^{7} -1.35947 q^{9} -2.68953 q^{11} -6.64808 q^{13} -3.88873 q^{15} +4.75228 q^{19} +1.28083 q^{21} +7.63946 q^{23} +4.21787 q^{25} -5.58375 q^{27} +0.964919 q^{29} -6.08254 q^{31} -3.44484 q^{33} -3.03609 q^{35} +5.30308 q^{37} -8.51508 q^{39} -11.4695 q^{41} +1.26509 q^{43} +4.12747 q^{45} +0.143498 q^{47} +1.00000 q^{49} -1.46842 q^{53} +8.16566 q^{55} +6.08687 q^{57} -11.7725 q^{59} -12.8689 q^{61} -1.35947 q^{63} +20.1842 q^{65} +5.78961 q^{67} +9.78488 q^{69} +10.3955 q^{71} +7.45558 q^{73} +5.40239 q^{75} -2.68953 q^{77} +0.261371 q^{79} -3.07346 q^{81} +3.13776 q^{83} +1.23590 q^{87} +4.50413 q^{89} -6.64808 q^{91} -7.79071 q^{93} -14.4284 q^{95} -14.2742 q^{97} +3.65632 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{3} + 8 q^{5} + 20 q^{7} + 28 q^{9} + 16 q^{11} + 8 q^{13} + 8 q^{15} + 8 q^{19} + 8 q^{21} + 40 q^{23} + 36 q^{25} + 32 q^{27} + 16 q^{29} + 16 q^{31} + 8 q^{33} + 8 q^{35} + 24 q^{37} + 16 q^{39}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.28083 0.739489 0.369745 0.929133i \(-0.379445\pi\)
0.369745 + 0.929133i \(0.379445\pi\)
\(4\) 0 0
\(5\) −3.03609 −1.35778 −0.678891 0.734239i \(-0.737539\pi\)
−0.678891 + 0.734239i \(0.737539\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −1.35947 −0.453155
\(10\) 0 0
\(11\) −2.68953 −0.810923 −0.405461 0.914112i \(-0.632889\pi\)
−0.405461 + 0.914112i \(0.632889\pi\)
\(12\) 0 0
\(13\) −6.64808 −1.84385 −0.921923 0.387374i \(-0.873382\pi\)
−0.921923 + 0.387374i \(0.873382\pi\)
\(14\) 0 0
\(15\) −3.88873 −1.00407
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 4.75228 1.09025 0.545124 0.838356i \(-0.316483\pi\)
0.545124 + 0.838356i \(0.316483\pi\)
\(20\) 0 0
\(21\) 1.28083 0.279501
\(22\) 0 0
\(23\) 7.63946 1.59294 0.796469 0.604679i \(-0.206699\pi\)
0.796469 + 0.604679i \(0.206699\pi\)
\(24\) 0 0
\(25\) 4.21787 0.843574
\(26\) 0 0
\(27\) −5.58375 −1.07459
\(28\) 0 0
\(29\) 0.964919 0.179181 0.0895905 0.995979i \(-0.471444\pi\)
0.0895905 + 0.995979i \(0.471444\pi\)
\(30\) 0 0
\(31\) −6.08254 −1.09246 −0.546228 0.837637i \(-0.683937\pi\)
−0.546228 + 0.837637i \(0.683937\pi\)
\(32\) 0 0
\(33\) −3.44484 −0.599669
\(34\) 0 0
\(35\) −3.03609 −0.513194
\(36\) 0 0
\(37\) 5.30308 0.871822 0.435911 0.899990i \(-0.356426\pi\)
0.435911 + 0.899990i \(0.356426\pi\)
\(38\) 0 0
\(39\) −8.51508 −1.36350
\(40\) 0 0
\(41\) −11.4695 −1.79124 −0.895619 0.444823i \(-0.853267\pi\)
−0.895619 + 0.444823i \(0.853267\pi\)
\(42\) 0 0
\(43\) 1.26509 0.192925 0.0964626 0.995337i \(-0.469247\pi\)
0.0964626 + 0.995337i \(0.469247\pi\)
\(44\) 0 0
\(45\) 4.12747 0.615286
\(46\) 0 0
\(47\) 0.143498 0.0209314 0.0104657 0.999945i \(-0.496669\pi\)
0.0104657 + 0.999945i \(0.496669\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.46842 −0.201703 −0.100851 0.994902i \(-0.532157\pi\)
−0.100851 + 0.994902i \(0.532157\pi\)
\(54\) 0 0
\(55\) 8.16566 1.10106
\(56\) 0 0
\(57\) 6.08687 0.806226
\(58\) 0 0
\(59\) −11.7725 −1.53265 −0.766324 0.642455i \(-0.777916\pi\)
−0.766324 + 0.642455i \(0.777916\pi\)
\(60\) 0 0
\(61\) −12.8689 −1.64770 −0.823848 0.566810i \(-0.808177\pi\)
−0.823848 + 0.566810i \(0.808177\pi\)
\(62\) 0 0
\(63\) −1.35947 −0.171277
\(64\) 0 0
\(65\) 20.1842 2.50354
\(66\) 0 0
\(67\) 5.78961 0.707314 0.353657 0.935375i \(-0.384938\pi\)
0.353657 + 0.935375i \(0.384938\pi\)
\(68\) 0 0
\(69\) 9.78488 1.17796
\(70\) 0 0
\(71\) 10.3955 1.23371 0.616857 0.787075i \(-0.288406\pi\)
0.616857 + 0.787075i \(0.288406\pi\)
\(72\) 0 0
\(73\) 7.45558 0.872610 0.436305 0.899799i \(-0.356287\pi\)
0.436305 + 0.899799i \(0.356287\pi\)
\(74\) 0 0
\(75\) 5.40239 0.623814
\(76\) 0 0
\(77\) −2.68953 −0.306500
\(78\) 0 0
\(79\) 0.261371 0.0294065 0.0147033 0.999892i \(-0.495320\pi\)
0.0147033 + 0.999892i \(0.495320\pi\)
\(80\) 0 0
\(81\) −3.07346 −0.341495
\(82\) 0 0
\(83\) 3.13776 0.344414 0.172207 0.985061i \(-0.444910\pi\)
0.172207 + 0.985061i \(0.444910\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.23590 0.132502
\(88\) 0 0
\(89\) 4.50413 0.477437 0.238718 0.971089i \(-0.423273\pi\)
