Properties

Label 804.2.e.b.535.13
Level 804
Weight 2
Character 804.535
Analytic conductor 6.420
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(34\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 535.13
Character \(\chi\) = 804.535
Dual form 804.2.e.b.535.14

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.530406 - 1.31098i) q^{2} +1.00000 q^{3} +(-1.43734 + 1.39070i) q^{4} +2.85552i q^{5} +(-0.530406 - 1.31098i) q^{6} +4.91599 q^{7} +(2.58556 + 1.14669i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(-0.530406 - 1.31098i) q^{2} +1.00000 q^{3} +(-1.43734 + 1.39070i) q^{4} +2.85552i q^{5} +(-0.530406 - 1.31098i) q^{6} +4.91599 q^{7} +(2.58556 + 1.14669i) q^{8} +1.00000 q^{9} +(3.74353 - 1.51458i) q^{10} -6.48515 q^{11} +(-1.43734 + 1.39070i) q^{12} -2.89216i q^{13} +(-2.60747 - 6.44477i) q^{14} +2.85552i q^{15} +(0.131892 - 3.99782i) q^{16} +4.14913 q^{17} +(-0.530406 - 1.31098i) q^{18} +4.77723i q^{19} +(-3.97118 - 4.10435i) q^{20} +4.91599 q^{21} +(3.43976 + 8.50190i) q^{22} +6.27256i q^{23} +(2.58556 + 1.14669i) q^{24} -3.15398 q^{25} +(-3.79156 + 1.53402i) q^{26} +1.00000 q^{27} +(-7.06595 + 6.83668i) q^{28} +4.52052 q^{29} +(3.74353 - 1.51458i) q^{30} +0.791471 q^{31} +(-5.31103 + 1.94756i) q^{32} -6.48515 q^{33} +(-2.20072 - 5.43943i) q^{34} +14.0377i q^{35} +(-1.43734 + 1.39070i) q^{36} +2.50822 q^{37} +(6.26285 - 2.53387i) q^{38} -2.89216i q^{39} +(-3.27439 + 7.38311i) q^{40} +7.22384i q^{41} +(-2.60747 - 6.44477i) q^{42} -4.34535 q^{43} +(9.32136 - 9.01892i) q^{44} +2.85552i q^{45} +(8.22320 - 3.32700i) q^{46} +1.23363i q^{47} +(0.131892 - 3.99782i) q^{48} +17.1670 q^{49} +(1.67289 + 4.13481i) q^{50} +4.14913 q^{51} +(4.02213 + 4.15701i) q^{52} -0.123360i q^{53} +(-0.530406 - 1.31098i) q^{54} -18.5185i q^{55} +(12.7106 + 5.63711i) q^{56} +4.77723i q^{57} +(-2.39771 - 5.92632i) q^{58} +2.67952i q^{59} +(-3.97118 - 4.10435i) q^{60} -4.75980i q^{61} +(-0.419800 - 1.03760i) q^{62} +4.91599 q^{63} +(5.37021 + 5.92966i) q^{64} +8.25860 q^{65} +(3.43976 + 8.50190i) q^{66} +(-6.66494 - 4.75169i) q^{67} +(-5.96371 + 5.77021i) q^{68} +6.27256i q^{69} +(18.4032 - 7.44567i) q^{70} -15.6852i q^{71} +(2.58556 + 1.14669i) q^{72} -1.84732 q^{73} +(-1.33037 - 3.28823i) q^{74} -3.15398 q^{75} +(-6.64371 - 6.86650i) q^{76} -31.8809 q^{77} +(-3.79156 + 1.53402i) q^{78} +0.728927 q^{79} +(11.4159 + 0.376619i) q^{80} +1.00000 q^{81} +(9.47032 - 3.83157i) q^{82} +13.8943i q^{83} +(-7.06595 + 6.83668i) q^{84} +11.8479i q^{85} +(2.30480 + 5.69667i) q^{86} +4.52052 q^{87} +(-16.7677 - 7.43644i) q^{88} +0.704907 q^{89} +(3.74353 - 1.51458i) q^{90} -14.2178i q^{91} +(-8.72326 - 9.01580i) q^{92} +0.791471 q^{93} +(1.61727 - 0.654326i) q^{94} -13.6415 q^{95} +(-5.31103 + 1.94756i) q^{96} -9.89044i q^{97} +(-9.10545 - 22.5056i) q^{98} -6.48515 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{3} + 2q^{4} + 4q^{7} - 6q^{8} + 34q^{9} + O(q^{10}) \) \( 34q + 34q^{3} + 2q^{4} + 4q^{7} - 6q^{8} + 34q^{9} - 6q^{10} + 2q^{12} - 4q^{14} + 2q^{16} - 12q^{20} + 4q^{21} - 8q^{22} - 6q^{24} - 34q^{25} + 10q^{26} + 34q^{27} - 8q^{28} - 16q^{29} - 6q^{30} - 4q^{31} + 2q^{36} + 12q^{37} + 26q^{38} - 18q^{40} - 4q^{42} - 4q^{43} + 26q^{44} - 4q^{46} + 2q^{48} + 46q^{49} - 18q^{50} + 32q^{52} + 14q^{56} + 4q^{58} - 12q^{60} - 2q^{62} + 4q^{63} + 26q^{64} - 8q^{66} - 18q^{67} - 34q^{68} + 56q^{70} - 6q^{72} + 12q^{73} + 22q^{74} - 34q^{75} - 32q^{76} - 8q^{77} + 10q^{78} - 12q^{79} - 2q^{80} + 34q^{81} + 26q^{82} - 8q^{84} + 6q^{86} - 16q^{87} - 28q^{88} - 6q^{90} - 46q^{92} - 4q^{93} + 32q^{94} - 40q^{95} - 40q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.530406 1.31098i −0.375053 0.927003i
\(3\) 1.00000 0.577350
\(4\) −1.43734 + 1.39070i −0.718670 + 0.695351i
\(5\) 2.85552i 1.27703i 0.769611 + 0.638513i \(0.220450\pi\)
−0.769611 + 0.638513i \(0.779550\pi\)
\(6\) −0.530406 1.31098i −0.216537 0.535206i
\(7\) 4.91599 1.85807 0.929035 0.369992i \(-0.120640\pi\)
0.929035 + 0.369992i \(0.120640\pi\)
\(8\) 2.58556 + 1.14669i 0.914133 + 0.405415i
\(9\) 1.00000 0.333333
\(10\) 3.74353 1.51458i 1.18381 0.478953i
\(11\) −6.48515 −1.95535 −0.977673 0.210132i \(-0.932611\pi\)
−0.977673 + 0.210132i \(0.932611\pi\)
\(12\) −1.43734 + 1.39070i −0.414924 + 0.401461i
\(13\) 2.89216i 0.802140i −0.916047 0.401070i \(-0.868638\pi\)
0.916047 0.401070i \(-0.131362\pi\)
\(14\) −2.60747 6.44477i −0.696875 1.72244i
\(15\) 2.85552i 0.737292i
\(16\) 0.131892 3.99782i 0.0329729 0.999456i
\(17\) 4.14913 1.00631 0.503156 0.864196i \(-0.332172\pi\)
0.503156 + 0.864196i \(0.332172\pi\)
\(18\) −0.530406 1.31098i −0.125018 0.309001i
\(19\) 4.77723i 1.09597i 0.836488 + 0.547986i \(0.184605\pi\)
−0.836488 + 0.547986i \(0.815395\pi\)
\(20\) −3.97118 4.10435i −0.887982 0.917761i
\(21\) 4.91599 1.07276
\(22\) 3.43976 + 8.50190i 0.733359 + 1.81261i
\(23\) 6.27256i 1.30792i 0.756530 + 0.653959i \(0.226893\pi\)
−0.756530 + 0.653959i \(0.773107\pi\)
\(24\) 2.58556 + 1.14669i 0.527775 + 0.234067i
\(25\) −3.15398 −0.630797
\(26\) −3.79156 + 1.53402i −0.743586 + 0.300845i
\(27\) 1.00000 0.192450
\(28\) −7.06595 + 6.83668i −1.33534 + 1.29201i
\(29\) 4.52052 0.839440 0.419720 0.907654i \(-0.362128\pi\)
0.419720 + 0.907654i \(0.362128\pi\)
\(30\) 3.74353 1.51458i 0.683472 0.276524i
