Properties

Label 804.2.e.b.535.14
Level 804
Weight 2
Character 804.535
Analytic conductor 6.420
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(34\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 535.14
Character \(\chi\) = 804.535
Dual form 804.2.e.b.535.13

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.530406 + 1.31098i) q^{2} +1.00000 q^{3} +(-1.43734 - 1.39070i) q^{4} -2.85552i q^{5} +(-0.530406 + 1.31098i) q^{6} +4.91599 q^{7} +(2.58556 - 1.14669i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(-0.530406 + 1.31098i) q^{2} +1.00000 q^{3} +(-1.43734 - 1.39070i) q^{4} -2.85552i q^{5} +(-0.530406 + 1.31098i) q^{6} +4.91599 q^{7} +(2.58556 - 1.14669i) q^{8} +1.00000 q^{9} +(3.74353 + 1.51458i) q^{10} -6.48515 q^{11} +(-1.43734 - 1.39070i) q^{12} +2.89216i q^{13} +(-2.60747 + 6.44477i) q^{14} -2.85552i q^{15} +(0.131892 + 3.99782i) q^{16} +4.14913 q^{17} +(-0.530406 + 1.31098i) q^{18} -4.77723i q^{19} +(-3.97118 + 4.10435i) q^{20} +4.91599 q^{21} +(3.43976 - 8.50190i) q^{22} -6.27256i q^{23} +(2.58556 - 1.14669i) q^{24} -3.15398 q^{25} +(-3.79156 - 1.53402i) q^{26} +1.00000 q^{27} +(-7.06595 - 6.83668i) q^{28} +4.52052 q^{29} +(3.74353 + 1.51458i) q^{30} +0.791471 q^{31} +(-5.31103 - 1.94756i) q^{32} -6.48515 q^{33} +(-2.20072 + 5.43943i) q^{34} -14.0377i q^{35} +(-1.43734 - 1.39070i) q^{36} +2.50822 q^{37} +(6.26285 + 2.53387i) q^{38} +2.89216i q^{39} +(-3.27439 - 7.38311i) q^{40} -7.22384i q^{41} +(-2.60747 + 6.44477i) q^{42} -4.34535 q^{43} +(9.32136 + 9.01892i) q^{44} -2.85552i q^{45} +(8.22320 + 3.32700i) q^{46} -1.23363i q^{47} +(0.131892 + 3.99782i) q^{48} +17.1670 q^{49} +(1.67289 - 4.13481i) q^{50} +4.14913 q^{51} +(4.02213 - 4.15701i) q^{52} +0.123360i q^{53} +(-0.530406 + 1.31098i) q^{54} +18.5185i q^{55} +(12.7106 - 5.63711i) q^{56} -4.77723i q^{57} +(-2.39771 + 5.92632i) q^{58} -2.67952i q^{59} +(-3.97118 + 4.10435i) q^{60} +4.75980i q^{61} +(-0.419800 + 1.03760i) q^{62} +4.91599 q^{63} +(5.37021 - 5.92966i) q^{64} +8.25860 q^{65} +(3.43976 - 8.50190i) q^{66} +(-6.66494 + 4.75169i) q^{67} +(-5.96371 - 5.77021i) q^{68} -6.27256i q^{69} +(18.4032 + 7.44567i) q^{70} +15.6852i q^{71} +(2.58556 - 1.14669i) q^{72} -1.84732 q^{73} +(-1.33037 + 3.28823i) q^{74} -3.15398 q^{75} +(-6.64371 + 6.86650i) q^{76} -31.8809 q^{77} +(-3.79156 - 1.53402i) q^{78} +0.728927 q^{79} +(11.4159 - 0.376619i) q^{80} +1.00000 q^{81} +(9.47032 + 3.83157i) q^{82} -13.8943i q^{83} +(-7.06595 - 6.83668i) q^{84} -11.8479i q^{85} +(2.30480 - 5.69667i) q^{86} +4.52052 q^{87} +(-16.7677 + 7.43644i) q^{88} +0.704907 q^{89} +(3.74353 + 1.51458i) q^{90} +14.2178i q^{91} +(-8.72326 + 9.01580i) q^{92} +0.791471 q^{93} +(1.61727 + 0.654326i) q^{94} -13.6415 q^{95} +(-5.31103 - 1.94756i) q^{96} +9.89044i q^{97} +(-9.10545 + 22.5056i) q^{98} -6.48515 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{3} + 2q^{4} + 4q^{7} - 6q^{8} + 34q^{9} + O(q^{10}) \) \( 34q + 34q^{3} + 2q^{4} + 4q^{7} - 6q^{8} + 34q^{9} - 6q^{10} + 2q^{12} - 4q^{14} + 2q^{16} - 12q^{20} + 4q^{21} - 8q^{22} - 6q^{24} - 34q^{25} + 10q^{26} + 34q^{27} - 8q^{28} - 16q^{29} - 6q^{30} - 4q^{31} + 2q^{36} + 12q^{37} + 26q^{38} - 18q^{40} - 4q^{42} - 4q^{43} + 26q^{44} - 4q^{46} + 2q^{48} + 46q^{49} - 18q^{50} + 32q^{52} + 14q^{56} + 4q^{58} - 12q^{60} - 2q^{62} + 4q^{63} + 26q^{64} - 8q^{66} - 18q^{67} - 34q^{68} + 56q^{70} - 6q^{72} + 12q^{73} + 22q^{74} - 34q^{75} - 32q^{76} - 8q^{77} + 10q^{78} - 12q^{79} - 2q^{80} + 34q^{81} + 26q^{82} - 8q^{84} + 6q^{86} - 16q^{87} - 28q^{88} - 6q^{90} - 46q^{92} - 4q^{93} + 32q^{94} - 40q^{95} - 40q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.530406 + 1.31098i −0.375053 + 0.927003i
\(3\) 1.00000 0.577350
\(4\) −1.43734 1.39070i −0.718670 0.695351i
\(5\) 2.85552i 1.27703i −0.769611 0.638513i \(-0.779550\pi\)
0.769611 0.638513i \(-0.220450\pi\)
\(6\) −0.530406 + 1.31098i −0.216537 + 0.535206i
\(7\) 4.91599 1.85807 0.929035 0.369992i \(-0.120640\pi\)
0.929035 + 0.369992i \(0.120640\pi\)
\(8\) 2.58556 1.14669i 0.914133 0.405415i
\(9\) 1.00000 0.333333
\(10\) 3.74353 + 1.51458i 1.18381 + 0.478953i
\(11\) −6.48515 −1.95535 −0.977673 0.210132i \(-0.932611\pi\)
−0.977673 + 0.210132i \(0.932611\pi\)
\(12\) −1.43734 1.39070i −0.414924 0.401461i
\(13\) 2.89216i 0.802140i 0.916047 + 0.401070i \(0.131362\pi\)
−0.916047 + 0.401070i \(0.868638\pi\)
\(14\) −2.60747 + 6.44477i −0.696875 + 1.72244i
\(15\) 2.85552i 0.737292i
\(16\) 0.131892 + 3.99782i 0.0329729 + 0.999456i
\(17\) 4.14913 1.00631 0.503156 0.864196i \(-0.332172\pi\)
0.503156 + 0.864196i \(0.332172\pi\)
\(18\) −0.530406 + 1.31098i −0.125018 + 0.309001i
\(19\) 4.77723i 1.09597i −0.836488 0.547986i \(-0.815395\pi\)
0.836488 0.547986i \(-0.184605\pi\)
\(20\) −3.97118 + 4.10435i −0.887982 + 0.917761i
\(21\) 4.91599 1.07276
\(22\) 3.43976 8.50190i 0.733359 1.81261i
\(23\) 6.27256i 1.30792i −0.756530 0.653959i \(-0.773107\pi\)
0.756530 0.653959i \(-0.226893\pi\)
\(24\) 2.58556 1.14669i 0.527775 0.234067i
\(25\) −3.15398 −0.630797