0.238718 + 0.971089i \(0.423273\pi\)
\(90\) 0 0
\(91\) −6.64808 −0.696908
\(92\) 0 0
\(93\) −7.79071 −0.807859
\(94\) 0 0
\(95\) −14.4284 −1.48032
\(96\) 0 0
\(97\) −14.2742 −1.44933 −0.724664 0.689103i \(-0.758005\pi\)
−0.724664 + 0.689103i \(0.758005\pi\)
\(98\) 0 0
\(99\) 3.65632 0.367474
\(100\) 0 0
\(101\) 0.832970 0.0828836 0.0414418 0.999141i \(-0.486805\pi\)
0.0414418 + 0.999141i \(0.486805\pi\)
\(102\) 0 0
\(103\) −19.7300 −1.94405 −0.972027 0.234870i \(-0.924534\pi\)
−0.972027 + 0.234870i \(0.924534\pi\)
\(104\) 0 0
\(105\) −3.88873 −0.379501
\(106\) 0 0
\(107\) 6.30323 0.609356 0.304678 0.952455i \(-0.401451\pi\)
0.304678 + 0.952455i \(0.401451\pi\)
\(108\) 0 0
\(109\) 17.6944 1.69482 0.847408 0.530942i \(-0.178162\pi\)
0.847408 + 0.530942i \(0.178162\pi\)
\(110\) 0 0
\(111\) 6.79237 0.644703
\(112\) 0 0
\(113\) 5.52861 0.520088 0.260044 0.965597i \(-0.416263\pi\)
0.260044 + 0.965597i \(0.416263\pi\)
\(114\) 0 0
\(115\) −23.1941 −2.16286
\(116\) 0 0
\(117\) 9.03784 0.835548
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −3.76645 −0.342404
\(122\) 0 0
\(123\) −14.6905 −1.32460
\(124\) 0 0
\(125\) 2.37462 0.212392
\(126\) 0 0
\(127\) −12.0511 −1.06936 −0.534682 0.845053i \(-0.679569\pi\)
−0.534682 + 0.845053i \(0.679569\pi\)
\(128\) 0 0
\(129\) 1.62038 0.142666
\(130\) 0 0
\(131\) 15.0374 1.31382 0.656912 0.753967i \(-0.271862\pi\)
0.656912 + 0.753967i \(0.271862\pi\)
\(132\) 0 0
\(133\) 4.75228 0.412075
\(134\) 0 0
\(135\) 16.9528 1.45906
\(136\) 0 0
\(137\) −1.78868 −0.152817 −0.0764085 0.997077i \(-0.524345\pi\)
−0.0764085 + 0.997077i \(0.524345\pi\)
\(138\) 0 0
\(139\) 12.7000 1.07720 0.538598 0.842563i \(-0.318954\pi\)
0.538598 + 0.842563i \(0.318954\pi\)
\(140\) 0 0
\(141\) 0.183798 0.0154785
\(142\) 0 0
\(143\) 17.8802 1.49522
\(144\) 0 0
\(145\) −2.92959 −0.243289
\(146\) 0 0
\(147\) 1.28083 0.105641
\(148\) 0 0
\(149\) 19.3122 1.58212 0.791060 0.611738i \(-0.209529\pi\)
0.791060 + 0.611738i \(0.209529\pi\)
\(150\) 0 0
\(151\) −11.9023 −0.968591 −0.484296 0.874904i \(-0.660924\pi\)
−0.484296 + 0.874904i \(0.660924\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 18.4672 1.48332
\(156\) 0 0
\(157\) 14.8113 1.18207 0.591036 0.806645i \(-0.298719\pi\)
0.591036 + 0.806645i \(0.298719\pi\)
\(158\) 0 0
\(159\) −1.88080 −0.149157
\(160\) 0 0
\(161\) 7.63946 0.602074
\(162\) 0 0
\(163\) 0.829745 0.0649907 0.0324953 0.999472i \(-0.489655\pi\)
0.0324953 + 0.999472i \(0.489655\pi\)
\(164\) 0 0
\(165\) 10.4588 0.814220
\(166\) 0 0
\(167\) 19.0983 1.47787 0.738936 0.673775i \(-0.235328\pi\)
0.738936 + 0.673775i \(0.235328\pi\)
\(168\) 0 0
\(169\) 31.1970 2.39977
\(170\) 0 0
\(171\) −6.46056 −0.494051
\(172\) 0 0
\(173\) 18.4905 1.40581 0.702904 0.711285i \(-0.251886\pi\)
0.702904 + 0.711285i \(0.251886\pi\)
\(174\) 0 0
\(175\) 4.21787 0.318841
\(176\) 0 0
\(177\) −15.0786 −1.13338
\(178\) 0 0
\(179\) 9.33365 0.697630 0.348815 0.937192i \(-0.386584\pi\)
0.348815 + 0.937192i \(0.386584\pi\)
\(180\) 0 0
\(181\) 11.9356 0.887167 0.443584 0.896233i \(-0.353707\pi\)
0.443584 + 0.896233i \(0.353707\pi\)
\(182\) 0 0
\(183\) −16.4829 −1.21845
\(184\) 0 0
\(185\) −16.1007 −1.18374
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −5.58375 −0.406158
\(190\) 0 0
\(191\) 17.5923 1.27293 0.636467 0.771304i \(-0.280395\pi\)
0.636467 + 0.771304i \(0.280395\pi\)
\(192\) 0 0
\(193\) 10.5138 0.756801 0.378401 0.925642i \(-0.376474\pi\)
0.378401 + 0.925642i \(0.376474\pi\)
\(194\) 0 0
\(195\) 25.8526 1.85134
\(196\) 0 0
\(197\) 21.2138 1.51142 0.755711 0.654906i \(-0.227292\pi\)
0.755711 + 0.654906i \(0.227292\pi\)
\(198\) 0 0
\(199\) 15.8171 1.12125 0.560623 0.828071i \(-0.310562\pi\)
0.560623 + 0.828071i \(0.310562\pi\)
\(200\) 0 0
\(201\) 7.41553 0.523051
\(202\) 0 0
\(203\) 0.964919 0.0677240
\(204\) 0 0
\(205\) 34.8225 2.43211
\(206\) 0 0
\(207\) −10.3856 −0.721848
\(208\) 0 0
\(209\) −12.7814 −0.884106
\(210\) 0 0
\(211\) −7.36095 −0.506748 −0.253374 0.967368i \(-0.581540\pi\)
−0.253374 + 0.967368i \(0.581540\pi\)
\(212\) 0 0
\(213\) 13.3148 0.912318