\(31\) 0.791471 0.142152 0.0710762 0.997471i \(-0.477357\pi\)
0.0710762 + 0.997471i \(0.477357\pi\)
\(32\) −5.31103 + 1.94756i −0.938866 + 0.344283i
\(33\) −6.48515 −1.12892
\(34\) −2.20072 5.43943i −0.377421 0.932854i
\(35\) 14.0377i 2.37280i
\(36\) −1.43734 + 1.39070i −0.239557 + 0.231784i
\(37\) 2.50822 0.412349 0.206174 0.978515i \(-0.433899\pi\)
0.206174 + 0.978515i \(0.433899\pi\)
\(38\) 6.26285 2.53387i 1.01597 0.411048i
\(39\) 2.89216i 0.463116i
\(40\) −3.27439 + 7.38311i −0.517726 + 1.16737i
\(41\) 7.22384i 1.12817i 0.825715 + 0.564087i \(0.190772\pi\)
−0.825715 + 0.564087i \(0.809228\pi\)
\(42\) −2.60747 6.44477i −0.402341 0.994449i
\(43\) −4.34535 −0.662659 −0.331330 0.943515i \(-0.607497\pi\)
−0.331330 + 0.943515i \(0.607497\pi\)
\(44\) 9.32136 9.01892i 1.40525 1.35965i
\(45\) 2.85552i 0.425675i
\(46\) 8.22320 3.32700i 1.21244 0.490539i
\(47\) 1.23363i 0.179944i 0.995944 + 0.0899720i \(0.0286778\pi\)
−0.995944 + 0.0899720i \(0.971322\pi\)
\(48\) 0.131892 3.99782i 0.0190369 0.577036i
\(49\) 17.1670 2.45242
\(50\) 1.67289 + 4.13481i 0.236582 + 0.584750i
\(51\) 4.14913 0.580995
\(52\) 4.02213 + 4.15701i 0.557769 + 0.576474i
\(53\) 0.123360i 0.0169447i −0.999964 0.00847237i \(-0.997303\pi\)
0.999964 0.00847237i \(-0.00269687\pi\)
\(54\) −0.530406 1.31098i −0.0721791 0.178402i
\(55\) 18.5185i 2.49703i
\(56\) 12.7106 + 5.63711i 1.69852 + 0.753290i
\(57\) 4.77723i 0.632759i
\(58\) −2.39771 5.92632i −0.314835 0.778163i
\(59\) 2.67952i 0.348844i 0.984671 + 0.174422i \(0.0558058\pi\)
−0.984671 + 0.174422i \(0.944194\pi\)
\(60\) −3.97118 4.10435i −0.512677 0.529869i
\(61\) 4.75980i 0.609430i −0.952444 0.304715i \(-0.901439\pi\)
0.952444 0.304715i \(-0.0985613\pi\)
\(62\) −0.419800 1.03760i −0.0533147 0.131776i
\(63\) 4.91599 0.619357
\(64\) 5.37021 + 5.92966i 0.671277 + 0.741207i
\(65\) 8.25860 1.02435
\(66\) 3.43976 + 8.50190i 0.423405 + 1.04651i
\(67\) −6.66494 4.75169i −0.814252 0.580511i
\(68\) −5.96371 + 5.77021i −0.723206 + 0.699740i
\(69\) 6.27256i 0.755127i
\(70\) 18.4032 7.44567i 2.19960 0.889928i
\(71\) 15.6852i 1.86149i −0.365666 0.930746i \(-0.619159\pi\)
0.365666 0.930746i \(-0.380841\pi\)
\(72\) 2.58556 + 1.14669i 0.304711 + 0.135138i
\(73\) −1.84732 −0.216212 −0.108106 0.994139i \(-0.534479\pi\)
−0.108106 + 0.994139i \(0.534479\pi\)
\(74\) −1.33037 3.28823i −0.154653 0.382249i
\(75\) −3.15398 −0.364191
\(76\) −6.64371 6.86650i −0.762085 0.787642i
\(77\) −31.8809 −3.63317
\(78\) −3.79156 + 1.53402i −0.429310 + 0.173693i
\(79\) 0.728927 0.0820107 0.0410053 0.999159i \(-0.486944\pi\)
0.0410053 + 0.999159i \(0.486944\pi\)
\(80\) 11.4159 + 0.376619i 1.27633 + 0.0421073i
\(81\) 1.00000 0.111111
\(82\) 9.47032 3.83157i 1.04582 0.423126i
\(83\) 13.8943i 1.52509i 0.646933 + 0.762547i \(0.276051\pi\)
−0.646933 + 0.762547i \(0.723949\pi\)
\(84\) −7.06595 + 6.83668i −0.770958 + 0.745943i
\(85\) 11.8479i 1.28509i
\(86\) 2.30480 + 5.69667i 0.248533 + 0.614287i
\(87\) 4.52052 0.484651
\(88\) −16.7677 7.43644i −1.78745 0.792728i
\(89\) 0.704907 0.0747200 0.0373600 0.999302i \(-0.488105\pi\)
0.0373600 + 0.999302i \(0.488105\pi\)
\(90\) 3.74353 1.51458i 0.394603 0.159651i
\(91\) 14.2178i 1.49043i
\(92\) −8.72326 9.01580i −0.909463 0.939962i
\(93\) 0.791471 0.0820717
\(94\) 1.61727 0.654326i 0.166809 0.0674886i
\(95\) −13.6415 −1.39958
\(96\) −5.31103 + 1.94756i −0.542054 + 0.198772i
\(97\) 9.89044i 1.00422i −0.864803 0.502111i \(-0.832557\pi\)
0.864803 0.502111i \(-0.167443\pi\)
\(98\) −9.10545 22.5056i −0.919790 2.27340i
\(99\) −6.48515 −0.651782
\(100\) 4.53335 4.38625i 0.453335 0.438625i
\(101\) 15.2447i 1.51690i −0.651731 0.758450i \(-0.725957\pi\)
0.651731 0.758450i \(-0.274043\pi\)
\(102\) −2.20072 5.43943i −0.217904 0.538584i
\(103\) 14.6917i 1.44762i 0.689999 + 0.723810i \(0.257611\pi\)
−0.689999 + 0.723810i \(0.742389\pi\)
\(104\) 3.31640 7.47784i 0.325200 0.733262i
\(105\) 14.0377i 1.36994i
\(106\) −0.161722 + 0.0654306i −0.0157078 + 0.00635518i
\(107\) 6.16728i 0.596213i −0.954533 0.298107i \(-0.903645\pi\)
0.954533 0.298107i \(-0.0963551\pi\)
\(108\) −1.43734 + 1.39070i −0.138308 + 0.133820i
\(109\) 7.52989i 0.721233i 0.932714 + 0.360616i \(0.117434\pi\)
−0.932714 + 0.360616i \(0.882566\pi\)
\(110\) −24.2773 + 9.82230i −2.31475 + 0.936519i
\(111\) 2.50822 0.238070
\(112\) 0.648378 19.6533i 0.0612660 1.85706i
\(113\) 18.4438i 1.73505i −0.497398 0.867523i \(-0.665711\pi\)
0.497398 0.867523i \(-0.334289\pi\)
\(114\) 6.26285 2.53387i 0.586570 0.237319i
\(115\) −17.9114 −1.67025
\(116\) −6.49753 + 6.28670i −0.603280 + 0.583706i
\(117\) 2.89216i 0.267380i
\(118\) 3.51280 1.42123i 0.323380 0.130835i
\(119\) 20.3971 1.86980
\(120\) −3.27439 + 7.38311i −0.298909 + 0.673982i
\(121\) 31.0572 2.82338
\(122\) −6.24001 + 2.52463i −0.564944 + 0.228569i
\(123\) 7.22384i 0.651352i
\(124\) −1.13761 + 1.10070i −0.102161 + 0.0988458i
\(125\) 5.27134i 0.471483i
\(126\) −2.60747 6.44477i −0.232292 0.574146i
\(127\) 5.11884i 0.454223i 0.973869 + 0.227112i \(0.0729282\pi\)
−0.973869 + 0.227112i \(0.927072\pi\)
\(128\) 4.92527 10.1854i 0.435337 0.900268i
\(129\) −4.34535 −0.382587
\(130\) −4.38041 10.8269i −0.384187 0.949579i
\(131\) 4.64485i 0.405822i −0.979197 0.202911i \(-0.934960\pi\)
0.979197 0.202911i \(-0.0650402\pi\)
\(132\) 9.32136 9.01892i 0.811321 0.784996i