\(26\) −3.79156 1.53402i −0.743586 0.300845i
\(27\) 1.00000 0.192450
\(28\) −7.06595 6.83668i −1.33534 1.29201i
\(29\) 4.52052 0.839440 0.419720 0.907654i \(-0.362128\pi\)
0.419720 + 0.907654i \(0.362128\pi\)
\(30\) 3.74353 + 1.51458i 0.683472 + 0.276524i
\(31\) 0.791471 0.142152 0.0710762 0.997471i \(-0.477357\pi\)
0.0710762 + 0.997471i \(0.477357\pi\)
\(32\) −5.31103 1.94756i −0.938866 0.344283i
\(33\) −6.48515 −1.12892
\(34\) −2.20072 + 5.43943i −0.377421 + 0.932854i
\(35\) 14.0377i 2.37280i
\(36\) −1.43734 1.39070i −0.239557 0.231784i
\(37\) 2.50822 0.412349 0.206174 0.978515i \(-0.433899\pi\)
0.206174 + 0.978515i \(0.433899\pi\)
\(38\) 6.26285 + 2.53387i 1.01597 + 0.411048i
\(39\) 2.89216i 0.463116i
\(40\) −3.27439 7.38311i −0.517726 1.16737i
\(41\) 7.22384i 1.12817i −0.825715 0.564087i \(-0.809228\pi\)
0.825715 0.564087i \(-0.190772\pi\)
\(42\) −2.60747 + 6.44477i −0.402341 + 0.994449i
\(43\) −4.34535 −0.662659 −0.331330 0.943515i \(-0.607497\pi\)
−0.331330 + 0.943515i \(0.607497\pi\)
\(44\) 9.32136 + 9.01892i 1.40525 + 1.35965i
\(45\) 2.85552i 0.425675i
\(46\) 8.22320 + 3.32700i 1.21244 + 0.490539i
\(47\) 1.23363i 0.179944i −0.995944 0.0899720i \(-0.971322\pi\)
0.995944 0.0899720i \(-0.0286778\pi\)
\(48\) 0.131892 + 3.99782i 0.0190369 + 0.577036i
\(49\) 17.1670 2.45242
\(50\) 1.67289 4.13481i 0.236582 0.584750i
\(51\) 4.14913 0.580995
\(52\) 4.02213 4.15701i 0.557769 0.576474i
\(53\) 0.123360i 0.0169447i 0.999964 + 0.00847237i \(0.00269687\pi\)
−0.999964 + 0.00847237i \(0.997303\pi\)
\(54\) −0.530406 + 1.31098i −0.0721791 + 0.178402i
\(55\) 18.5185i 2.49703i
\(56\) 12.7106 5.63711i 1.69852 0.753290i
\(57\) 4.77723i 0.632759i
\(58\) −2.39771 + 5.92632i −0.314835 + 0.778163i
\(59\) 2.67952i 0.348844i −0.984671 0.174422i \(-0.944194\pi\)
0.984671 0.174422i \(-0.0558058\pi\)
\(60\) −3.97118 + 4.10435i −0.512677 + 0.529869i
\(61\) 4.75980i 0.609430i 0.952444 + 0.304715i \(0.0985613\pi\)
−0.952444 + 0.304715i \(0.901439\pi\)
\(62\) −0.419800 + 1.03760i −0.0533147 + 0.131776i
\(63\) 4.91599 0.619357
\(64\) 5.37021 5.92966i 0.671277 0.741207i
\(65\) 8.25860 1.02435
\(66\) 3.43976 8.50190i 0.423405 1.04651i
\(67\) −6.66494 + 4.75169i −0.814252 + 0.580511i
\(68\) −5.96371 5.77021i −0.723206 0.699740i
\(69\) 6.27256i 0.755127i
\(70\) 18.4032 + 7.44567i 2.19960 + 0.889928i
\(71\) 15.6852i 1.86149i 0.365666 + 0.930746i \(0.380841\pi\)
−0.365666 + 0.930746i \(0.619159\pi\)
\(72\) 2.58556 1.14669i 0.304711 0.135138i
\(73\) −1.84732 −0.216212 −0.108106 0.994139i \(-0.534479\pi\)
−0.108106 + 0.994139i \(0.534479\pi\)
\(74\) −1.33037 + 3.28823i −0.154653 + 0.382249i
\(75\) −3.15398 −0.364191
\(76\) −6.64371 + 6.86650i −0.762085 + 0.787642i
\(77\) −31.8809 −3.63317
\(78\) −3.79156 1.53402i −0.429310 0.173693i
\(79\) 0.728927 0.0820107 0.0410053 0.999159i \(-0.486944\pi\)
0.0410053 + 0.999159i \(0.486944\pi\)
\(80\) 11.4159 0.376619i 1.27633 0.0421073i
\(81\) 1.00000 0.111111
\(82\) 9.47032 + 3.83157i 1.04582 + 0.423126i
\(83\) 13.8943i 1.52509i −0.646933 0.762547i \(-0.723949\pi\)
0.646933 0.762547i \(-0.276051\pi\)
\(84\) −7.06595 6.83668i −0.770958 0.745943i
\(85\) 11.8479i 1.28509i
\(86\) 2.30480 5.69667i 0.248533 0.614287i
\(87\) 4.52052 0.484651
\(88\) −16.7677 + 7.43644i −1.78745 + 0.792728i
\(89\) 0.704907 0.0747200 0.0373600 0.999302i \(-0.488105\pi\)
0.0373600 + 0.999302i \(0.488105\pi\)
\(90\) 3.74353 + 1.51458i 0.394603 + 0.159651i
\(91\) 14.2178i 1.49043i
\(92\) −8.72326 + 9.01580i −0.909463 + 0.939962i
\(93\) 0.791471 0.0820717
\(94\) 1.61727 + 0.654326i 0.166809 + 0.0674886i
\(95\) −13.6415 −1.39958
\(96\) −5.31103 1.94756i −0.542054 0.198772i
\(97\) 9.89044i 1.00422i 0.864803 + 0.502111i \(0.167443\pi\)
−0.864803 + 0.502111i \(0.832557\pi\)
\(98\) −9.10545 + 22.5056i −0.919790 + 2.27340i
\(99\) −6.48515 −0.651782
\(100\) 4.53335 + 4.38625i 0.453335 + 0.438625i
\(101\) 15.2447i 1.51690i 0.651731 + 0.758450i \(0.274043\pi\)
−0.651731 + 0.758450i \(0.725957\pi\)
\(102\) −2.20072 + 5.43943i −0.217904 + 0.538584i
\(103\) 14.6917i 1.44762i −0.689999 0.723810i \(-0.742389\pi\)
0.689999 0.723810i \(-0.257611\pi\)
\(104\) 3.31640 + 7.47784i 0.325200 + 0.733262i
\(105\) 14.0377i 1.36994i
\(106\) −0.161722 0.0654306i −0.0157078 0.00635518i
\(107\) 6.16728i 0.596213i 0.954533 + 0.298107i \(0.0963551\pi\)
−0.954533 + 0.298107i \(0.903645\pi\)
\(108\) −1.43734 1.39070i −0.138308 0.133820i
\(109\) 7.52989i 0.721233i −0.932714 0.360616i \(-0.882566\pi\)
0.932714 0.360616i \(-0.117434\pi\)
\(110\) −24.2773 9.82230i −2.31475 0.936519i
\(111\) 2.50822 0.238070
\(112\) 0.648378 + 19.6533i 0.0612660 + 1.85706i
\(113\) 18.4438i 1.73505i 0.497398 + 0.867523i \(0.334289\pi\)
−0.497398 + 0.867523i \(0.665711\pi\)
\(114\) 6.26285 + 2.53387i 0.586570 + 0.237319i
\(115\) −17.9114 −1.67025
\(116\) −6.49753 6.28670i −0.603280 0.583706i
\(117\) 2.89216i 0.267380i
\(118\) 3.51280 + 1.42123i 0.323380 + 0.130835i
\(119\) 20.3971 1.86980
\(120\) −3.27439 7.38311i −0.298909 0.673982i
\(121\) 31.0572 2.82338
\(122\) −6.24001 2.52463i −0.564944 0.228569i