\(214\) 0 0
\(215\) −3.84095 −0.261950
\(216\) 0 0
\(217\) −6.08254 −0.412909
\(218\) 0 0
\(219\) 9.54936 0.645286
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.65182 −0.110614 −0.0553071 0.998469i \(-0.517614\pi\)
−0.0553071 + 0.998469i \(0.517614\pi\)
\(224\) 0 0
\(225\) −5.73405 −0.382270
\(226\) 0 0
\(227\) −10.9425 −0.726278 −0.363139 0.931735i \(-0.618295\pi\)
−0.363139 + 0.931735i \(0.618295\pi\)
\(228\) 0 0
\(229\) 9.98702 0.659961 0.329981 0.943988i \(-0.392958\pi\)
0.329981 + 0.943988i \(0.392958\pi\)
\(230\) 0 0
\(231\) −3.44484 −0.226654
\(232\) 0 0
\(233\) −6.17981 −0.404853 −0.202426 0.979297i \(-0.564883\pi\)
−0.202426 + 0.979297i \(0.564883\pi\)
\(234\) 0 0
\(235\) −0.435675 −0.0284203
\(236\) 0 0
\(237\) 0.334773 0.0217458
\(238\) 0 0
\(239\) −7.79655 −0.504317 −0.252159 0.967686i \(-0.581140\pi\)
−0.252159 + 0.967686i \(0.581140\pi\)
\(240\) 0 0
\(241\) 8.65492 0.557512 0.278756 0.960362i \(-0.410078\pi\)
0.278756 + 0.960362i \(0.410078\pi\)
\(242\) 0 0
\(243\) 12.8147 0.822061
\(244\) 0 0
\(245\) −3.03609 −0.193969
\(246\) 0 0
\(247\) −31.5935 −2.01025
\(248\) 0 0
\(249\) 4.01895 0.254691
\(250\) 0 0
\(251\) 5.05922 0.319335 0.159668 0.987171i \(-0.448958\pi\)
0.159668 + 0.987171i \(0.448958\pi\)
\(252\) 0 0
\(253\) −20.5465 −1.29175
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.75949 −0.546402 −0.273201 0.961957i \(-0.588082\pi\)
−0.273201 + 0.961957i \(0.588082\pi\)
\(258\) 0 0
\(259\) 5.30308 0.329518
\(260\) 0 0
\(261\) −1.31177 −0.0811968
\(262\) 0 0
\(263\) −10.0878 −0.622038 −0.311019 0.950404i \(-0.600670\pi\)
−0.311019 + 0.950404i \(0.600670\pi\)
\(264\) 0 0
\(265\) 4.45825 0.273868
\(266\) 0 0
\(267\) 5.76904 0.353060
\(268\) 0 0
\(269\) 13.8464 0.844230 0.422115 0.906542i \(-0.361288\pi\)
0.422115 + 0.906542i \(0.361288\pi\)
\(270\) 0 0
\(271\) −8.06767 −0.490076 −0.245038 0.969514i \(-0.578800\pi\)
−0.245038 + 0.969514i \(0.578800\pi\)
\(272\) 0 0
\(273\) −8.51508 −0.515356
\(274\) 0 0
\(275\) −11.3441 −0.684073
\(276\) 0 0
\(277\) 5.33110 0.320315 0.160157 0.987091i \(-0.448800\pi\)
0.160157 + 0.987091i \(0.448800\pi\)
\(278\) 0 0
\(279\) 8.26900 0.495052
\(280\) 0 0
\(281\) 21.5681 1.28664 0.643322 0.765596i \(-0.277556\pi\)
0.643322 + 0.765596i \(0.277556\pi\)
\(282\) 0 0
\(283\) 12.3467 0.733933 0.366966 0.930234i \(-0.380396\pi\)
0.366966 + 0.930234i \(0.380396\pi\)
\(284\) 0 0
\(285\) −18.4803 −1.09468
\(286\) 0 0
\(287\) −11.4695 −0.677024
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −18.2829 −1.07176
\(292\) 0 0
\(293\) 17.6846 1.03314 0.516572 0.856244i \(-0.327208\pi\)
0.516572 + 0.856244i \(0.327208\pi\)
\(294\) 0 0
\(295\) 35.7424 2.08100
\(296\) 0 0
\(297\) 15.0176 0.871412
\(298\) 0 0
\(299\) −50.7877 −2.93713
\(300\) 0 0
\(301\) 1.26509 0.0729188
\(302\) 0 0
\(303\) 1.06690 0.0612916
\(304\) 0 0
\(305\) 39.0713 2.23721
\(306\) 0 0
\(307\) −5.45438 −0.311298 −0.155649 0.987812i \(-0.549747\pi\)
−0.155649 + 0.987812i \(0.549747\pi\)
\(308\) 0 0
\(309\) −25.2708 −1.43761
\(310\) 0 0
\(311\) 3.31549 0.188004 0.0940020 0.995572i \(-0.470034\pi\)
0.0940020 + 0.995572i \(0.470034\pi\)
\(312\) 0 0
\(313\) −17.7228 −1.00175 −0.500876 0.865519i \(-0.666989\pi\)
−0.500876 + 0.865519i \(0.666989\pi\)
\(314\) 0 0
\(315\) 4.12747 0.232556
\(316\) 0 0
\(317\) −6.35079 −0.356696 −0.178348 0.983967i \(-0.557075\pi\)
−0.178348 + 0.983967i \(0.557075\pi\)
\(318\) 0 0
\(319\) −2.59518 −0.145302
\(320\) 0 0
\(321\) 8.07339 0.450613
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −28.0407 −1.55542
\(326\) 0 0
\(327\) 22.6636 1.25330
\(328\) 0 0
\(329\) 0.143498 0.00791132
\(330\) 0 0
\(331\) 7.42992 0.408385 0.204193 0.978931i \(-0.434543\pi\)
0.204193 + 0.978931i \(0.434543\pi\)
\(332\) 0 0
\(333\) −7.20936 −0.395071
\(334\) 0 0
\(335\) −17.5778 −0.960378
\(336\) 0 0
\(337\) −13.9526 −0.760046 −0.380023 0.924977i \(-0.624084\pi\)
−0.380023 + 0.924977i \(0.624084\pi\)
\(338\) 0 0
\(339\) 7.08123 0.384600
\(340\) 0 0
\(341\) 16.3591 0.885897
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −29.7078 −1.59941