\(133\) 23.4848i 2.03639i
\(134\) −2.69425 + 11.2579i −0.232748 + 0.972537i
\(135\) 2.85552i 0.245764i
\(136\) 10.7278 + 4.75776i 0.919903 + 0.407974i
\(137\) 5.36190i 0.458098i −0.973415 0.229049i \(-0.926438\pi\)
0.973415 0.229049i \(-0.0735616\pi\)
\(138\) 8.22320 3.32700i 0.700005 0.283213i
\(139\) 14.8346 1.25826 0.629129 0.777301i \(-0.283412\pi\)
0.629129 + 0.777301i \(0.283412\pi\)
\(140\) −19.5223 20.1769i −1.64993 1.70526i
\(141\) 1.23363i 0.103891i
\(142\) −20.5630 + 8.31953i −1.72561 + 0.698159i
\(143\) 18.7561i 1.56846i
\(144\) 0.131892 3.99782i 0.0109910 0.333152i
\(145\) 12.9084i 1.07199i
\(146\) 0.979827 + 2.42180i 0.0810911 + 0.200429i
\(147\) 17.1670 1.41591
\(148\) −3.60516 + 3.48819i −0.296343 + 0.286727i
\(149\) −17.9068 −1.46698 −0.733490 0.679700i \(-0.762110\pi\)
−0.733490 + 0.679700i \(0.762110\pi\)
\(150\) 1.67289 + 4.13481i 0.136591 + 0.337606i
\(151\) 15.3988i 1.25314i −0.779365 0.626570i \(-0.784458\pi\)
0.779365 0.626570i \(-0.215542\pi\)
\(152\) −5.47799 + 12.3518i −0.444324 + 1.00186i
\(153\) 4.14913 0.335437
\(154\) 16.9098 + 41.7953i 1.36263 + 3.36796i
\(155\) 2.26006i 0.181532i
\(156\) 4.02213 + 4.15701i 0.322028 + 0.332827i
\(157\) −0.211856 −0.0169080 −0.00845399 0.999964i \(-0.502691\pi\)
−0.00845399 + 0.999964i \(0.502691\pi\)
\(158\) −0.386627 0.955609i −0.0307584 0.0760241i
\(159\) 0.123360i 0.00978305i
\(160\) −5.56130 15.1657i −0.439659 1.19896i
\(161\) 30.8358i 2.43020i
\(162\) −0.530406 1.31098i −0.0416726 0.103000i
\(163\) 14.5738i 1.14151i −0.821121 0.570754i \(-0.806651\pi\)
0.821121 0.570754i \(-0.193349\pi\)
\(164\) −10.0462 10.3831i −0.784478 0.810785i
\(165\) 18.5185i 1.44166i
\(166\) 18.2151 7.36959i 1.41377 0.571991i
\(167\) 7.04225i 0.544945i −0.962164 0.272473i \(-0.912159\pi\)
0.962164 0.272473i \(-0.0878415\pi\)
\(168\) 12.7106 + 5.63711i 0.980642 + 0.434912i
\(169\) 4.63543 0.356572
\(170\) 15.5324 6.28420i 1.19128 0.481976i
\(171\) 4.77723i 0.365324i
\(172\) 6.24574 6.04309i 0.476233 0.460781i
\(173\) 13.3693 1.01645 0.508223 0.861225i \(-0.330302\pi\)
0.508223 + 0.861225i \(0.330302\pi\)
\(174\) −2.39771 5.92632i −0.181770 0.449273i
\(175\) −15.5049 −1.17206
\(176\) −0.855338 + 25.9265i −0.0644735 + 1.95428i
\(177\) 2.67952i 0.201405i
\(178\) −0.373887 0.924120i −0.0280240 0.0692657i
\(179\) −10.9481 −0.818302 −0.409151 0.912467i \(-0.634175\pi\)
−0.409151 + 0.912467i \(0.634175\pi\)
\(180\) −3.97118 4.10435i −0.295994 0.305920i
\(181\) 9.89701 0.735639 0.367819 0.929897i \(-0.380104\pi\)
0.367819 + 0.929897i \(0.380104\pi\)
\(182\) −18.6393 + 7.54121i −1.38164 + 0.558992i
\(183\) 4.75980i 0.351855i
\(184\) −7.19267 + 16.2181i −0.530250 + 1.19561i
\(185\) 7.16226i 0.526580i
\(186\) −0.419800 1.03760i −0.0307813 0.0760807i
\(187\) −26.9077 −1.96769
\(188\) −1.71562 1.77315i −0.125124 0.129320i
\(189\) 4.91599 0.357586
\(190\) 7.23551 + 17.8837i 0.524919 + 1.29742i
\(191\) −15.8927 −1.14996 −0.574979 0.818168i \(-0.694990\pi\)
−0.574979 + 0.818168i \(0.694990\pi\)
\(192\) 5.37021 + 5.92966i 0.387562 + 0.427936i
\(193\) −18.8963 −1.36019 −0.680094 0.733125i \(-0.738061\pi\)
−0.680094 + 0.733125i \(0.738061\pi\)
\(194\) −12.9662 + 5.24594i −0.930917 + 0.376637i
\(195\) 8.25860 0.591411
\(196\) −24.6748 + 23.8741i −1.76248 + 1.70530i
\(197\) 5.67643i 0.404429i −0.979341 0.202214i \(-0.935186\pi\)
0.979341 0.202214i \(-0.0648138\pi\)
\(198\) 3.43976 + 8.50190i 0.244453 + 0.604204i
\(199\) 7.38387i 0.523428i 0.965145 + 0.261714i \(0.0842878\pi\)
−0.965145 + 0.261714i \(0.915712\pi\)
\(200\) −8.15480 3.61663i −0.576632 0.255735i
\(201\) −6.66494 4.75169i −0.470109 0.335158i
\(202\) −19.9855 + 8.08585i −1.40617 + 0.568919i
\(203\) 22.2228 1.55974
\(204\) −5.96371 + 5.77021i −0.417543 + 0.403995i
\(205\) −20.6278 −1.44071
\(206\) 19.2606 7.79258i 1.34195 0.542935i
\(207\) 6.27256i 0.435973i
\(208\) −11.5623 0.381452i −0.801704 0.0264489i
\(209\) 30.9810i 2.14300i
\(210\) 18.4032 7.44567i 1.26994 0.513800i
\(211\) 19.0362i 1.31050i −0.755411 0.655252i \(-0.772563\pi\)
0.755411 0.655252i \(-0.227437\pi\)
\(212\) 0.171557 + 0.177310i 0.0117826 + 0.0121777i
\(213\) 15.6852i 1.07473i
\(214\) −8.08518 + 3.27116i −0.552692 + 0.223612i
\(215\) 12.4082i 0.846234i
\(216\) 2.58556 + 1.14669i 0.175925 + 0.0780222i
\(217\) 3.89086 0.264129
\(218\) 9.87154 3.99390i 0.668585 0.270501i
\(219\) −1.84732 −0.124830
\(220\) 25.7537 + 26.6173i 1.73631 + 1.79454i
\(221\) 11.9999i 0.807203i
\(222\) −1.33037 3.28823i −0.0892888 0.220691i
\(223\) 17.7433i 1.18818i 0.804400 + 0.594088i \(0.202487\pi\)
−0.804400 + 0.594088i \(0.797513\pi\)
\(224\) −26.1090 + 9.57419i −1.74448 + 0.639703i
\(225\) −3.15398 −0.210266
\(226\) −24.1794 + 9.78269i −1.60839 + 0.650735i
\(227\) 15.8446i 1.05164i −0.850596 0.525820i \(-0.823758\pi\)
0.850596 0.525820i \(-0.176242\pi\)
\(228\) −6.64371 6.86650i −0.439990 0.454745i
\(229\) 16.2266i 1.07228i −0.844128 0.536141i \(-0.819881\pi\)
0.844128 0.536141i \(-0.180119\pi\)
\(230\) 9.50030 + 23.4815i 0.626432 + 1.54832i
\(231\) −31.8809 −2.09761
\(232\) 11.6881 + 5.18363i 0.767359 + 0.340322i
\(233\) 5.40768i 0.354269i 0.984187 + 0.177135i \(0.0566828\pi\)
−0.984187 + 0.177135i \(0.943317\pi\)
\(234\) −3.79156 + 1.53402i −0.247862 + 0.100282i
\(235\) −3.52266 −0.229793