\(123\) 7.22384i 0.651352i
\(124\) −1.13761 1.10070i −0.102161 0.0988458i
\(125\) 5.27134i 0.471483i
\(126\) −2.60747 + 6.44477i −0.232292 + 0.574146i
\(127\) 5.11884i 0.454223i −0.973869 0.227112i \(-0.927072\pi\)
0.973869 0.227112i \(-0.0729282\pi\)
\(128\) 4.92527 + 10.1854i 0.435337 + 0.900268i
\(129\) −4.34535 −0.382587
\(130\) −4.38041 + 10.8269i −0.384187 + 0.949579i
\(131\) 4.64485i 0.405822i 0.979197 + 0.202911i \(0.0650402\pi\)
−0.979197 + 0.202911i \(0.934960\pi\)
\(132\) 9.32136 + 9.01892i 0.811321 + 0.784996i
\(133\) 23.4848i 2.03639i
\(134\) −2.69425 11.2579i −0.232748 0.972537i
\(135\) 2.85552i 0.245764i
\(136\) 10.7278 4.75776i 0.919903 0.407974i
\(137\) 5.36190i 0.458098i 0.973415 + 0.229049i \(0.0735616\pi\)
−0.973415 + 0.229049i \(0.926438\pi\)
\(138\) 8.22320 + 3.32700i 0.700005 + 0.283213i
\(139\) 14.8346 1.25826 0.629129 0.777301i \(-0.283412\pi\)
0.629129 + 0.777301i \(0.283412\pi\)
\(140\) −19.5223 + 20.1769i −1.64993 + 1.70526i
\(141\) 1.23363i 0.103891i
\(142\) −20.5630 8.31953i −1.72561 0.698159i
\(143\) 18.7561i 1.56846i
\(144\) 0.131892 + 3.99782i 0.0109910 + 0.333152i
\(145\) 12.9084i 1.07199i
\(146\) 0.979827 2.42180i 0.0810911 0.200429i
\(147\) 17.1670 1.41591
\(148\) −3.60516 3.48819i −0.296343 0.286727i
\(149\) −17.9068 −1.46698 −0.733490 0.679700i \(-0.762110\pi\)
−0.733490 + 0.679700i \(0.762110\pi\)
\(150\) 1.67289 4.13481i 0.136591 0.337606i
\(151\) 15.3988i 1.25314i 0.779365 + 0.626570i \(0.215542\pi\)
−0.779365 + 0.626570i \(0.784458\pi\)
\(152\) −5.47799 12.3518i −0.444324 1.00186i
\(153\) 4.14913 0.335437
\(154\) 16.9098 41.7953i 1.36263 3.36796i
\(155\) 2.26006i 0.181532i
\(156\) 4.02213 4.15701i 0.322028 0.332827i
\(157\) −0.211856 −0.0169080 −0.00845399 0.999964i \(-0.502691\pi\)
−0.00845399 + 0.999964i \(0.502691\pi\)
\(158\) −0.386627 + 0.955609i −0.0307584 + 0.0760241i
\(159\) 0.123360i 0.00978305i
\(160\) −5.56130 + 15.1657i −0.439659 + 1.19896i
\(161\) 30.8358i 2.43020i
\(162\) −0.530406 + 1.31098i −0.0416726 + 0.103000i
\(163\) 14.5738i 1.14151i 0.821121 + 0.570754i \(0.193349\pi\)
−0.821121 + 0.570754i \(0.806651\pi\)
\(164\) −10.0462 + 10.3831i −0.784478 + 0.810785i
\(165\) 18.5185i 1.44166i
\(166\) 18.2151 + 7.36959i 1.41377 + 0.571991i
\(167\) 7.04225i 0.544945i 0.962164 + 0.272473i \(0.0878415\pi\)
−0.962164 + 0.272473i \(0.912159\pi\)
\(168\) 12.7106 5.63711i 0.980642 0.434912i
\(169\) 4.63543 0.356572
\(170\) 15.5324 + 6.28420i 1.19128 + 0.481976i
\(171\) 4.77723i 0.365324i
\(172\) 6.24574 + 6.04309i 0.476233 + 0.460781i
\(173\) 13.3693 1.01645 0.508223 0.861225i \(-0.330302\pi\)
0.508223 + 0.861225i \(0.330302\pi\)
\(174\) −2.39771 + 5.92632i −0.181770 + 0.449273i
\(175\) −15.5049 −1.17206
\(176\) −0.855338 25.9265i −0.0644735 1.95428i
\(177\) 2.67952i 0.201405i
\(178\) −0.373887 + 0.924120i −0.0280240 + 0.0692657i
\(179\) −10.9481 −0.818302 −0.409151 0.912467i \(-0.634175\pi\)
−0.409151 + 0.912467i \(0.634175\pi\)
\(180\) −3.97118 + 4.10435i −0.295994 + 0.305920i
\(181\) 9.89701 0.735639 0.367819 0.929897i \(-0.380104\pi\)
0.367819 + 0.929897i \(0.380104\pi\)
\(182\) −18.6393 7.54121i −1.38164 0.558992i
\(183\) 4.75980i 0.351855i
\(184\) −7.19267 16.2181i −0.530250 1.19561i
\(185\) 7.16226i 0.526580i
\(186\) −0.419800 + 1.03760i −0.0307813 + 0.0760807i
\(187\) −26.9077 −1.96769
\(188\) −1.71562 + 1.77315i −0.125124 + 0.129320i
\(189\) 4.91599 0.357586
\(190\) 7.23551 17.8837i 0.524919 1.29742i
\(191\) −15.8927 −1.14996 −0.574979 0.818168i \(-0.694990\pi\)
−0.574979 + 0.818168i \(0.694990\pi\)
\(192\) 5.37021 5.92966i 0.387562 0.427936i
\(193\) −18.8963 −1.36019 −0.680094 0.733125i \(-0.738061\pi\)
−0.680094 + 0.733125i \(0.738061\pi\)
\(194\) −12.9662 5.24594i −0.930917 0.376637i
\(195\) 8.25860 0.591411
\(196\) −24.6748 23.8741i −1.76248 1.70530i
\(197\) 5.67643i 0.404429i 0.979341 + 0.202214i \(0.0648138\pi\)
−0.979341 + 0.202214i \(0.935186\pi\)
\(198\) 3.43976 8.50190i 0.244453 0.604204i
\(199\) 7.38387i 0.523428i −0.965145 0.261714i \(-0.915712\pi\)
0.965145 0.261714i \(-0.0842878\pi\)
\(200\) −8.15480 + 3.61663i −0.576632 + 0.255735i
\(201\) −6.66494 + 4.75169i −0.470109 + 0.335158i
\(202\) −19.9855 8.08585i −1.40617 0.568919i
\(203\) 22.2228 1.55974
\(204\) −5.96371 5.77021i −0.417543 0.403995i
\(205\) −20.6278 −1.44071
\(206\) 19.2606 + 7.79258i 1.34195 + 0.542935i
\(207\) 6.27256i 0.435973i
\(208\) −11.5623 + 0.381452i −0.801704 + 0.0264489i
\(209\) 30.9810i 2.14300i
\(210\) 18.4032 + 7.44567i 1.26994 + 0.513800i
\(211\) 19.0362i 1.31050i 0.755411 + 0.655252i \(0.227437\pi\)
−0.755411 + 0.655252i \(0.772563\pi\)
\(212\) 0.171557 0.177310i 0.0117826 0.0121777i
\(213\) 15.6852i 1.07473i
\(214\) −8.08518 3.27116i −0.552692 0.223612i
\(215\) 12.4082i 0.846234i
\(216\) 2.58556 1.14669i 0.175925 0.0780222i
\(217\) 3.89086 0.264129
\(218\) 9.87154 + 3.99390i 0.668585 + 0.270501i
\(219\) −1.84732 −0.124830
\(220\) 25.7537 26.6173i 1.73631 1.79454i
\(221\) 11.9999i 0.807203i
\(222\) −1.33037 + 3.28823i −0.0892888 + 0.220691i