\(346\) 0 0
\(347\) −26.3572 −1.41493 −0.707466 0.706748i \(-0.750162\pi\)
−0.707466 + 0.706748i \(0.750162\pi\)
\(348\) 0 0
\(349\) 14.0123 0.750063 0.375031 0.927012i \(-0.377632\pi\)
0.375031 + 0.927012i \(0.377632\pi\)
\(350\) 0 0
\(351\) 37.1212 1.98138
\(352\) 0 0
\(353\) 6.36885 0.338980 0.169490 0.985532i \(-0.445788\pi\)
0.169490 + 0.985532i \(0.445788\pi\)
\(354\) 0 0
\(355\) −31.5616 −1.67512
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.3702 −0.811210 −0.405605 0.914049i \(-0.632939\pi\)
−0.405605 + 0.914049i \(0.632939\pi\)
\(360\) 0 0
\(361\) 3.58413 0.188639
\(362\) 0 0
\(363\) −4.82419 −0.253204
\(364\) 0 0
\(365\) −22.6358 −1.18481
\(366\) 0 0
\(367\) 26.4916 1.38285 0.691425 0.722448i \(-0.256983\pi\)
0.691425 + 0.722448i \(0.256983\pi\)
\(368\) 0 0
\(369\) 15.5924 0.811709
\(370\) 0 0
\(371\) −1.46842 −0.0762364
\(372\) 0 0
\(373\) −10.1950 −0.527879 −0.263940 0.964539i \(-0.585022\pi\)
−0.263940 + 0.964539i \(0.585022\pi\)
\(374\) 0 0
\(375\) 3.04149 0.157062
\(376\) 0 0
\(377\) −6.41486 −0.330382
\(378\) 0 0
\(379\) 8.92051 0.458216 0.229108 0.973401i \(-0.426419\pi\)
0.229108 + 0.973401i \(0.426419\pi\)
\(380\) 0 0
\(381\) −15.4355 −0.790784
\(382\) 0 0
\(383\) −3.95980 −0.202336 −0.101168 0.994869i \(-0.532258\pi\)
−0.101168 + 0.994869i \(0.532258\pi\)
\(384\) 0 0
\(385\) 8.16566 0.416160
\(386\) 0 0
\(387\) −1.71985 −0.0874250
\(388\) 0 0
\(389\) −19.5342 −0.990424 −0.495212 0.868772i \(-0.664910\pi\)
−0.495212 + 0.868772i \(0.664910\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 19.2604 0.971559
\(394\) 0 0
\(395\) −0.793547 −0.0399277
\(396\) 0 0
\(397\) −20.6895 −1.03837 −0.519187 0.854660i \(-0.673765\pi\)
−0.519187 + 0.854660i \(0.673765\pi\)
\(398\) 0 0
\(399\) 6.08687 0.304725
\(400\) 0 0
\(401\) 10.9484 0.546737 0.273369 0.961909i \(-0.411862\pi\)
0.273369 + 0.961909i \(0.411862\pi\)
\(402\) 0 0
\(403\) 40.4372 2.01432
\(404\) 0 0
\(405\) 9.33130 0.463676
\(406\) 0 0
\(407\) −14.2628 −0.706980
\(408\) 0 0
\(409\) −3.76332 −0.186084 −0.0930421 0.995662i \(-0.529659\pi\)
−0.0930421 + 0.995662i \(0.529659\pi\)
\(410\) 0 0
\(411\) −2.29100 −0.113007
\(412\) 0 0
\(413\) −11.7725 −0.579286
\(414\) 0 0
\(415\) −9.52654 −0.467640
\(416\) 0 0
\(417\) 16.2665 0.796575
\(418\) 0 0
\(419\) −12.1123 −0.591724 −0.295862 0.955231i \(-0.595607\pi\)
−0.295862 + 0.955231i \(0.595607\pi\)
\(420\) 0 0
\(421\) −2.86973 −0.139862 −0.0699310 0.997552i \(-0.522278\pi\)
−0.0699310 + 0.997552i \(0.522278\pi\)
\(422\) 0 0
\(423\) −0.195081 −0.00948517
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −12.8689 −0.622771
\(428\) 0 0
\(429\) 22.9015 1.10570
\(430\) 0 0
\(431\) −30.7960 −1.48339 −0.741695 0.670738i \(-0.765978\pi\)
−0.741695 + 0.670738i \(0.765978\pi\)
\(432\) 0 0
\(433\) −38.8474 −1.86689 −0.933443 0.358725i \(-0.883211\pi\)
−0.933443 + 0.358725i \(0.883211\pi\)
\(434\) 0 0
\(435\) −3.75231 −0.179910
\(436\) 0 0
\(437\) 36.3048 1.73670
\(438\) 0 0
\(439\) 23.4721 1.12026 0.560131 0.828404i \(-0.310751\pi\)
0.560131 + 0.828404i \(0.310751\pi\)
\(440\) 0 0
\(441\) −1.35947 −0.0647365
\(442\) 0 0
\(443\) −20.2489 −0.962053 −0.481027 0.876706i \(-0.659736\pi\)
−0.481027 + 0.876706i \(0.659736\pi\)
\(444\) 0 0
\(445\) −13.6750 −0.648256
\(446\) 0 0
\(447\) 24.7358 1.16996
\(448\) 0 0
\(449\) 5.91885 0.279328 0.139664 0.990199i \(-0.455398\pi\)
0.139664 + 0.990199i \(0.455398\pi\)
\(450\) 0 0
\(451\) 30.8476 1.45256
\(452\) 0 0
\(453\) −15.2448 −0.716263
\(454\) 0 0
\(455\) 20.1842 0.946250
\(456\) 0 0
\(457\) −23.3723 −1.09331 −0.546655 0.837358i \(-0.684099\pi\)
−0.546655 + 0.837358i \(0.684099\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −29.4332 −1.37084 −0.685421 0.728147i \(-0.740382\pi\)
−0.685421 + 0.728147i \(0.740382\pi\)
\(462\) 0 0
\(463\) −37.8397 −1.75856 −0.879280 0.476305i \(-0.841976\pi\)
−0.879280 + 0.476305i \(0.841976\pi\)
\(464\) 0 0
\(465\) 23.6533 1.09690
\(466\) 0 0
\(467\) 13.7935 0.638287 0.319144 0.947706i \(-0.396605\pi\)