\(236\) −3.72642 3.85139i −0.242569 0.250704i
\(237\) 0.728927 0.0473489
\(238\) −10.8187 26.7402i −0.701274 1.73331i
\(239\) −24.3789 −1.57694 −0.788471 0.615072i \(-0.789127\pi\)
−0.788471 + 0.615072i \(0.789127\pi\)
\(240\) 11.4159 + 0.376619i 0.736891 + 0.0243107i
\(241\) −17.7424 −1.14289 −0.571444 0.820641i \(-0.693617\pi\)
−0.571444 + 0.820641i \(0.693617\pi\)
\(242\) −16.4729 40.7153i −1.05892 2.61728i
\(243\) 1.00000 0.0641500
\(244\) 6.61947 + 6.84145i 0.423768 + 0.437979i
\(245\) 49.0206i 3.13181i
\(246\) 9.47032 3.83157i 0.603806 0.244292i
\(247\) 13.8165 0.879123
\(248\) 2.04639 + 0.907570i 0.129946 + 0.0576308i
\(249\) 13.8943i 0.880513i
\(250\) 6.91062 2.79595i 0.437066 0.176831i
\(251\) 4.05323 0.255838 0.127919 0.991785i \(-0.459170\pi\)
0.127919 + 0.991785i \(0.459170\pi\)
\(252\) −7.06595 + 6.83668i −0.445113 + 0.430670i
\(253\) 40.6785i 2.55743i
\(254\) 6.71070 2.71506i 0.421066 0.170358i
\(255\) 11.8479i 0.741945i
\(256\) −15.9652 1.05456i −0.997826 0.0659100i
\(257\) 16.7288 1.04351 0.521755 0.853095i \(-0.325277\pi\)
0.521755 + 0.853095i \(0.325277\pi\)
\(258\) 2.30480 + 5.69667i 0.143490 + 0.354659i
\(259\) 12.3304 0.766173
\(260\) −11.8704 + 11.4853i −0.736172 + 0.712286i
\(261\) 4.52052 0.279813
\(262\) −6.08930 + 2.46365i −0.376198 + 0.152205i
\(263\) 5.59576i 0.345049i −0.985005 0.172525i \(-0.944808\pi\)
0.985005 0.172525i \(-0.0551924\pi\)
\(264\) −16.7677 7.43644i −1.03198 0.457681i
\(265\) 0.352256 0.0216389
\(266\) 30.7881 12.4565i 1.88774 0.763756i
\(267\) 0.704907 0.0431396
\(268\) 16.1880 2.43916i 0.988838 0.148996i
\(269\) 2.92544 0.178367 0.0891837 0.996015i \(-0.471574\pi\)
0.0891837 + 0.996015i \(0.471574\pi\)
\(270\) 3.74353 1.51458i 0.227824 0.0921746i
\(271\) 2.01844 0.122611 0.0613057 0.998119i \(-0.480474\pi\)
0.0613057 + 0.998119i \(0.480474\pi\)
\(272\) 0.547236 16.5875i 0.0331811 1.00576i
\(273\) 14.2178i 0.860501i
\(274\) −7.02934 + 2.84398i −0.424658 + 0.171811i
\(275\) 20.4541 1.23343
\(276\) −8.72326 9.01580i −0.525079 0.542687i
\(277\) −14.1610 −0.850854 −0.425427 0.904993i \(-0.639876\pi\)
−0.425427 + 0.904993i \(0.639876\pi\)
\(278\) −7.86838 19.4479i −0.471914 1.16641i
\(279\) 0.791471 0.0473841
\(280\) −16.0969 + 36.2953i −0.961972 + 2.16906i
\(281\) 5.14672i 0.307028i −0.988146 0.153514i \(-0.950941\pi\)
0.988146 0.153514i \(-0.0490590\pi\)
\(282\) 1.61727 0.654326i 0.0963070 0.0389646i
\(283\) 17.8958i 1.06379i −0.846809 0.531897i \(-0.821479\pi\)
0.846809 0.531897i \(-0.178521\pi\)
\(284\) 21.8135 + 22.5450i 1.29439 + 1.33780i
\(285\) −13.6415 −0.808051
\(286\) 24.5888 9.94832i 1.45397 0.588257i
\(287\) 35.5124i 2.09623i
\(288\) −5.31103 + 1.94756i −0.312955 + 0.114761i
\(289\) 0.215286 0.0126639
\(290\) 16.9227 6.84670i 0.993735 0.402052i
\(291\) 9.89044i 0.579788i
\(292\) 2.65522 2.56907i 0.155385 0.150343i
\(293\) −12.5828 −0.735098 −0.367549 0.930004i \(-0.619803\pi\)
−0.367549 + 0.930004i \(0.619803\pi\)
\(294\) −9.10545 22.5056i −0.531041 1.31255i
\(295\) −7.65143 −0.445484
\(296\) 6.48514 + 2.87614i 0.376941 + 0.167173i
\(297\) −6.48515 −0.376307
\(298\) 9.49786 + 23.4754i 0.550196 + 1.35990i
\(299\) 18.1412 1.04913
\(300\) 4.53335 4.38625i 0.261733 0.253240i
\(301\) −21.3617 −1.23127
\(302\) −20.1876 + 8.16763i −1.16166 + 0.469994i
\(303\) 15.2447i 0.875783i
\(304\) 19.0985 + 0.630077i 1.09538 + 0.0361374i
\(305\) 13.5917 0.778259
\(306\) −2.20072 5.43943i −0.125807 0.310951i
\(307\) 8.63603i 0.492885i 0.969157 + 0.246442i \(0.0792616\pi\)
−0.969157 + 0.246442i \(0.920738\pi\)
\(308\) 45.8237 44.3369i 2.61105 2.52633i
\(309\) 14.6917i 0.835784i
\(310\) 2.96289 1.19875i 0.168281 0.0680843i
\(311\) 12.4339 0.705061 0.352531 0.935800i \(-0.385321\pi\)
0.352531 + 0.935800i \(0.385321\pi\)
\(312\) 3.31640 7.47784i 0.187754 0.423349i
\(313\) 2.51221i 0.141998i 0.997476 + 0.0709991i \(0.0226188\pi\)
−0.997476 + 0.0709991i \(0.977381\pi\)
\(314\) 0.112370 + 0.277740i 0.00634139 + 0.0156738i
\(315\) 14.0377i 0.790935i
\(316\) −1.04772 + 1.01372i −0.0589386 + 0.0570262i
\(317\) −10.6688 −0.599218 −0.299609 0.954062i \(-0.596856\pi\)
−0.299609 + 0.954062i \(0.596856\pi\)
\(318\) −0.161722 + 0.0654306i −0.00906892 + 0.00366917i
\(319\) −29.3163 −1.64140
\(320\) −16.9322 + 15.3347i −0.946541 + 0.857238i
\(321\) 6.16728i 0.344224i
\(322\) 40.4252 16.3555i 2.25281 0.911456i
\(323\) 19.8213i 1.10289i
\(324\) −1.43734 + 1.39070i −0.0798522 + 0.0772613i
\(325\) 9.12181i 0.505987i
\(326\) −19.1060 + 7.73002i −1.05818 + 0.428126i
\(327\) 7.52989i 0.416404i
\(328\) −8.28350 + 18.6777i −0.457380 + 1.03130i
\(329\) 6.06453i 0.334348i
\(330\) −24.2773 + 9.82230i −1.33642 + 0.540700i
\(331\) 5.92505 0.325670 0.162835 0.986653i \(-0.447936\pi\)
0.162835 + 0.986653i \(0.447936\pi\)
\(332\) −19.3228 19.9708i −1.06048 1.09604i
\(333\) 2.50822 0.137450
\(334\) −9.23225 + 3.73525i −0.505166 + 0.204384i
\(335\) 13.5685 19.0319i 0.741328 1.03982i
\(336\) 0.648378 19.6533i 0.0353719 1.07217i
\(337\) 5.04413i 0.274771i 0.990518 + 0.137386i \(0.0438700\pi\)
−0.990518 + 0.137386i \(0.956130\pi\)
\(338\) −2.45866 6.07696i −0.133733 0.330543i
\(339\) 18.4438i 1.00173i
\(340\) −16.4769 17.0295i −0.893587 0.923553i
\(341\) −5.13281 −0.277957
\(342\) 6.26285 2.53387i 0.338656 0.137016i
\(343\) 49.9807 2.69870