\(223\) 17.7433i 1.18818i −0.804400 0.594088i \(-0.797513\pi\)
0.804400 0.594088i \(-0.202487\pi\)
\(224\) −26.1090 9.57419i −1.74448 0.639703i
\(225\) −3.15398 −0.210266
\(226\) −24.1794 9.78269i −1.60839 0.650735i
\(227\) 15.8446i 1.05164i 0.850596 + 0.525820i \(0.176242\pi\)
−0.850596 + 0.525820i \(0.823758\pi\)
\(228\) −6.64371 + 6.86650i −0.439990 + 0.454745i
\(229\) 16.2266i 1.07228i 0.844128 + 0.536141i \(0.180119\pi\)
−0.844128 + 0.536141i \(0.819881\pi\)
\(230\) 9.50030 23.4815i 0.626432 1.54832i
\(231\) −31.8809 −2.09761
\(232\) 11.6881 5.18363i 0.767359 0.340322i
\(233\) 5.40768i 0.354269i −0.984187 0.177135i \(-0.943317\pi\)
0.984187 0.177135i \(-0.0566828\pi\)
\(234\) −3.79156 1.53402i −0.247862 0.100282i
\(235\) −3.52266 −0.229793
\(236\) −3.72642 + 3.85139i −0.242569 + 0.250704i
\(237\) 0.728927 0.0473489
\(238\) −10.8187 + 26.7402i −0.701274 + 1.73331i
\(239\) −24.3789 −1.57694 −0.788471 0.615072i \(-0.789127\pi\)
−0.788471 + 0.615072i \(0.789127\pi\)
\(240\) 11.4159 0.376619i 0.736891 0.0243107i
\(241\) −17.7424 −1.14289 −0.571444 0.820641i \(-0.693617\pi\)
−0.571444 + 0.820641i \(0.693617\pi\)
\(242\) −16.4729 + 40.7153i −1.05892 + 2.61728i
\(243\) 1.00000 0.0641500
\(244\) 6.61947 6.84145i 0.423768 0.437979i
\(245\) 49.0206i 3.13181i
\(246\) 9.47032 + 3.83157i 0.603806 + 0.244292i
\(247\) 13.8165 0.879123
\(248\) 2.04639 0.907570i 0.129946 0.0576308i
\(249\) 13.8943i 0.880513i
\(250\) 6.91062 + 2.79595i 0.437066 + 0.176831i
\(251\) 4.05323 0.255838 0.127919 0.991785i \(-0.459170\pi\)
0.127919 + 0.991785i \(0.459170\pi\)
\(252\) −7.06595 6.83668i −0.445113 0.430670i
\(253\) 40.6785i 2.55743i
\(254\) 6.71070 + 2.71506i 0.421066 + 0.170358i
\(255\) 11.8479i 0.741945i
\(256\) −15.9652 + 1.05456i −0.997826 + 0.0659100i
\(257\) 16.7288 1.04351 0.521755 0.853095i \(-0.325277\pi\)
0.521755 + 0.853095i \(0.325277\pi\)
\(258\) 2.30480 5.69667i 0.143490 0.354659i
\(259\) 12.3304 0.766173
\(260\) −11.8704 11.4853i −0.736172 0.712286i
\(261\) 4.52052 0.279813
\(262\) −6.08930 2.46365i −0.376198 0.152205i
\(263\) 5.59576i 0.345049i 0.985005 + 0.172525i \(0.0551924\pi\)
−0.985005 + 0.172525i \(0.944808\pi\)
\(264\) −16.7677 + 7.43644i −1.03198 + 0.457681i
\(265\) 0.352256 0.0216389
\(266\) 30.7881 + 12.4565i 1.88774 + 0.763756i
\(267\) 0.704907 0.0431396
\(268\) 16.1880 + 2.43916i 0.988838 + 0.148996i
\(269\) 2.92544 0.178367 0.0891837 0.996015i \(-0.471574\pi\)
0.0891837 + 0.996015i \(0.471574\pi\)
\(270\) 3.74353 + 1.51458i 0.227824 + 0.0921746i
\(271\) 2.01844 0.122611 0.0613057 0.998119i \(-0.480474\pi\)
0.0613057 + 0.998119i \(0.480474\pi\)
\(272\) 0.547236 + 16.5875i 0.0331811 + 1.00576i
\(273\) 14.2178i 0.860501i
\(274\) −7.02934 2.84398i −0.424658 0.171811i
\(275\) 20.4541 1.23343
\(276\) −8.72326 + 9.01580i −0.525079 + 0.542687i
\(277\) −14.1610 −0.850854 −0.425427 0.904993i \(-0.639876\pi\)
−0.425427 + 0.904993i \(0.639876\pi\)
\(278\) −7.86838 + 19.4479i −0.471914 + 1.16641i
\(279\) 0.791471 0.0473841
\(280\) −16.0969 36.2953i −0.961972 2.16906i
\(281\) 5.14672i 0.307028i 0.988146 + 0.153514i \(0.0490590\pi\)
−0.988146 + 0.153514i \(0.950941\pi\)
\(282\) 1.61727 + 0.654326i 0.0963070 + 0.0389646i
\(283\) 17.8958i 1.06379i 0.846809 + 0.531897i \(0.178521\pi\)
−0.846809 + 0.531897i \(0.821479\pi\)
\(284\) 21.8135 22.5450i 1.29439 1.33780i
\(285\) −13.6415 −0.808051
\(286\) 24.5888 + 9.94832i 1.45397 + 0.588257i
\(287\) 35.5124i 2.09623i
\(288\) −5.31103 1.94756i −0.312955 0.114761i
\(289\) 0.215286 0.0126639
\(290\) 16.9227 + 6.84670i 0.993735 + 0.402052i
\(291\) 9.89044i 0.579788i
\(292\) 2.65522 + 2.56907i 0.155385 + 0.150343i
\(293\) −12.5828 −0.735098 −0.367549 0.930004i \(-0.619803\pi\)
−0.367549 + 0.930004i \(0.619803\pi\)
\(294\) −9.10545 + 22.5056i −0.531041 + 1.31255i
\(295\) −7.65143 −0.445484
\(296\) 6.48514 2.87614i 0.376941 0.167173i
\(297\) −6.48515 −0.376307
\(298\) 9.49786 23.4754i 0.550196 1.35990i
\(299\) 18.1412 1.04913
\(300\) 4.53335 + 4.38625i 0.261733 + 0.253240i
\(301\) −21.3617 −1.23127
\(302\) −20.1876 8.16763i −1.16166 0.469994i
\(303\) 15.2447i 0.875783i
\(304\) 19.0985 0.630077i 1.09538 0.0361374i
\(305\) 13.5917 0.778259
\(306\) −2.20072 + 5.43943i −0.125807 + 0.310951i
\(307\) 8.63603i 0.492885i −0.969157 0.246442i \(-0.920738\pi\)
0.969157 0.246442i \(-0.0792616\pi\)
\(308\) 45.8237 + 44.3369i 2.61105 + 2.52633i
\(309\) 14.6917i 0.835784i
\(310\) 2.96289 + 1.19875i 0.168281 + 0.0680843i
\(311\) 12.4339 0.705061 0.352531 0.935800i \(-0.385321\pi\)
0.352531 + 0.935800i \(0.385321\pi\)
\(312\) 3.31640 + 7.47784i 0.187754 + 0.423349i
\(313\) 2.51221i 0.141998i −0.997476 0.0709991i \(-0.977381\pi\)
0.997476 0.0709991i \(-0.0226188\pi\)
\(314\) 0.112370 0.277740i 0.00634139 0.0156738i
\(315\) 14.0377i 0.790935i
\(316\) −1.04772 1.01372i −0.0589386 0.0570262i
\(317\) −10.6688 −0.599218 −0.299609 0.954062i \(-0.596856\pi\)
−0.299609 + 0.954062i \(0.596856\pi\)
\(318\) −0.161722 0.0654306i −0.00906892 0.00366917i
\(319\) −29.3163 −1.64140
\(320\) −16.9322 15.3347i −0.946541 0.857238i