0.319144 + 0.947706i \(0.396605\pi\)
\(468\) 0 0
\(469\) 5.78961 0.267339
\(470\) 0 0
\(471\) 18.9708 0.874130
\(472\) 0 0
\(473\) −3.40251 −0.156447
\(474\) 0 0
\(475\) 20.0445 0.919704
\(476\) 0 0
\(477\) 1.99626 0.0914026
\(478\) 0 0
\(479\) 1.64548 0.0751840 0.0375920 0.999293i \(-0.488031\pi\)
0.0375920 + 0.999293i \(0.488031\pi\)
\(480\) 0 0
\(481\) −35.2553 −1.60750
\(482\) 0 0
\(483\) 9.78488 0.445227
\(484\) 0 0
\(485\) 43.3379 1.96787
\(486\) 0 0
\(487\) 9.26931 0.420032 0.210016 0.977698i \(-0.432648\pi\)
0.210016 + 0.977698i \(0.432648\pi\)
\(488\) 0 0
\(489\) 1.06277 0.0480599
\(490\) 0 0
\(491\) 4.57593 0.206509 0.103254 0.994655i \(-0.467074\pi\)
0.103254 + 0.994655i \(0.467074\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −11.1009 −0.498950
\(496\) 0 0
\(497\) 10.3955 0.466300
\(498\) 0 0
\(499\) −29.8152 −1.33471 −0.667355 0.744740i \(-0.732574\pi\)
−0.667355 + 0.744740i \(0.732574\pi\)
\(500\) 0 0
\(501\) 24.4618 1.09287
\(502\) 0 0
\(503\) 18.4376 0.822090 0.411045 0.911615i \(-0.365164\pi\)
0.411045 + 0.911615i \(0.365164\pi\)
\(504\) 0 0
\(505\) −2.52898 −0.112538
\(506\) 0 0
\(507\) 39.9581 1.77460
\(508\) 0 0
\(509\) −15.7727 −0.699113 −0.349556 0.936915i \(-0.613668\pi\)
−0.349556 + 0.936915i \(0.613668\pi\)
\(510\) 0 0
\(511\) 7.45558 0.329815
\(512\) 0 0
\(513\) −26.5355 −1.17157
\(514\) 0 0
\(515\) 59.9021 2.63960
\(516\) 0 0
\(517\) −0.385943 −0.0169737
\(518\) 0 0
\(519\) 23.6833 1.03958
\(520\) 0 0
\(521\) 23.0475 1.00973 0.504865 0.863198i \(-0.331542\pi\)
0.504865 + 0.863198i \(0.331542\pi\)
\(522\) 0 0
\(523\) −31.2824 −1.36788 −0.683941 0.729537i \(-0.739735\pi\)
−0.683941 + 0.729537i \(0.739735\pi\)
\(524\) 0 0
\(525\) 5.40239 0.235780
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 35.3614 1.53745
\(530\) 0 0
\(531\) 16.0043 0.694527
\(532\) 0 0
\(533\) 76.2503 3.30277
\(534\) 0 0
\(535\) −19.1372 −0.827374
\(536\) 0 0
\(537\) 11.9549 0.515890
\(538\) 0 0
\(539\) −2.68953 −0.115846
\(540\) 0 0
\(541\) 15.7721 0.678094 0.339047 0.940769i \(-0.389895\pi\)
0.339047 + 0.940769i \(0.389895\pi\)
\(542\) 0 0
\(543\) 15.2875 0.656051
\(544\) 0 0
\(545\) −53.7219 −2.30119
\(546\) 0 0
\(547\) 33.2705 1.42254 0.711271 0.702917i \(-0.248120\pi\)
0.711271 + 0.702917i \(0.248120\pi\)
\(548\) 0 0
\(549\) 17.4949 0.746662
\(550\) 0 0
\(551\) 4.58556 0.195352
\(552\) 0 0
\(553\) 0.261371 0.0111146
\(554\) 0 0
\(555\) −20.6223 −0.875367
\(556\) 0 0
\(557\) 15.8429 0.671286 0.335643 0.941989i \(-0.391046\pi\)
0.335643 + 0.941989i \(0.391046\pi\)
\(558\) 0 0
\(559\) −8.41045 −0.355724
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 37.1038 1.56374 0.781869 0.623442i \(-0.214266\pi\)
0.781869 + 0.623442i \(0.214266\pi\)
\(564\) 0 0
\(565\) −16.7854 −0.706167
\(566\) 0 0
\(567\) −3.07346 −0.129073
\(568\) 0 0
\(569\) 22.8488 0.957872 0.478936 0.877850i \(-0.341023\pi\)
0.478936 + 0.877850i \(0.341023\pi\)
\(570\) 0 0
\(571\) 14.9854 0.627117 0.313559 0.949569i \(-0.398479\pi\)
0.313559 + 0.949569i \(0.398479\pi\)
\(572\) 0 0
\(573\) 22.5328 0.941322
\(574\) 0 0
\(575\) 32.2223 1.34376
\(576\) 0 0
\(577\) 24.7542 1.03053 0.515266 0.857030i \(-0.327693\pi\)
0.515266 + 0.857030i \(0.327693\pi\)
\(578\) 0 0
\(579\) 13.4665 0.559647
\(580\) 0 0
\(581\) 3.13776 0.130176
\(582\) 0 0
\(583\) 3.94935 0.163565
\(584\) 0 0
\(585\) −27.4397 −1.13449
\(586\) 0 0
\(587\) −22.7196 −0.937738 −0.468869 0.883268i \(-0.655338\pi\)
−0.468869 + 0.883268i \(0.655338\pi\)
\(588\) 0 0
\(589\) −28.9059 −1.19105
\(590\) 0 0
\(591\) 27.1714 1.11768
\(592\) 0 0
\(593\) 8.42261 0.345875 0.172938 0.984933i \(-0.444674\pi\)
0.172938 + 0.984933i \(0.444674\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 20.2591 0.829150
\(598\) 0 0
\(599\) −9.55705 −0.390490 −0.195245 0.980754i \(-0.562550\pi\)
−0.195245 + 0.980754i \(0.562550\pi\)
\(600\) 0 0
\(601\) −37.3815 −1.52482 −0.762411 0.647093i \(-0.775985\pi\)
−0.762411 + 0.647093i \(0.775985\pi\)
\(602\) 0 0
\(603\) −7.87078 −0.320523
\(604\) 0 0
\(605\) 11.4353 0.464911
\(606\) 0 0