\(344\) −11.2351 4.98276i −0.605759 0.268652i
\(345\) −17.9114 −0.964317
\(346\) −7.09113 17.5268i −0.381222 0.942249i
\(347\) 1.82049 0.0977288 0.0488644 0.998805i \(-0.484440\pi\)
0.0488644 + 0.998805i \(0.484440\pi\)
\(348\) −6.49753 + 6.28670i −0.348304 + 0.337003i
\(349\) −14.8552 −0.795178 −0.397589 0.917564i \(-0.630153\pi\)
−0.397589 + 0.917564i \(0.630153\pi\)
\(350\) 8.22391 + 20.3267i 0.439587 + 1.08651i
\(351\) 2.89216i 0.154372i
\(352\) 34.4428 12.6302i 1.83581 0.673193i
\(353\) 3.34439i 0.178004i −0.996031 0.0890020i \(-0.971632\pi\)
0.996031 0.0890020i \(-0.0283678\pi\)
\(354\) 3.51280 1.42123i 0.186703 0.0755378i
\(355\) 44.7894 2.37718
\(356\) −1.01319 + 0.980316i −0.0536990 + 0.0519567i
\(357\) 20.3971 1.07953
\(358\) 5.80695 + 14.3528i 0.306907 + 0.758569i
\(359\) 1.21464i 0.0641061i −0.999486 0.0320531i \(-0.989795\pi\)
0.999486 0.0320531i \(-0.0102046\pi\)
\(360\) −3.27439 + 7.38311i −0.172575 + 0.389124i
\(361\) −3.82192 −0.201154
\(362\) −5.24943 12.9748i −0.275904 0.681940i
\(363\) 31.0572 1.63008
\(364\) 19.7728 + 20.4358i 1.03637 + 1.07113i
\(365\) 5.27505i 0.276109i
\(366\) −6.24001 + 2.52463i −0.326170 + 0.131964i
\(367\) −28.6573 −1.49590 −0.747950 0.663755i \(-0.768962\pi\)
−0.747950 + 0.663755i \(0.768962\pi\)
\(368\) 25.0766 + 0.827298i 1.30721 + 0.0431259i
\(369\) 7.22384i 0.376058i
\(370\) 9.38959 3.79890i 0.488141 0.197496i
\(371\) 0.606435i 0.0314845i
\(372\) −1.13761 + 1.10070i −0.0589825 + 0.0570687i
\(373\) 17.6187i 0.912262i 0.889913 + 0.456131i \(0.150765\pi\)
−0.889913 + 0.456131i \(0.849235\pi\)
\(374\) 14.2720 + 35.2755i 0.737988 + 1.82405i
\(375\) 5.27134i 0.272211i
\(376\) −1.41459 + 3.18963i −0.0729521 + 0.164493i
\(377\) 13.0741i 0.673348i
\(378\) −2.60747 6.44477i −0.134114 0.331483i
\(379\) 0.501202 0.0257450 0.0128725 0.999917i \(-0.495902\pi\)
0.0128725 + 0.999917i \(0.495902\pi\)
\(380\) 19.6074 18.9712i 1.00584 0.973203i
\(381\) 5.11884i 0.262246i
\(382\) 8.42959 + 20.8351i 0.431296 + 1.06601i
\(383\) 14.3173 0.731579 0.365790 0.930698i \(-0.380799\pi\)
0.365790 + 0.930698i \(0.380799\pi\)
\(384\) 4.92527 10.1854i 0.251342 0.519770i
\(385\) 91.0366i 4.63965i
\(386\) 10.0227 + 24.7727i 0.510143 + 1.26090i
\(387\) −4.34535 −0.220886
\(388\) 13.7547 + 14.2159i 0.698287 + 0.721704i
\(389\) 0.947612 0.0480458 0.0240229 0.999711i \(-0.492353\pi\)
0.0240229 + 0.999711i \(0.492353\pi\)
\(390\) −4.38041 10.8269i −0.221811 0.548240i
\(391\) 26.0257i 1.31617i
\(392\) 44.3862 + 19.6852i 2.24184 + 0.994250i
\(393\) 4.64485i 0.234302i
\(394\) −7.44169 + 3.01081i −0.374907 + 0.151682i
\(395\) 2.08146i 0.104730i
\(396\) 9.32136 9.01892i 0.468416 0.453218i
\(397\) −1.94768 −0.0977515 −0.0488757 0.998805i \(-0.515564\pi\)
−0.0488757 + 0.998805i \(0.515564\pi\)
\(398\) 9.68010 3.91644i 0.485220 0.196314i
\(399\) 23.4848i 1.17571i
\(400\) −0.415984 + 12.6091i −0.0207992 + 0.630454i
\(401\) 30.3290i 1.51456i −0.653090 0.757280i \(-0.726528\pi\)
0.653090 0.757280i \(-0.273472\pi\)
\(402\) −2.69425 + 11.2579i −0.134377 + 0.561495i
\(403\) 2.28906i 0.114026i
\(404\) 21.2008 + 21.9118i 1.05478 + 1.09015i
\(405\) 2.85552i 0.141892i
\(406\) −11.7871 29.1337i −0.584985 1.44588i
\(407\) −16.2662 −0.806284
\(408\) 10.7278 + 4.75776i 0.531106 + 0.235544i
\(409\) 6.20520i 0.306827i −0.988162 0.153414i \(-0.950973\pi\)
0.988162 0.153414i \(-0.0490267\pi\)
\(410\) 10.9411 + 27.0427i 0.540343 + 1.33554i
\(411\) 5.36190i 0.264483i
\(412\) −20.4318 21.1170i −1.00660 1.04036i
\(413\) 13.1725i 0.648177i
\(414\) 8.22320 3.32700i 0.404148 0.163513i
\(415\) −39.6753 −1.94758
\(416\) 5.63265 + 15.3603i 0.276163 + 0.753102i
\(417\) 14.8346 0.726456
\(418\) −40.6155 + 16.4325i −1.98657 + 0.803741i
\(419\) 39.0213i 1.90632i 0.302470 + 0.953159i \(0.402189\pi\)
−0.302470 + 0.953159i \(0.597811\pi\)
\(420\) −19.5223 20.1769i −0.952589 0.984534i
\(421\) 29.9711 1.46070 0.730350 0.683073i \(-0.239357\pi\)
0.730350 + 0.683073i \(0.239357\pi\)
\(422\) −24.9560 + 10.0969i −1.21484 + 0.491509i
\(423\) 1.23363i 0.0599813i
\(424\) 0.141455 0.318953i 0.00686966 0.0154897i
\(425\) −13.0863 −0.634778
\(426\) −20.5630 + 8.31953i −0.996281 + 0.403082i
\(427\) 23.3991i 1.13236i
\(428\) 8.57685 + 8.86448i 0.414578 + 0.428481i
\(429\) 18.7561i 0.905551i
\(430\) −16.2669 + 6.58139i −0.784461 + 0.317383i
\(431\) 21.7828i 1.04924i −0.851336 0.524620i \(-0.824207\pi\)
0.851336 0.524620i \(-0.175793\pi\)
\(432\) 0.131892 3.99782i 0.00634564 0.192345i
\(433\) 7.29826i 0.350732i 0.984503 + 0.175366i \(0.0561109\pi\)
−0.984503 + 0.175366i \(0.943889\pi\)
\(434\) −2.06374 5.10085i −0.0990625 0.244848i
\(435\) 12.9084i 0.618912i
\(436\) −10.4718 10.8230i −0.501510 0.518328i
\(437\) −29.9654 −1.43344
\(438\) 0.979827 + 2.42180i 0.0468180 + 0.115718i
\(439\) 7.82313i 0.373378i 0.982419 + 0.186689i \(0.0597756\pi\)
−0.982419 + 0.186689i \(0.940224\pi\)
\(440\) 21.2349 47.8805i 1.01233 2.28262i
\(441\) 17.1670 0.817474
\(442\) −15.7317 + 6.36483i −0.748280 + 0.302744i
\(443\) 24.7893 1.17778 0.588889 0.808214i \(-0.299566\pi\)
0.588889 + 0.808214i \(0.299566\pi\)
\(444\) −3.60516 + 3.48819i −0.171093 + 0.165542i
\(445\) 2.01287i 0.0954194i
\(446\) 23.2611 9.41112i 1.10144 0.445629i
\(447\) −17.9068 −0.846962
\(448\) 26.3999 + 29.1501i 1.24728 + 1.37721i