\(321\) 6.16728i 0.344224i
\(322\) 40.4252 + 16.3555i 2.25281 + 0.911456i
\(323\) 19.8213i 1.10289i
\(324\) −1.43734 1.39070i −0.0798522 0.0772613i
\(325\) 9.12181i 0.505987i
\(326\) −19.1060 7.73002i −1.05818 0.428126i
\(327\) 7.52989i 0.416404i
\(328\) −8.28350 18.6777i −0.457380 1.03130i
\(329\) 6.06453i 0.334348i
\(330\) −24.2773 9.82230i −1.33642 0.540700i
\(331\) 5.92505 0.325670 0.162835 0.986653i \(-0.447936\pi\)
0.162835 + 0.986653i \(0.447936\pi\)
\(332\) −19.3228 + 19.9708i −1.06048 + 1.09604i
\(333\) 2.50822 0.137450
\(334\) −9.23225 3.73525i −0.505166 0.204384i
\(335\) 13.5685 + 19.0319i 0.741328 + 1.03982i
\(336\) 0.648378 + 19.6533i 0.0353719 + 1.07217i
\(337\) 5.04413i 0.274771i −0.990518 0.137386i \(-0.956130\pi\)
0.990518 0.137386i \(-0.0438700\pi\)
\(338\) −2.45866 + 6.07696i −0.133733 + 0.330543i
\(339\) 18.4438i 1.00173i
\(340\) −16.4769 + 17.0295i −0.893587 + 0.923553i
\(341\) −5.13281 −0.277957
\(342\) 6.26285 + 2.53387i 0.338656 + 0.137016i
\(343\) 49.9807 2.69870
\(344\) −11.2351 + 4.98276i −0.605759 + 0.268652i
\(345\) −17.9114 −0.964317
\(346\) −7.09113 + 17.5268i −0.381222 + 0.942249i
\(347\) 1.82049 0.0977288 0.0488644 0.998805i \(-0.484440\pi\)
0.0488644 + 0.998805i \(0.484440\pi\)
\(348\) −6.49753 6.28670i −0.348304 0.337003i
\(349\) −14.8552 −0.795178 −0.397589 0.917564i \(-0.630153\pi\)
−0.397589 + 0.917564i \(0.630153\pi\)
\(350\) 8.22391 20.3267i 0.439587 1.08651i
\(351\) 2.89216i 0.154372i
\(352\) 34.4428 + 12.6302i 1.83581 + 0.673193i
\(353\) 3.34439i 0.178004i 0.996031 + 0.0890020i \(0.0283678\pi\)
−0.996031 + 0.0890020i \(0.971632\pi\)
\(354\) 3.51280 + 1.42123i 0.186703 + 0.0755378i
\(355\) 44.7894 2.37718
\(356\) −1.01319 0.980316i −0.0536990 0.0519567i
\(357\) 20.3971 1.07953
\(358\) 5.80695 14.3528i 0.306907 0.758569i
\(359\) 1.21464i 0.0641061i 0.999486 + 0.0320531i \(0.0102046\pi\)
−0.999486 + 0.0320531i \(0.989795\pi\)
\(360\) −3.27439 7.38311i −0.172575 0.389124i
\(361\) −3.82192 −0.201154
\(362\) −5.24943 + 12.9748i −0.275904 + 0.681940i
\(363\) 31.0572 1.63008
\(364\) 19.7728 20.4358i 1.03637 1.07113i
\(365\) 5.27505i 0.276109i
\(366\) −6.24001 2.52463i −0.326170 0.131964i
\(367\) −28.6573 −1.49590 −0.747950 0.663755i \(-0.768962\pi\)
−0.747950 + 0.663755i \(0.768962\pi\)
\(368\) 25.0766 0.827298i 1.30721 0.0431259i
\(369\) 7.22384i 0.376058i
\(370\) 9.38959 + 3.79890i 0.488141 + 0.197496i
\(371\) 0.606435i 0.0314845i
\(372\) −1.13761 1.10070i −0.0589825 0.0570687i
\(373\) 17.6187i 0.912262i −0.889913 0.456131i \(-0.849235\pi\)
0.889913 0.456131i \(-0.150765\pi\)
\(374\) 14.2720 35.2755i 0.737988 1.82405i
\(375\) 5.27134i 0.272211i
\(376\) −1.41459 3.18963i −0.0729521 0.164493i
\(377\) 13.0741i 0.673348i
\(378\) −2.60747 + 6.44477i −0.134114 + 0.331483i
\(379\) 0.501202 0.0257450 0.0128725 0.999917i \(-0.495902\pi\)
0.0128725 + 0.999917i \(0.495902\pi\)
\(380\) 19.6074 + 18.9712i 1.00584 + 0.973203i
\(381\) 5.11884i 0.262246i
\(382\) 8.42959 20.8351i 0.431296 1.06601i
\(383\) 14.3173 0.731579 0.365790 0.930698i \(-0.380799\pi\)
0.365790 + 0.930698i \(0.380799\pi\)
\(384\) 4.92527 + 10.1854i 0.251342 + 0.519770i
\(385\) 91.0366i 4.63965i
\(386\) 10.0227 24.7727i 0.510143 1.26090i
\(387\) −4.34535 −0.220886
\(388\) 13.7547 14.2159i 0.698287 0.721704i
\(389\) 0.947612 0.0480458 0.0240229 0.999711i \(-0.492353\pi\)
0.0240229 + 0.999711i \(0.492353\pi\)
\(390\) −4.38041 + 10.8269i −0.221811 + 0.548240i
\(391\) 26.0257i 1.31617i
\(392\) 44.3862 19.6852i 2.24184 0.994250i
\(393\) 4.64485i 0.234302i
\(394\) −7.44169 3.01081i −0.374907 0.151682i
\(395\) 2.08146i 0.104730i
\(396\) 9.32136 + 9.01892i 0.468416 + 0.453218i
\(397\) −1.94768 −0.0977515 −0.0488757 0.998805i \(-0.515564\pi\)
−0.0488757 + 0.998805i \(0.515564\pi\)
\(398\) 9.68010 + 3.91644i 0.485220 + 0.196314i
\(399\) 23.4848i 1.17571i
\(400\) −0.415984 12.6091i −0.0207992 0.630454i
\(401\) 30.3290i 1.51456i 0.653090 + 0.757280i \(0.273472\pi\)
−0.653090 + 0.757280i \(0.726528\pi\)
\(402\) −2.69425 11.2579i −0.134377 0.561495i
\(403\) 2.28906i 0.114026i
\(404\) 21.2008 21.9118i 1.05478 1.09015i
\(405\) 2.85552i 0.141892i
\(406\) −11.7871 + 29.1337i −0.584985 + 1.44588i
\(407\) −16.2662 −0.806284
\(408\) 10.7278 4.75776i 0.531106 0.235544i
\(409\) 6.20520i 0.306827i 0.988162 + 0.153414i \(0.0490267\pi\)
−0.988162 + 0.153414i \(0.950973\pi\)
\(410\) 10.9411 27.0427i 0.540343 1.33554i
\(411\) 5.36190i 0.264483i
\(412\) −20.4318 + 21.1170i −1.00660 + 1.04036i
\(413\) 13.1725i 0.648177i
\(414\) 8.22320 + 3.32700i 0.404148 + 0.163513i
\(415\) −39.6753 −1.94758
\(416\) 5.63265 15.3603i 0.276163 0.753102i
\(417\) 14.8346 0.726456
\(418\) −40.6155 16.4325i −1.98657 0.803741i
\(419\) 39.0213i 1.90632i −0.302470 0.953159i \(-0.597811\pi\)
0.302470 0.953159i \(-0.402189\pi\)
\(420\) −19.5223 + 20.1769i −0.952589 + 0.984534i
\(421\) 29.9711 1.46070 0.730350 0.683073i \(-0.239357\pi\)
0.730350 + 0.683073i \(0.239357\pi\)
\(422\) −24.9560 10.0969i −1.21484 0.491509i
\(423\) 1.23363i 0.0599813i