\(607\) −40.7855 −1.65543 −0.827716 0.561147i \(-0.810360\pi\)
−0.827716 + 0.561147i \(0.810360\pi\)
\(608\) 0 0
\(609\) 1.23590 0.0500812
\(610\) 0 0
\(611\) −0.953989 −0.0385943
\(612\) 0 0
\(613\) 20.5567 0.830276 0.415138 0.909758i \(-0.363733\pi\)
0.415138 + 0.909758i \(0.363733\pi\)
\(614\) 0 0
\(615\) 44.6019 1.79852
\(616\) 0 0
\(617\) 13.9092 0.559962 0.279981 0.960005i \(-0.409672\pi\)
0.279981 + 0.960005i \(0.409672\pi\)
\(618\) 0 0
\(619\) 20.9992 0.844028 0.422014 0.906589i \(-0.361323\pi\)
0.422014 + 0.906589i \(0.361323\pi\)
\(620\) 0 0
\(621\) −42.6568 −1.71176
\(622\) 0 0
\(623\) 4.50413 0.180454
\(624\) 0 0
\(625\) −28.2989 −1.13196
\(626\) 0 0
\(627\) −16.3708 −0.653787
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −28.1343 −1.12001 −0.560004 0.828490i \(-0.689201\pi\)
−0.560004 + 0.828490i \(0.689201\pi\)
\(632\) 0 0
\(633\) −9.42814 −0.374735
\(634\) 0 0
\(635\) 36.5884 1.45196
\(636\) 0 0
\(637\) −6.64808 −0.263406
\(638\) 0 0
\(639\) −14.1323 −0.559064
\(640\) 0 0
\(641\) −36.8497 −1.45547 −0.727737 0.685856i \(-0.759428\pi\)
−0.727737 + 0.685856i \(0.759428\pi\)
\(642\) 0 0
\(643\) 22.6853 0.894621 0.447311 0.894379i \(-0.352382\pi\)
0.447311 + 0.894379i \(0.352382\pi\)
\(644\) 0 0
\(645\) −4.91961 −0.193710
\(646\) 0 0
\(647\) −17.5195 −0.688761 −0.344380 0.938830i \(-0.611911\pi\)
−0.344380 + 0.938830i \(0.611911\pi\)
\(648\) 0 0
\(649\) 31.6624 1.24286
\(650\) 0 0
\(651\) −7.79071 −0.305342
\(652\) 0 0
\(653\) −5.58294 −0.218477 −0.109239 0.994016i \(-0.534841\pi\)
−0.109239 + 0.994016i \(0.534841\pi\)
\(654\) 0 0
\(655\) −45.6550 −1.78389
\(656\) 0 0
\(657\) −10.1356 −0.395428
\(658\) 0 0
\(659\) −29.3526 −1.14342 −0.571708 0.820457i \(-0.693719\pi\)
−0.571708 + 0.820457i \(0.693719\pi\)
\(660\) 0 0
\(661\) 37.3445 1.45253 0.726267 0.687412i \(-0.241254\pi\)
0.726267 + 0.687412i \(0.241254\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −14.4284 −0.559508
\(666\) 0 0
\(667\) 7.37146 0.285424
\(668\) 0 0
\(669\) −2.11571 −0.0817980
\(670\) 0 0
\(671\) 34.6113 1.33615
\(672\) 0 0
\(673\) −13.5430 −0.522044 −0.261022 0.965333i \(-0.584059\pi\)
−0.261022 + 0.965333i \(0.584059\pi\)
\(674\) 0 0
\(675\) −23.5515 −0.906499
\(676\) 0 0
\(677\) −6.97444 −0.268050 −0.134025 0.990978i \(-0.542790\pi\)
−0.134025 + 0.990978i \(0.542790\pi\)
\(678\) 0 0
\(679\) −14.2742 −0.547794
\(680\) 0 0
\(681\) −14.0155 −0.537075
\(682\) 0 0
\(683\) −0.201732 −0.00771906 −0.00385953 0.999993i \(-0.501229\pi\)
−0.00385953 + 0.999993i \(0.501229\pi\)
\(684\) 0 0
\(685\) 5.43059 0.207492
\(686\) 0 0
\(687\) 12.7917 0.488034
\(688\) 0 0
\(689\) 9.76215 0.371908
\(690\) 0 0
\(691\) −51.9674 −1.97693 −0.988466 0.151444i \(-0.951608\pi\)
−0.988466 + 0.151444i \(0.951608\pi\)
\(692\) 0 0
\(693\) 3.65632 0.138892
\(694\) 0 0
\(695\) −38.5583 −1.46260
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −7.91531 −0.299384
\(700\) 0 0
\(701\) 33.7022 1.27291 0.636457 0.771312i \(-0.280399\pi\)
0.636457 + 0.771312i \(0.280399\pi\)
\(702\) 0 0
\(703\) 25.2017 0.950501
\(704\) 0 0
\(705\) −0.558027 −0.0210165
\(706\) 0 0
\(707\) 0.832970 0.0313271
\(708\) 0 0
\(709\) 46.6896 1.75347 0.876733 0.480977i \(-0.159718\pi\)
0.876733 + 0.480977i \(0.159718\pi\)
\(710\) 0 0
\(711\) −0.355325 −0.0133257
\(712\) 0 0
\(713\) −46.4673 −1.74021
\(714\) 0 0
\(715\) −54.2859 −2.03018
\(716\) 0 0
\(717\) −9.98609 −0.372937
\(718\) 0 0
\(719\) 21.7426 0.810861 0.405430 0.914126i \(-0.367122\pi\)
0.405430 + 0.914126i \(0.367122\pi\)
\(720\) 0 0
\(721\) −19.7300 −0.734783
\(722\) 0 0
\(723\) 11.0855 0.412275
\(724\) 0 0
\(725\) 4.06990 0.151152
\(726\) 0 0
\(727\) −14.2664 −0.529112 −0.264556 0.964370i \(-0.585225\pi\)
−0.264556 + 0.964370i \(0.585225\pi\)
\(728\) 0 0
\(729\) 25.6338 0.949401
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 8.28950 0.306180 0.153090 0.988212i \(-0.451078\pi\)
0.153090 + 0.988212i \(0.451078\pi\)
\(734\) 0 0
\(735\) −3.88873 −0.143438
\(736\) 0 0
\(737\) −15.5713 −0.573577
\(738\) 0 0
\(739\) −6.78017 −0.249413 −0.124706 0.992194i \(-0.539799\pi\)