\(449\) 42.3589 1.99904 0.999521 0.0309436i \(-0.00985122\pi\)
0.999521 + 0.0309436i \(0.00985122\pi\)
\(450\) 1.67289 + 4.13481i 0.0788608 + 0.194917i
\(451\) 46.8477i 2.20597i
\(452\) 25.6498 + 26.5100i 1.20647 + 1.24692i
\(453\) 15.3988i 0.723500i
\(454\) −20.7719 + 8.40404i −0.974874 + 0.394421i
\(455\) 40.5992 1.90332
\(456\) −5.47799 + 12.3518i −0.256530 + 0.578426i
\(457\) 13.6330 0.637727 0.318863 0.947801i \(-0.396699\pi\)
0.318863 + 0.947801i \(0.396699\pi\)
\(458\) −21.2727 + 8.60667i −0.994009 + 0.402163i
\(459\) 4.14913 0.193665
\(460\) 25.7448 24.9094i 1.20036 1.16141i
\(461\) −29.4296 −1.37067 −0.685336 0.728227i \(-0.740345\pi\)
−0.685336 + 0.728227i \(0.740345\pi\)
\(462\) 16.9098 + 41.7953i 0.786716 + 1.94449i
\(463\) −11.7817 −0.547542 −0.273771 0.961795i \(-0.588271\pi\)
−0.273771 + 0.961795i \(0.588271\pi\)
\(464\) 0.596219 18.0723i 0.0276788 0.838983i
\(465\) 2.26006i 0.104808i
\(466\) 7.08937 2.86826i 0.328409 0.132870i
\(467\) 32.3532i 1.49713i −0.663063 0.748564i \(-0.730744\pi\)
0.663063 0.748564i \(-0.269256\pi\)
\(468\) 4.02213 + 4.15701i 0.185923 + 0.192158i
\(469\) −32.7648 23.3593i −1.51294 1.07863i
\(470\) 1.86844 + 4.61814i 0.0861847 + 0.213019i
\(471\) −0.211856 −0.00976183
\(472\) −3.07258 + 6.92806i −0.141427 + 0.318890i
\(473\) 28.1802 1.29573
\(474\) −0.386627 0.955609i −0.0177584 0.0438926i
\(475\) 15.0673i 0.691335i
\(476\) −29.3175 + 28.3663i −1.34377 + 1.30017i
\(477\) 0.123360i 0.00564825i
\(478\) 12.9307 + 31.9603i 0.591437 + 1.46183i
\(479\) 23.8652i 1.09043i −0.838297 0.545214i \(-0.816448\pi\)
0.838297 0.545214i \(-0.183552\pi\)
\(480\) −5.56130 15.1657i −0.253837 0.692218i
\(481\) 7.25416i 0.330761i
\(482\) 9.41066 + 23.2599i 0.428644 + 1.05946i
\(483\) 30.8358i 1.40308i
\(484\) −44.6397 + 43.1913i −2.02908 + 1.96324i
\(485\) 28.2423 1.28242
\(486\) −0.530406 1.31098i −0.0240597 0.0594673i
\(487\) 13.9001 0.629875 0.314938 0.949112i \(-0.398016\pi\)
0.314938 + 0.949112i \(0.398016\pi\)
\(488\) 5.45801 12.3067i 0.247072 0.557100i
\(489\) 14.5738i 0.659050i
\(490\) 64.2650 26.0008i 2.90320 1.17460i
\(491\) 12.8500i 0.579914i 0.957040 + 0.289957i \(0.0936410\pi\)
−0.957040 + 0.289957i \(0.906359\pi\)
\(492\) −10.0462 10.3831i −0.452919 0.468107i
\(493\) 18.7562 0.844738
\(494\) −7.32835 18.1132i −0.329718 0.814949i
\(495\) 18.5185i 0.832343i
\(496\) 0.104388 3.16416i 0.00468718 0.142075i
\(497\) 77.1084i 3.45878i
\(498\) 18.2151 7.36959i 0.816238 0.330239i
\(499\) 2.61774 0.117186 0.0585931 0.998282i \(-0.481339\pi\)
0.0585931 + 0.998282i \(0.481339\pi\)
\(500\) −7.33086 7.57670i −0.327846 0.338840i
\(501\) 7.04225i 0.314624i
\(502\) −2.14986 5.31371i −0.0959528 0.237162i
\(503\) 28.5414 1.27260 0.636298 0.771443i \(-0.280465\pi\)
0.636298 + 0.771443i \(0.280465\pi\)
\(504\) 12.7106 + 5.63711i 0.566174 + 0.251097i
\(505\) 43.5314 1.93712
\(506\) −53.3287 + 21.5761i −2.37075 + 0.959174i
\(507\) 4.63543 0.205867
\(508\) −7.11878 7.35751i −0.315845 0.326437i
\(509\) 19.0491 0.844338 0.422169 0.906517i \(-0.361269\pi\)
0.422169 + 0.906517i \(0.361269\pi\)
\(510\) 15.5324 6.28420i 0.687786 0.278269i
\(511\) −9.08139 −0.401737
\(512\) 7.08553 + 21.4894i 0.313139 + 0.949707i
\(513\) 4.77723i 0.210920i
\(514\) −8.87302 21.9311i −0.391372 0.967338i
\(515\) −41.9525 −1.84865
\(516\) 6.24574 6.04309i 0.274954 0.266032i
\(517\) 8.00030i 0.351853i
\(518\) −6.54010 16.1649i −0.287356 0.710244i
\(519\) 13.3693 0.586846
\(520\) 21.3531 + 9.47004i 0.936395 + 0.415289i
\(521\) 4.18847i 0.183500i −0.995782 0.0917500i \(-0.970754\pi\)
0.995782 0.0917500i \(-0.0292461\pi\)
\(522\) −2.39771 5.92632i −0.104945 0.259388i
\(523\) 19.8355i 0.867345i −0.901071 0.433673i \(-0.857217\pi\)
0.901071 0.433673i \(-0.142783\pi\)
\(524\) 6.45960 + 6.67622i 0.282189 + 0.291652i
\(525\) −15.5049 −0.676691
\(526\) −7.33593 + 2.96802i −0.319862 + 0.129412i
\(527\) 3.28392 0.143050
\(528\) −0.855338 + 25.9265i −0.0372238 + 1.12831i
\(529\) −16.3450 −0.710651
\(530\) −0.186838 0.461800i −0.00811574 0.0200593i
\(531\) 2.67952i 0.116281i
\(532\) −32.6604 33.7557i −1.41601 1.46349i
\(533\) 20.8925 0.904954
\(534\) −0.373887 0.924120i −0.0161797 0.0399906i
\(535\) 17.6108 0.761380
\(536\) −11.7839 19.9284i −0.508986 0.860775i
\(537\) −10.9481 −0.472447
\(538\) −1.55167 3.83520i −0.0668973 0.165347i
\(539\) −111.330 −4.79534
\(540\) −3.97118 4.10435i −0.170892 0.176623i
\(541\) 25.5904i 1.10022i 0.835093 + 0.550109i \(0.185414\pi\)
−0.835093 + 0.550109i \(0.814586\pi\)
\(542\) −1.07059 2.64613i −0.0459858 0.113661i
\(543\) 9.89701 0.424721
\(544\) −22.0361 + 8.08069i −0.944792 + 0.346457i
\(545\) −21.5017 −0.921033
\(546\) −18.6393 + 7.54121i −0.797687 + 0.322734i
\(547\) 5.52707 0.236320 0.118160 0.992995i \(-0.462300\pi\)
0.118160 + 0.992995i \(0.462300\pi\)
\(548\) 7.45680 + 7.70687i 0.318539 + 0.329221i
\(549\) 4.75980i 0.203143i
\(550\) −10.8489 26.8149i −0.462600 1.14339i
\(551\) 21.5956i 0.920002i
\(552\) −7.19267 + 16.2181i −0.306140 + 0.690286i
\(553\) 3.58340 0.152382
\(554\) 7.51109 + 18.5648i 0.319116 + 0.788745i
\(555\) 7.16226i 0.304021i
\(556\) −21.3224 + 20.6306i −0.904272 + 0.874932i
\(557\) −29.2234 −1.23824 −0.619118 0.785298i \(-0.712510\pi\)
−0.619118 + 0.785298i \(0.712510\pi\)
\(558\) −0.419800 1.03760i −0.0177716 0.0439252i