\(424\) 0.141455 + 0.318953i 0.00686966 + 0.0154897i
\(425\) −13.0863 −0.634778
\(426\) −20.5630 8.31953i −0.996281 0.403082i
\(427\) 23.3991i 1.13236i
\(428\) 8.57685 8.86448i 0.414578 0.428481i
\(429\) 18.7561i 0.905551i
\(430\) −16.2669 6.58139i −0.784461 0.317383i
\(431\) 21.7828i 1.04924i 0.851336 + 0.524620i \(0.175793\pi\)
−0.851336 + 0.524620i \(0.824207\pi\)
\(432\) 0.131892 + 3.99782i 0.00634564 + 0.192345i
\(433\) 7.29826i 0.350732i −0.984503 0.175366i \(-0.943889\pi\)
0.984503 0.175366i \(-0.0561109\pi\)
\(434\) −2.06374 + 5.10085i −0.0990625 + 0.244848i
\(435\) 12.9084i 0.618912i
\(436\) −10.4718 + 10.8230i −0.501510 + 0.518328i
\(437\) −29.9654 −1.43344
\(438\) 0.979827 2.42180i 0.0468180 0.115718i
\(439\) 7.82313i 0.373378i −0.982419 0.186689i \(-0.940224\pi\)
0.982419 0.186689i \(-0.0597756\pi\)
\(440\) 21.2349 + 47.8805i 1.01233 + 2.28262i
\(441\) 17.1670 0.817474
\(442\) −15.7317 6.36483i −0.748280 0.302744i
\(443\) 24.7893 1.17778 0.588889 0.808214i \(-0.299566\pi\)
0.588889 + 0.808214i \(0.299566\pi\)
\(444\) −3.60516 3.48819i −0.171093 0.165542i
\(445\) 2.01287i 0.0954194i
\(446\) 23.2611 + 9.41112i 1.10144 + 0.445629i
\(447\) −17.9068 −0.846962
\(448\) 26.3999 29.1501i 1.24728 1.37721i
\(449\) 42.3589 1.99904 0.999521 0.0309436i \(-0.00985122\pi\)
0.999521 + 0.0309436i \(0.00985122\pi\)
\(450\) 1.67289 4.13481i 0.0788608 0.194917i
\(451\) 46.8477i 2.20597i
\(452\) 25.6498 26.5100i 1.20647 1.24692i
\(453\) 15.3988i 0.723500i
\(454\) −20.7719 8.40404i −0.974874 0.394421i
\(455\) 40.5992 1.90332
\(456\) −5.47799 12.3518i −0.256530 0.578426i
\(457\) 13.6330 0.637727 0.318863 0.947801i \(-0.396699\pi\)
0.318863 + 0.947801i \(0.396699\pi\)
\(458\) −21.2727 8.60667i −0.994009 0.402163i
\(459\) 4.14913 0.193665
\(460\) 25.7448 + 24.9094i 1.20036 + 1.16141i
\(461\) −29.4296 −1.37067 −0.685336 0.728227i \(-0.740345\pi\)
−0.685336 + 0.728227i \(0.740345\pi\)
\(462\) 16.9098 41.7953i 0.786716 1.94449i
\(463\) −11.7817 −0.547542 −0.273771 0.961795i \(-0.588271\pi\)
−0.273771 + 0.961795i \(0.588271\pi\)
\(464\) 0.596219 + 18.0723i 0.0276788 + 0.838983i
\(465\) 2.26006i 0.104808i
\(466\) 7.08937 + 2.86826i 0.328409 + 0.132870i
\(467\) 32.3532i 1.49713i 0.663063 + 0.748564i \(0.269256\pi\)
−0.663063 + 0.748564i \(0.730744\pi\)
\(468\) 4.02213 4.15701i 0.185923 0.192158i
\(469\) −32.7648 + 23.3593i −1.51294 + 1.07863i
\(470\) 1.86844 4.61814i 0.0861847 0.213019i
\(471\) −0.211856 −0.00976183
\(472\) −3.07258 6.92806i −0.141427 0.318890i
\(473\) 28.1802 1.29573
\(474\) −0.386627 + 0.955609i −0.0177584 + 0.0438926i
\(475\) 15.0673i 0.691335i
\(476\) −29.3175 28.3663i −1.34377 1.30017i
\(477\) 0.123360i 0.00564825i
\(478\) 12.9307 31.9603i 0.591437 1.46183i
\(479\) 23.8652i 1.09043i 0.838297 + 0.545214i \(0.183552\pi\)
−0.838297 + 0.545214i \(0.816448\pi\)
\(480\) −5.56130 + 15.1657i −0.253837 + 0.692218i
\(481\) 7.25416i 0.330761i
\(482\) 9.41066 23.2599i 0.428644 1.05946i
\(483\) 30.8358i 1.40308i
\(484\) −44.6397 43.1913i −2.02908 1.96324i
\(485\) 28.2423 1.28242
\(486\) −0.530406 + 1.31098i −0.0240597 + 0.0594673i
\(487\) 13.9001 0.629875 0.314938 0.949112i \(-0.398016\pi\)
0.314938 + 0.949112i \(0.398016\pi\)
\(488\) 5.45801 + 12.3067i 0.247072 + 0.557100i
\(489\) 14.5738i 0.659050i
\(490\) 64.2650 + 26.0008i 2.90320 + 1.17460i
\(491\) 12.8500i 0.579914i −0.957040 0.289957i \(-0.906359\pi\)
0.957040 0.289957i \(-0.0936410\pi\)
\(492\) −10.0462 + 10.3831i −0.452919 + 0.468107i
\(493\) 18.7562 0.844738
\(494\) −7.32835 + 18.1132i −0.329718 + 0.814949i
\(495\) 18.5185i 0.832343i
\(496\) 0.104388 + 3.16416i 0.00468718 + 0.142075i
\(497\) 77.1084i 3.45878i
\(498\) 18.2151 + 7.36959i 0.816238 + 0.330239i
\(499\) 2.61774 0.117186 0.0585931 0.998282i \(-0.481339\pi\)
0.0585931 + 0.998282i \(0.481339\pi\)
\(500\) −7.33086 + 7.57670i −0.327846 + 0.338840i
\(501\) 7.04225i 0.314624i
\(502\) −2.14986 + 5.31371i −0.0959528 + 0.237162i
\(503\) 28.5414 1.27260 0.636298 0.771443i \(-0.280465\pi\)
0.636298 + 0.771443i \(0.280465\pi\)
\(504\) 12.7106 5.63711i 0.566174 0.251097i
\(505\) 43.5314 1.93712
\(506\) −53.3287 21.5761i −2.37075 0.959174i
\(507\) 4.63543 0.205867
\(508\) −7.11878 + 7.35751i −0.315845 + 0.326437i
\(509\) 19.0491 0.844338 0.422169 0.906517i \(-0.361269\pi\)
0.422169 + 0.906517i \(0.361269\pi\)
\(510\) 15.5324 + 6.28420i 0.687786 + 0.278269i
\(511\) −9.08139 −0.401737
\(512\) 7.08553 21.4894i 0.313139 0.949707i
\(513\) 4.77723i 0.210920i
\(514\) −8.87302 + 21.9311i −0.391372 + 0.967338i
\(515\) −41.9525 −1.84865
\(516\) 6.24574 + 6.04309i 0.274954 + 0.266032i
\(517\) 8.00030i 0.351853i
\(518\) −6.54010 + 16.1649i −0.287356 + 0.710244i
\(519\) 13.3693 0.586846
\(520\) 21.3531 9.47004i 0.936395 0.415289i
\(521\) 4.18847i 0.183500i 0.995782 + 0.0917500i \(0.0292461\pi\)
−0.995782 + 0.0917500i \(0.970754\pi\)
\(522\) −2.39771 + 5.92632i −0.104945 + 0.259388i
\(523\) 19.8355i 0.867345i 0.901071 + 0.433673i \(0.142783\pi\)
−0.901071 + 0.433673i \(0.857217\pi\)
\(524\) 6.45960 6.67622i 0.282189 0.291652i