−0.124706 + 0.992194i \(0.539799\pi\)
\(740\) 0 0
\(741\) −40.4660 −1.48656
\(742\) 0 0
\(743\) 21.2017 0.777816 0.388908 0.921277i \(-0.372852\pi\)
0.388908 + 0.921277i \(0.372852\pi\)
\(744\) 0 0
\(745\) −58.6338 −2.14818
\(746\) 0 0
\(747\) −4.26568 −0.156073
\(748\) 0 0
\(749\) 6.30323 0.230315
\(750\) 0 0
\(751\) 26.1690 0.954921 0.477461 0.878653i \(-0.341557\pi\)
0.477461 + 0.878653i \(0.341557\pi\)
\(752\) 0 0
\(753\) 6.48002 0.236145
\(754\) 0 0
\(755\) 36.1364 1.31514
\(756\) 0 0
\(757\) 41.6338 1.51320 0.756602 0.653875i \(-0.226858\pi\)
0.756602 + 0.653875i \(0.226858\pi\)
\(758\) 0 0
\(759\) −26.3167 −0.955235
\(760\) 0 0
\(761\) −40.0049 −1.45018 −0.725089 0.688655i \(-0.758201\pi\)
−0.725089 + 0.688655i \(0.758201\pi\)
\(762\) 0 0
\(763\) 17.6944 0.640580
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 78.2644 2.82596
\(768\) 0 0
\(769\) −20.7081 −0.746752 −0.373376 0.927680i \(-0.621800\pi\)
−0.373376 + 0.927680i \(0.621800\pi\)
\(770\) 0 0
\(771\) −11.2194 −0.404058
\(772\) 0 0
\(773\) 2.58332 0.0929155 0.0464578 0.998920i \(-0.485207\pi\)
0.0464578 + 0.998920i \(0.485207\pi\)
\(774\) 0 0
\(775\) −25.6553 −0.921567
\(776\) 0 0
\(777\) 6.79237 0.243675
\(778\) 0 0
\(779\) −54.5063 −1.95289
\(780\) 0 0
\(781\) −27.9589 −1.00045
\(782\) 0 0
\(783\) −5.38787 −0.192547
\(784\) 0 0
\(785\) −44.9686 −1.60500
\(786\) 0 0
\(787\) −8.28463 −0.295315 −0.147658 0.989039i \(-0.547173\pi\)
−0.147658 + 0.989039i \(0.547173\pi\)
\(788\) 0 0
\(789\) −12.9207 −0.459990
\(790\) 0 0
\(791\) 5.52861 0.196575
\(792\) 0 0
\(793\) 85.5536 3.03810
\(794\) 0 0
\(795\) 5.71028 0.202523
\(796\) 0 0
\(797\) −2.62926 −0.0931330 −0.0465665 0.998915i \(-0.514828\pi\)
−0.0465665 + 0.998915i \(0.514828\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −6.12321 −0.216353
\(802\) 0 0
\(803\) −20.0520 −0.707619
\(804\) 0 0
\(805\) −23.1941 −0.817486
\(806\) 0 0
\(807\) 17.7349 0.624300
\(808\) 0 0
\(809\) −13.9032 −0.488810 −0.244405 0.969673i \(-0.578593\pi\)
−0.244405 + 0.969673i \(0.578593\pi\)
\(810\) 0 0
\(811\) 11.5950 0.407157 0.203578 0.979059i \(-0.434743\pi\)
0.203578 + 0.979059i \(0.434743\pi\)
\(812\) 0 0
\(813\) −10.3333 −0.362406
\(814\) 0 0
\(815\) −2.51919 −0.0882432
\(816\) 0 0
\(817\) 6.01208 0.210336
\(818\) 0 0
\(819\) 9.03784 0.315808
\(820\) 0 0
\(821\) 25.8949 0.903737 0.451868 0.892085i \(-0.350758\pi\)
0.451868 + 0.892085i \(0.350758\pi\)
\(822\) 0 0
\(823\) −33.1231 −1.15460 −0.577299 0.816532i \(-0.695893\pi\)
−0.577299 + 0.816532i \(0.695893\pi\)
\(824\) 0 0
\(825\) −14.5299 −0.505865
\(826\) 0 0
\(827\) 5.01985 0.174557 0.0872786 0.996184i \(-0.472183\pi\)
0.0872786 + 0.996184i \(0.472183\pi\)
\(828\) 0 0
\(829\) 1.77854 0.0617712 0.0308856 0.999523i \(-0.490167\pi\)
0.0308856 + 0.999523i \(0.490167\pi\)
\(830\) 0 0
\(831\) 6.82825 0.236869
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −57.9843 −2.00663
\(836\) 0 0
\(837\) 33.9634 1.17395
\(838\) 0 0
\(839\) 35.1621 1.21393 0.606965 0.794729i \(-0.292387\pi\)
0.606965 + 0.794729i \(0.292387\pi\)
\(840\) 0 0
\(841\) −28.0689 −0.967894
\(842\) 0 0
\(843\) 27.6251 0.951460
\(844\) 0 0
\(845\) −94.7169 −3.25836
\(846\) 0 0
\(847\) −3.76645 −0.129417
\(848\) 0 0
\(849\) 15.8140 0.542736
\(850\) 0 0
\(851\) 40.5127 1.38876
\(852\) 0 0
\(853\) 12.9251 0.442548 0.221274 0.975212i \(-0.428978\pi\)
0.221274 + 0.975212i \(0.428978\pi\)
\(854\) 0 0
\(855\) 19.6149 0.670814
\(856\) 0 0
\(857\) −29.3537 −1.00270 −0.501352 0.865243i \(-0.667164\pi\)
−0.501352 + 0.865243i \(0.667164\pi\)
\(858\) 0 0
\(859\) −26.1494 −0.892206 −0.446103 0.894982i \(-0.647188\pi\)
−0.446103 + 0.894982i \(0.647188\pi\)
\(860\) 0 0
\(861\) −14.6905 −0.500652
\(862\) 0 0
\(863\) −10.2288 −0.348192 −0.174096 0.984729i \(-0.555700\pi\)
−0.174096 + 0.984729i \(0.555700\pi\)
\(864\) 0 0
\(865\) −56.1390 −1.90878
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.702964 −0.0238464
\(870\) 0 0
\(871\) −38.4898 −1.30418
\(872\) 0 0
\(873\) 19.4053 0.656770
\(874\) 0 0
\(875\) 2.37462 0.0802768