\(559\) 12.5674i 0.531546i
\(560\) 56.1203 + 1.85146i 2.37151 + 0.0782383i
\(561\) −26.9077 −1.13605
\(562\) −6.74725 + 2.72985i −0.284616 + 0.115152i
\(563\) −15.0136 −0.632747 −0.316374 0.948635i \(-0.602465\pi\)
−0.316374 + 0.948635i \(0.602465\pi\)
\(564\) −1.71562 1.77315i −0.0722405 0.0746631i
\(565\) 52.6666 2.21570
\(566\) −23.4610 + 9.49203i −0.986141 + 0.398980i
\(567\) 4.91599 0.206452
\(568\) 17.9860 40.5550i 0.754678 1.70165i
\(569\) −8.86391 −0.371595 −0.185797 0.982588i \(-0.559487\pi\)
−0.185797 + 0.982588i \(0.559487\pi\)
\(570\) 7.23551 + 17.8837i 0.303062 + 0.749066i
\(571\) 16.2972i 0.682015i 0.940061 + 0.341007i \(0.110768\pi\)
−0.940061 + 0.341007i \(0.889232\pi\)
\(572\) −26.0841 26.9588i −1.09063 1.12721i
\(573\) −15.8927 −0.663928
\(574\) 46.5560 18.8359i 1.94321 0.786197i
\(575\) 19.7835i 0.825030i
\(576\) 5.37021 + 5.92966i 0.223759 + 0.247069i
\(577\) 38.2988i 1.59440i 0.603715 + 0.797200i \(0.293686\pi\)
−0.603715 + 0.797200i \(0.706314\pi\)
\(578\) −0.114189 0.282236i −0.00474963 0.0117395i
\(579\) −18.8963 −0.785305
\(580\) −17.9518 18.5538i −0.745407 0.770405i
\(581\) 68.3041i 2.83373i
\(582\) −12.9662 + 5.24594i −0.537465 + 0.217451i
\(583\) 0.800006i 0.0331328i
\(584\) −4.77634 2.11830i −0.197647 0.0876557i
\(585\) 8.25860 0.341451
\(586\) 6.67401 + 16.4959i 0.275701 + 0.681438i
\(587\) 35.5641 1.46789 0.733943 0.679211i \(-0.237678\pi\)
0.733943 + 0.679211i \(0.237678\pi\)
\(588\) −24.6748 + 23.8741i −1.01757 + 0.984553i
\(589\) 3.78104i 0.155795i
\(590\) 4.05836 + 10.0309i 0.167080 + 0.412965i
\(591\) 5.67643i 0.233497i
\(592\) 0.330813 10.0274i 0.0135963 0.412124i
\(593\) 20.1922i 0.829196i 0.910005 + 0.414598i \(0.136078\pi\)
−0.910005 + 0.414598i \(0.863922\pi\)
\(594\) 3.43976 + 8.50190i 0.141135 + 0.348837i
\(595\) 58.2442i 2.38778i
\(596\) 25.7381 24.9030i 1.05427 1.02007i
\(597\) 7.38387i 0.302201i
\(598\) −9.62220 23.7828i −0.393481 0.972550i
\(599\) 2.28406 0.0933243 0.0466622 0.998911i \(-0.485142\pi\)
0.0466622 + 0.998911i \(0.485142\pi\)
\(600\) −8.15480 3.61663i −0.332918 0.147648i
\(601\) 18.6583 0.761086 0.380543 0.924763i \(-0.375737\pi\)
0.380543 + 0.924763i \(0.375737\pi\)
\(602\) 11.3304 + 28.0048i 0.461791 + 1.14139i
\(603\) −6.66494 4.75169i −0.271417 0.193504i
\(604\) 21.4152 + 22.1334i 0.871372 + 0.900594i
\(605\) 88.6843i 3.60553i
\(606\) −19.9855 + 8.08585i −0.811853 + 0.328465i
\(607\) 12.3425i 0.500967i 0.968121 + 0.250484i \(0.0805896\pi\)
−0.968121 + 0.250484i \(0.919410\pi\)
\(608\) −9.30395 25.3720i −0.377325 1.02897i
\(609\) 22.2228 0.900515
\(610\) −7.20911 17.8185i −0.291889 0.721448i
\(611\) 3.56786 0.144340
\(612\) −5.96371 + 5.77021i −0.241069 + 0.233247i
\(613\) 10.9193 0.441028 0.220514 0.975384i \(-0.429227\pi\)
0.220514 + 0.975384i \(0.429227\pi\)
\(614\) 11.3217 4.58060i 0.456906 0.184858i
\(615\) −20.6278 −0.831794
\(616\) −82.4300 36.5575i −3.32120 1.47294i
\(617\) −20.0559 −0.807421 −0.403710 0.914887i \(-0.632280\pi\)
−0.403710 + 0.914887i \(0.632280\pi\)
\(618\) 19.2606 7.79258i 0.774774 0.313463i
\(619\) 11.3753i 0.457211i 0.973519 + 0.228606i \(0.0734167\pi\)
−0.973519 + 0.228606i \(0.926583\pi\)
\(620\) −3.14307 3.24847i −0.126229 0.130462i
\(621\) 6.27256i 0.251709i
\(622\) −6.59501 16.3006i −0.264436 0.653594i
\(623\) 3.46532 0.138835
\(624\) −11.5623 0.381452i −0.462864 0.0152703i
\(625\) −30.8223 −1.23289
\(626\) 3.29345 1.33249i 0.131633 0.0532569i
\(627\) 30.9810i 1.23726i
\(628\) 0.304510 0.294629i 0.0121513 0.0117570i
\(629\) 10.4069 0.414951
\(630\) 18.4032 7.44567i 0.733199 0.296643i
\(631\) −38.3525 −1.52679 −0.763395 0.645932i \(-0.776469\pi\)
−0.763395 + 0.645932i \(0.776469\pi\)
\(632\) 1.88468 + 0.835851i 0.0749686 + 0.0332484i
\(633\) 19.0362i 0.756619i
\(634\) 5.65878 + 13.9866i 0.224739 + 0.555477i
\(635\) −14.6169 −0.580055
\(636\) 0.171557 + 0.177310i 0.00680266 + 0.00703079i
\(637\) 49.6495i 1.96719i
\(638\) 15.5495 + 38.4330i 0.615611 + 1.52158i
\(639\) 15.6852i 0.620497i
\(640\) 29.0845 + 14.0642i 1.14967 + 0.555936i
\(641\) 5.63089i 0.222407i −0.993798 0.111203i \(-0.964530\pi\)
0.993798 0.111203i \(-0.0354705\pi\)
\(642\) −8.08518 + 3.27116i −0.319097 + 0.129102i
\(643\) 21.1619i 0.834543i −0.908782 0.417272i \(-0.862986\pi\)
0.908782 0.417272i \(-0.137014\pi\)
\(644\) −42.8835 44.3216i −1.68985 1.74651i
\(645\) 12.4082i 0.488573i
\(646\) 25.9854 10.5134i 1.02238 0.413642i
\(647\) −16.6498 −0.654572 −0.327286 0.944925i \(-0.606134\pi\)
−0.327286 + 0.944925i \(0.606134\pi\)
\(648\) 2.58556 + 1.14669i 0.101570 + 0.0450462i
\(649\) 17.3771i 0.682112i
\(650\) 11.9585 4.83826i 0.469052 0.189772i
\(651\) 3.89086 0.152495
\(652\) 20.2678 + 20.9475i 0.793749 + 0.820367i
\(653\) 31.2845i 1.22426i −0.790758 0.612128i \(-0.790314\pi\)
0.790758 0.612128i \(-0.209686\pi\)
\(654\) 9.87154 3.99390i 0.386008 0.156174i
\(655\) 13.2634 0.518246
\(656\) 28.8797 + 0.952765i 1.12756 + 0.0371992i
\(657\) −1.84732 −0.0720707
\(658\) 7.95048 3.21666i 0.309942 0.125399i
\(659\) 40.3816i 1.57304i 0.617563 + 0.786521i \(0.288120\pi\)
−0.617563 + 0.786521i \(0.711880\pi\)
\(660\) 25.7537 + 26.6173i 1.00246 + 1.03608i
\(661\) 28.1687i 1.09563i 0.836598 + 0.547817i \(0.184541\pi\)
−0.836598 + 0.547817i \(0.815459\pi\)