\(525\) −15.5049 −0.676691
\(526\) −7.33593 2.96802i −0.319862 0.129412i
\(527\) 3.28392 0.143050
\(528\) −0.855338 25.9265i −0.0372238 1.12831i
\(529\) −16.3450 −0.710651
\(530\) −0.186838 + 0.461800i −0.00811574 + 0.0200593i
\(531\) 2.67952i 0.116281i
\(532\) −32.6604 + 33.7557i −1.41601 + 1.46349i
\(533\) 20.8925 0.904954
\(534\) −0.373887 + 0.924120i −0.0161797 + 0.0399906i
\(535\) 17.6108 0.761380
\(536\) −11.7839 + 19.9284i −0.508986 + 0.860775i
\(537\) −10.9481 −0.472447
\(538\) −1.55167 + 3.83520i −0.0668973 + 0.165347i
\(539\) −111.330 −4.79534
\(540\) −3.97118 + 4.10435i −0.170892 + 0.176623i
\(541\) 25.5904i 1.10022i −0.835093 0.550109i \(-0.814586\pi\)
0.835093 0.550109i \(-0.185414\pi\)
\(542\) −1.07059 + 2.64613i −0.0459858 + 0.113661i
\(543\) 9.89701 0.424721
\(544\) −22.0361 8.08069i −0.944792 0.346457i
\(545\) −21.5017 −0.921033
\(546\) −18.6393 7.54121i −0.797687 0.322734i
\(547\) 5.52707 0.236320 0.118160 0.992995i \(-0.462300\pi\)
0.118160 + 0.992995i \(0.462300\pi\)
\(548\) 7.45680 7.70687i 0.318539 0.329221i
\(549\) 4.75980i 0.203143i
\(550\) −10.8489 + 26.8149i −0.462600 + 1.14339i
\(551\) 21.5956i 0.920002i
\(552\) −7.19267 16.2181i −0.306140 0.690286i
\(553\) 3.58340 0.152382
\(554\) 7.51109 18.5648i 0.319116 0.788745i
\(555\) 7.16226i 0.304021i
\(556\) −21.3224 20.6306i −0.904272 0.874932i
\(557\) −29.2234 −1.23824 −0.619118 0.785298i \(-0.712510\pi\)
−0.619118 + 0.785298i \(0.712510\pi\)
\(558\) −0.419800 + 1.03760i −0.0177716 + 0.0439252i
\(559\) 12.5674i 0.531546i
\(560\) 56.1203 1.85146i 2.37151 0.0782383i
\(561\) −26.9077 −1.13605
\(562\) −6.74725 2.72985i −0.284616 0.115152i
\(563\) −15.0136 −0.632747 −0.316374 0.948635i \(-0.602465\pi\)
−0.316374 + 0.948635i \(0.602465\pi\)
\(564\) −1.71562 + 1.77315i −0.0722405 + 0.0746631i
\(565\) 52.6666 2.21570
\(566\) −23.4610 9.49203i −0.986141 0.398980i
\(567\) 4.91599 0.206452
\(568\) 17.9860 + 40.5550i 0.754678 + 1.70165i
\(569\) −8.86391 −0.371595 −0.185797 0.982588i \(-0.559487\pi\)
−0.185797 + 0.982588i \(0.559487\pi\)
\(570\) 7.23551 17.8837i 0.303062 0.749066i
\(571\) 16.2972i 0.682015i −0.940061 0.341007i \(-0.889232\pi\)
0.940061 0.341007i \(-0.110768\pi\)
\(572\) −26.0841 + 26.9588i −1.09063 + 1.12721i
\(573\) −15.8927 −0.663928
\(574\) 46.5560 + 18.8359i 1.94321 + 0.786197i
\(575\) 19.7835i 0.825030i
\(576\) 5.37021 5.92966i 0.223759 0.247069i
\(577\) 38.2988i 1.59440i −0.603715 0.797200i \(-0.706314\pi\)
0.603715 0.797200i \(-0.293686\pi\)
\(578\) −0.114189 + 0.282236i −0.00474963 + 0.0117395i
\(579\) −18.8963 −0.785305
\(580\) −17.9518 + 18.5538i −0.745407 + 0.770405i
\(581\) 68.3041i 2.83373i
\(582\) −12.9662 5.24594i −0.537465 0.217451i
\(583\) 0.800006i 0.0331328i
\(584\) −4.77634 + 2.11830i −0.197647 + 0.0876557i
\(585\) 8.25860 0.341451
\(586\) 6.67401 16.4959i 0.275701 0.681438i
\(587\) 35.5641 1.46789 0.733943 0.679211i \(-0.237678\pi\)
0.733943 + 0.679211i \(0.237678\pi\)
\(588\) −24.6748 23.8741i −1.01757 0.984553i
\(589\) 3.78104i 0.155795i
\(590\) 4.05836 10.0309i 0.167080 0.412965i
\(591\) 5.67643i 0.233497i
\(592\) 0.330813 + 10.0274i 0.0135963 + 0.412124i
\(593\) 20.1922i 0.829196i −0.910005 0.414598i \(-0.863922\pi\)
0.910005 0.414598i \(-0.136078\pi\)
\(594\) 3.43976 8.50190i 0.141135 0.348837i
\(595\) 58.2442i 2.38778i
\(596\) 25.7381 + 24.9030i 1.05427 + 1.02007i
\(597\) 7.38387i 0.302201i
\(598\) −9.62220 + 23.7828i −0.393481 + 0.972550i
\(599\) 2.28406 0.0933243 0.0466622 0.998911i \(-0.485142\pi\)
0.0466622 + 0.998911i \(0.485142\pi\)
\(600\) −8.15480 + 3.61663i −0.332918 + 0.147648i
\(601\) 18.6583 0.761086 0.380543 0.924763i \(-0.375737\pi\)
0.380543 + 0.924763i \(0.375737\pi\)
\(602\) 11.3304 28.0048i 0.461791 1.14139i
\(603\) −6.66494 + 4.75169i −0.271417 + 0.193504i
\(604\) 21.4152 22.1334i 0.871372 0.900594i
\(605\) 88.6843i 3.60553i
\(606\) −19.9855 8.08585i −0.811853 0.328465i
\(607\) 12.3425i 0.500967i −0.968121 0.250484i \(-0.919410\pi\)
0.968121 0.250484i \(-0.0805896\pi\)
\(608\) −9.30395 + 25.3720i −0.377325 + 1.02897i
\(609\) 22.2228 0.900515
\(610\) −7.20911 + 17.8185i −0.291889 + 0.721448i
\(611\) 3.56786 0.144340
\(612\) −5.96371 5.77021i −0.241069 0.233247i
\(613\) 10.9193 0.441028 0.220514 0.975384i \(-0.429227\pi\)
0.220514 + 0.975384i \(0.429227\pi\)
\(614\) 11.3217 + 4.58060i 0.456906 + 0.184858i
\(615\) −20.6278 −0.831794
\(616\) −82.4300 + 36.5575i −3.32120 + 1.47294i
\(617\) −20.0559 −0.807421 −0.403710 0.914887i \(-0.632280\pi\)
−0.403710 + 0.914887i \(0.632280\pi\)
\(618\) 19.2606 + 7.79258i 0.774774 + 0.313463i
\(619\) 11.3753i 0.457211i −0.973519 0.228606i \(-0.926583\pi\)
0.973519 0.228606i \(-0.0734167\pi\)
\(620\) −3.14307 + 3.24847i −0.126229 + 0.130462i
\(621\) 6.27256i 0.251709i
\(622\) −6.59501 + 16.3006i −0.264436 + 0.653594i
\(623\) 3.46532 0.138835
\(624\) −11.5623 + 0.381452i −0.462864 + 0.0152703i
\(625\) −30.8223 −1.23289
\(626\) 3.29345 + 1.33249i 0.131633 + 0.0532569i
\(627\) 30.9810i 1.23726i
\(628\) 0.304510 + 0.294629i 0.0121513 + 0.0117570i