\(876\) 0 0
\(877\) −40.7864 −1.37726 −0.688629 0.725114i \(-0.741787\pi\)
−0.688629 + 0.725114i \(0.741787\pi\)
\(878\) 0 0
\(879\) 22.6510 0.763999
\(880\) 0 0
\(881\) 22.5511 0.759766 0.379883 0.925035i \(-0.375964\pi\)
0.379883 + 0.925035i \(0.375964\pi\)
\(882\) 0 0
\(883\) 19.9441 0.671172 0.335586 0.942010i \(-0.391066\pi\)
0.335586 + 0.942010i \(0.391066\pi\)
\(884\) 0 0
\(885\) 45.7800 1.53888
\(886\) 0 0
\(887\) 20.9331 0.702865 0.351432 0.936213i \(-0.385695\pi\)
0.351432 + 0.936213i \(0.385695\pi\)
\(888\) 0 0
\(889\) −12.0511 −0.404182
\(890\) 0 0
\(891\) 8.26614 0.276926
\(892\) 0 0
\(893\) 0.681944 0.0228204
\(894\) 0 0
\(895\) −28.3379 −0.947230
\(896\) 0 0
\(897\) −65.0506 −2.17198
\(898\) 0 0
\(899\) −5.86915 −0.195747
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 1.62038 0.0539227
\(904\) 0 0
\(905\) −36.2377 −1.20458
\(906\) 0 0
\(907\) 20.2828 0.673479 0.336740 0.941598i \(-0.390676\pi\)
0.336740 + 0.941598i \(0.390676\pi\)
\(908\) 0 0
\(909\) −1.13239 −0.0375591
\(910\) 0 0
\(911\) 8.66274 0.287009 0.143505 0.989650i \(-0.454163\pi\)
0.143505 + 0.989650i \(0.454163\pi\)
\(912\) 0 0
\(913\) −8.43910 −0.279293
\(914\) 0 0
\(915\) 50.0438 1.65440
\(916\) 0 0
\(917\) 15.0374 0.496579
\(918\) 0 0
\(919\) −11.4527 −0.377790 −0.188895 0.981997i \(-0.560491\pi\)
−0.188895 + 0.981997i \(0.560491\pi\)
\(920\) 0 0
\(921\) −6.98615 −0.230202
\(922\) 0 0
\(923\) −69.1098 −2.27478
\(924\) 0 0
\(925\) 22.3677 0.735446
\(926\) 0 0
\(927\) 26.8222 0.880958
\(928\) 0 0
\(929\) −13.7812 −0.452147 −0.226074 0.974110i \(-0.572589\pi\)
−0.226074 + 0.974110i \(0.572589\pi\)
\(930\) 0 0
\(931\) 4.75228 0.155750
\(932\) 0 0
\(933\) 4.24659 0.139027
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −41.7236 −1.36305 −0.681526 0.731794i \(-0.738683\pi\)
−0.681526 + 0.731794i \(0.738683\pi\)
\(938\) 0 0
\(939\) −22.7000 −0.740785
\(940\) 0 0
\(941\) 54.1171 1.76417 0.882084 0.471093i \(-0.156140\pi\)
0.882084 + 0.471093i \(0.156140\pi\)
\(942\) 0 0
\(943\) −87.6209 −2.85333
\(944\) 0 0
\(945\) 16.9528 0.551474
\(946\) 0 0
\(947\) −4.60920 −0.149779 −0.0748894 0.997192i \(-0.523860\pi\)
−0.0748894 + 0.997192i \(0.523860\pi\)
\(948\) 0 0
\(949\) −49.5653 −1.60896
\(950\) 0 0
\(951\) −8.13430 −0.263773
\(952\) 0 0
\(953\) 40.6740 1.31756 0.658780 0.752335i \(-0.271073\pi\)
0.658780 + 0.752335i \(0.271073\pi\)
\(954\) 0 0
\(955\) −53.4119 −1.72837
\(956\) 0 0
\(957\) −3.32399 −0.107449
\(958\) 0 0
\(959\) −1.78868 −0.0577594
\(960\) 0 0
\(961\) 5.99723 0.193459
\(962\) 0 0
\(963\) −8.56903 −0.276133
\(964\) 0 0
\(965\) −31.9210 −1.02757
\(966\) 0 0
\(967\) 42.6607 1.37188 0.685938 0.727660i \(-0.259392\pi\)
0.685938 + 0.727660i \(0.259392\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 18.2834 0.586741 0.293371 0.955999i \(-0.405223\pi\)
0.293371 + 0.955999i \(0.405223\pi\)
\(972\) 0 0
\(973\) 12.7000 0.407142
\(974\) 0 0
\(975\) −35.9155 −1.15022
\(976\) 0 0
\(977\) 42.5565 1.36150 0.680751 0.732515i \(-0.261654\pi\)
0.680751 + 0.732515i \(0.261654\pi\)
\(978\) 0 0
\(979\) −12.1140 −0.387164
\(980\) 0 0
\(981\) −24.0549 −0.768015
\(982\) 0 0
\(983\) 24.0781 0.767971 0.383985 0.923339i \(-0.374551\pi\)
0.383985 + 0.923339i \(0.374551\pi\)
\(984\) 0 0
\(985\) −64.4071 −2.05218
\(986\) 0 0
\(987\) 0.183798 0.00585034
\(988\) 0 0
\(989\) 9.66464 0.307318
\(990\) 0 0
\(991\) −38.1108 −1.21063 −0.605315 0.795986i \(-0.706953\pi\)
−0.605315 + 0.795986i \(0.706953\pi\)
\(992\) 0 0
\(993\) 9.51649 0.301997
\(994\) 0 0
\(995\) −48.0223 −1.52241
\(996\) 0 0
\(997\) 4.40175 0.139405 0.0697024 0.997568i \(-0.477795\pi\)
0.0697024 + 0.997568i \(0.477795\pi\)
\(998\) 0 0
\(999\) −29.6111 −0.936854
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8092.2.a.z.1.13 20
17.11 odd 16 476.2.u.a.393.4 yes 40
17.14 odd 16 476.2.u.a.281.4 40
17.16 even 2 8092.2.a.y.1.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
476.2.u.a.281.4 40 17.14 odd 16
476.2.u.a.393.4 yes 40 17.11 odd 16
8092.2.a.y.1.8 20 17.16 even 2
8092.2.a.z.1.13 20 1.1 even 1 trivial