\(662\) −3.14268 7.76762i −0.122144 0.301897i
\(663\) 11.9999i 0.466039i
\(664\) −15.9324 + 35.9244i −0.618296 + 1.39414i
\(665\) −67.0613 −2.60053
\(666\) −1.33037 3.28823i −0.0515509 0.127416i
\(667\) 28.3552i 1.09792i
\(668\) 9.79367 + 10.1221i 0.378929 + 0.391636i
\(669\) 17.7433i 0.685994i
\(670\) −32.1472 7.69347i −1.24196 0.297225i
\(671\) 30.8680i 1.19165i
\(672\) −26.1090 + 9.57419i −1.00717 + 0.369332i
\(673\) 34.3235i 1.32307i 0.749913 + 0.661537i \(0.230095\pi\)
−0.749913 + 0.661537i \(0.769905\pi\)
\(674\) 6.61276 2.67544i 0.254714 0.103054i
\(675\) −3.15398 −0.121397
\(676\) −6.66269 + 6.44651i −0.256257 + 0.247943i
\(677\) 37.3316i 1.43477i 0.696678 + 0.717384i \(0.254661\pi\)
−0.696678 + 0.717384i \(0.745339\pi\)
\(678\) −24.1794 + 9.78269i −0.928606 + 0.375702i
\(679\) 48.6213i 1.86591i
\(680\) −13.5859 + 30.6335i −0.520994 + 1.17474i
\(681\) 15.8446i 0.607165i
\(682\) 2.72247 + 6.72901i 0.104249 + 0.257667i
\(683\) 34.3656 1.31496 0.657481 0.753471i \(-0.271622\pi\)
0.657481 + 0.753471i \(0.271622\pi\)
\(684\) −6.64371 6.86650i −0.254028 0.262547i
\(685\) 15.3110 0.585003
\(686\) −26.5100 65.5237i −1.01216 2.50171i
\(687\) 16.2266i 0.619082i
\(688\) −0.573116 + 17.3719i −0.0218498 + 0.662299i
\(689\) −0.356775 −0.0135921
\(690\) 9.50030 + 23.4815i 0.361670 + 0.893925i
\(691\) 29.4379i 1.11987i 0.828536 + 0.559936i \(0.189174\pi\)
−0.828536 + 0.559936i \(0.810826\pi\)
\(692\) −19.2162 + 18.5927i −0.730490 + 0.706787i
\(693\) −31.8809 −1.21106
\(694\) −0.965596 2.38662i −0.0366535 0.0905949i
\(695\) 42.3606i 1.60683i
\(696\) 11.6881 + 5.18363i 0.443035 + 0.196485i
\(697\) 29.9727i 1.13530i
\(698\) 7.87925 + 19.4748i 0.298234 + 0.737133i
\(699\) 5.40768i 0.204537i
\(700\) 22.2859 21.5628i 0.842327 0.814996i
\(701\) 25.3710i 0.958250i −0.877747 0.479125i \(-0.840954\pi\)
0.877747 0.479125i \(-0.159046\pi\)
\(702\) −3.79156 + 1.53402i −0.143103 + 0.0578977i
\(703\) 11.9823i 0.451922i
\(704\) −34.8266 38.4547i −1.31258 1.44932i
\(705\) −3.52266 −0.132671
\(706\) −4.38443 + 1.77388i −0.165010 + 0.0667610i
\(707\) 74.9426i 2.81851i
\(708\) −3.72642 3.85139i −0.140048 0.144744i
\(709\) −25.7636 −0.967572 −0.483786 0.875186i \(-0.660739\pi\)
−0.483786 + 0.875186i \(0.660739\pi\)
\(710\) −23.7566 58.7180i −0.891568 2.20365i
\(711\) 0.728927 0.0273369
\(712\) 1.82258 + 0.808309i 0.0683040 + 0.0302926i
\(713\) 4.96454i 0.185924i
\(714\) −10.8187 26.7402i −0.404881 1.00073i
\(715\) −53.5583 −2.00297
\(716\) 15.7362 15.2256i 0.588089 0.569008i
\(717\) −24.3789 −0.910448
\(718\) −1.59237 + 0.644251i −0.0594266 + 0.0240432i
\(719\) 18.5554i 0.692001i −0.938234 0.346000i \(-0.887540\pi\)
0.938234 0.346000i \(-0.112460\pi\)
\(720\) 11.4159 + 0.376619i 0.425444 + 0.0140358i
\(721\) 72.2244i 2.68978i
\(722\) 2.02717 + 5.01046i 0.0754434 + 0.186470i
\(723\) −17.7424 −0.659847
\(724\) −14.2254 + 13.7638i −0.528682 + 0.511528i
\(725\) −14.2576 −0.529516
\(726\) −16.4729 40.7153i −0.611366 1.51109i
\(727\) 5.08959 0.188762 0.0943812 0.995536i \(-0.469913\pi\)
0.0943812 + 0.995536i \(0.469913\pi\)
\(728\) 16.3034 36.7610i 0.604244 1.36245i
\(729\) 1.00000 0.0370370
\(730\) −6.91548 + 2.79791i −0.255954 + 0.103555i
\(731\) −18.0294 −0.666842
\(732\) 6.61947 + 6.84145i 0.244663 + 0.252867i
\(733\) 14.2486i 0.526284i −0.964757 0.263142i \(-0.915241\pi\)
0.964757 0.263142i \(-0.0847588\pi\)
\(734\) 15.2000 + 37.5692i 0.561042 + 1.38670i
\(735\) 49.0206i 1.80815i
\(736\) −12.2162 33.3137i −0.450295 1.22796i
\(737\) 43.2232 + 30.8154i 1.59215 + 1.13510i
\(738\) 9.47032 3.83157i 0.348607 0.141042i
\(739\) −10.5314 −0.387405 −0.193702 0.981060i \(-0.562050\pi\)
−0.193702 + 0.981060i \(0.562050\pi\)
\(740\) −9.96058 10.2946i −0.366158 0.378437i
\(741\) 13.8165 0.507562
\(742\) −0.795024 + 0.321656i −0.0291863 + 0.0118084i
\(743\) 35.6194i 1.30675i −0.757035 0.653375i \(-0.773353\pi\)
0.757035 0.653375i \(-0.226647\pi\)
\(744\) 2.04639 + 0.907570i 0.0750244 + 0.0332731i
\(745\) 51.1331i 1.87337i
\(746\) 23.0978 9.34506i 0.845670 0.342147i
\(747\) 13.8943i 0.508364i
\(748\) 38.6756 37.4207i 1.41412 1.36823i
\(749\) 30.3183i 1.10781i
\(750\) 6.91062 2.79595i 0.252340 0.102094i
\(751\) 12.8419i 0.468607i 0.972164 + 0.234303i \(0.0752809\pi\)
−0.972164 + 0.234303i \(0.924719\pi\)
\(752\) 4.93185 + 0.162706i 0.179846 + 0.00593328i
\(753\) 4.05323 0.147708
\(754\) −17.1398 + 6.93455i −0.624196 + 0.252541i
\(755\) 43.9717 1.60029
\(756\) −7.06595 + 6.83668i −0.256986 + 0.248648i
\(757\) 9.91210i 0.360261i 0.983643 + 0.180131i \(0.0576521\pi\)
−0.983643 + 0.180131i \(0.942348\pi\)
\(758\) −0.265840 0.657066i −0.00965575 0.0238657i
\(759\) 40.6785i 1.47653i
\(760\) −35.2708 15.6425i −1.27941 0.567413i
\(761\) 30.5324 1.10680 0.553399 0.832916i \(-0.313331\pi\)
0.553399 + 0.832916i \(0.313331\pi\)
\(762\) 6.71070 2.71506i 0.243103 0.0983562i
\(763\) 37.0169i 1.34010i
\(764\) 22.8433 22.1021i 0.826440 0.799625i
\(765\) 11.8479i 0.428362i
\(766\) −7.59397 18.7697i −0.274381 0.678176i
\(767\) 7.74960 0.279822
\(768\) −15.9652 1.05456i −0.576095 0.0380532i
\(769\) 7.68551i 0.277147i −0.990352 0.138573i \(-0.955748\pi\)
0.990352 0.138573i \(-0.0442516\pi\)
\(770\) −119.347 + 48.2863i −4.30097 + 1.74012i
\(771\) 16.7288 0.602471
\(772\) 27.1605 26.2792i 0.977527 0.945809i
\(773\)