\(629\) 10.4069 0.414951
\(630\) 18.4032 + 7.44567i 0.733199 + 0.296643i
\(631\) −38.3525 −1.52679 −0.763395 0.645932i \(-0.776469\pi\)
−0.763395 + 0.645932i \(0.776469\pi\)
\(632\) 1.88468 0.835851i 0.0749686 0.0332484i
\(633\) 19.0362i 0.756619i
\(634\) 5.65878 13.9866i 0.224739 0.555477i
\(635\) −14.6169 −0.580055
\(636\) 0.171557 0.177310i 0.00680266 0.00703079i
\(637\) 49.6495i 1.96719i
\(638\) 15.5495 38.4330i 0.615611 1.52158i
\(639\) 15.6852i 0.620497i
\(640\) 29.0845 14.0642i 1.14967 0.555936i
\(641\) 5.63089i 0.222407i 0.993798 + 0.111203i \(0.0354705\pi\)
−0.993798 + 0.111203i \(0.964530\pi\)
\(642\) −8.08518 3.27116i −0.319097 0.129102i
\(643\) 21.1619i 0.834543i 0.908782 + 0.417272i \(0.137014\pi\)
−0.908782 + 0.417272i \(0.862986\pi\)
\(644\) −42.8835 + 44.3216i −1.68985 + 1.74651i
\(645\) 12.4082i 0.488573i
\(646\) 25.9854 + 10.5134i 1.02238 + 0.413642i
\(647\) −16.6498 −0.654572 −0.327286 0.944925i \(-0.606134\pi\)
−0.327286 + 0.944925i \(0.606134\pi\)
\(648\) 2.58556 1.14669i 0.101570 0.0450462i
\(649\) 17.3771i 0.682112i
\(650\) 11.9585 + 4.83826i 0.469052 + 0.189772i
\(651\) 3.89086 0.152495
\(652\) 20.2678 20.9475i 0.793749 0.820367i
\(653\) 31.2845i 1.22426i 0.790758 + 0.612128i \(0.209686\pi\)
−0.790758 + 0.612128i \(0.790314\pi\)
\(654\) 9.87154 + 3.99390i 0.386008 + 0.156174i
\(655\) 13.2634 0.518246
\(656\) 28.8797 0.952765i 1.12756 0.0371992i
\(657\) −1.84732 −0.0720707
\(658\) 7.95048 + 3.21666i 0.309942 + 0.125399i
\(659\) 40.3816i 1.57304i −0.617563 0.786521i \(-0.711880\pi\)
0.617563 0.786521i \(-0.288120\pi\)
\(660\) 25.7537 26.6173i 1.00246 1.03608i
\(661\) 28.1687i 1.09563i −0.836598 0.547817i \(-0.815459\pi\)
0.836598 0.547817i \(-0.184541\pi\)
\(662\) −3.14268 + 7.76762i −0.122144 + 0.301897i
\(663\) 11.9999i 0.466039i
\(664\) −15.9324 35.9244i −0.618296 1.39414i
\(665\) −67.0613 −2.60053
\(666\) −1.33037 + 3.28823i −0.0515509 + 0.127416i
\(667\) 28.3552i 1.09792i
\(668\) 9.79367 10.1221i 0.378929 0.391636i
\(669\) 17.7433i 0.685994i
\(670\) −32.1472 + 7.69347i −1.24196 + 0.297225i
\(671\) 30.8680i 1.19165i
\(672\) −26.1090 9.57419i −1.00717 0.369332i
\(673\) 34.3235i 1.32307i −0.749913 0.661537i \(-0.769905\pi\)
0.749913 0.661537i \(-0.230095\pi\)
\(674\) 6.61276 + 2.67544i 0.254714 + 0.103054i
\(675\) −3.15398 −0.121397
\(676\) −6.66269 6.44651i −0.256257 0.247943i
\(677\) 37.3316i 1.43477i −0.696678 0.717384i \(-0.745339\pi\)
0.696678 0.717384i \(-0.254661\pi\)
\(678\) −24.1794 9.78269i −0.928606 0.375702i
\(679\) 48.6213i 1.86591i
\(680\) −13.5859 30.6335i −0.520994 1.17474i
\(681\) 15.8446i 0.607165i
\(682\) 2.72247 6.72901i 0.104249 0.257667i
\(683\) 34.3656 1.31496 0.657481 0.753471i \(-0.271622\pi\)
0.657481 + 0.753471i \(0.271622\pi\)
\(684\) −6.64371 + 6.86650i −0.254028 + 0.262547i
\(685\) 15.3110 0.585003
\(686\) −26.5100 + 65.5237i −1.01216 + 2.50171i
\(687\) 16.2266i 0.619082i
\(688\) −0.573116 17.3719i −0.0218498 0.662299i
\(689\) −0.356775 −0.0135921
\(690\) 9.50030 23.4815i 0.361670 0.893925i
\(691\) 29.4379i 1.11987i −0.828536 0.559936i \(-0.810826\pi\)
0.828536 0.559936i \(-0.189174\pi\)
\(692\) −19.2162 18.5927i −0.730490 0.706787i
\(693\) −31.8809 −1.21106
\(694\) −0.965596 + 2.38662i −0.0366535 + 0.0905949i
\(695\) 42.3606i 1.60683i
\(696\) 11.6881 5.18363i 0.443035 0.196485i
\(697\) 29.9727i 1.13530i
\(698\) 7.87925 19.4748i 0.298234 0.737133i
\(699\) 5.40768i 0.204537i
\(700\) 22.2859 + 21.5628i 0.842327 + 0.814996i
\(701\) 25.3710i 0.958250i 0.877747 + 0.479125i \(0.159046\pi\)
−0.877747 + 0.479125i \(0.840954\pi\)
\(702\) −3.79156 1.53402i −0.143103 0.0578977i
\(703\) 11.9823i 0.451922i
\(704\) −34.8266 + 38.4547i −1.31258 + 1.44932i
\(705\) −3.52266 −0.132671
\(706\) −4.38443 1.77388i −0.165010 0.0667610i
\(707\) 74.9426i 2.81851i
\(708\) −3.72642 + 3.85139i −0.140048 + 0.144744i
\(709\) −25.7636 −0.967572 −0.483786 0.875186i \(-0.660739\pi\)
−0.483786 + 0.875186i \(0.660739\pi\)
\(710\) −23.7566 + 58.7180i −0.891568 + 2.20365i
\(711\) 0.728927 0.0273369
\(712\) 1.82258 0.808309i 0.0683040 0.0302926i
\(713\) 4.96454i 0.185924i
\(714\) −10.8187 + 26.7402i −0.404881 + 1.00073i
\(715\) −53.5583 −2.00297
\(716\) 15.7362 + 15.2256i 0.588089 + 0.569008i
\(717\) −24.3789 −0.910448
\(718\) −1.59237 0.644251i −0.0594266 0.0240432i
\(719\) 18.5554i 0.692001i 0.938234 + 0.346000i \(0.112460\pi\)
−0.938234 + 0.346000i \(0.887540\pi\)
\(720\) 11.4159 0.376619i 0.425444 0.0140358i
\(721\) 72.2244i 2.68978i
\(722\) 2.02717 5.01046i 0.0754434 0.186470i
\(723\) −17.7424 −0.659847
\(724\) −14.2254 13.7638i −0.528682 0.511528i
\(725\) −14.2576 −0.529516
\(726\) −16.4729 + 40.7153i −0.611366 + 1.51109i
\(727\) 5.08959 0.188762 0.0943812 0.995536i \(-0.469913\pi\)
0.0943812 + 0.995536i \(0.469913\pi\)
\(728\) 16.3034 + 36.7610i 0.604244 + 1.36245i
\(729\) 1.00000 0.0370370
\(730\) −6.91548 2.79791i −0.255954 0.103555i
\(731\) −18.0294 −0.666842
\(732\) 6.61947 6.84145i 0.244663 0.252867i
\(733\) 14.2486i 0.526284i 0.964757 + 0.263142i \(0.0847588\pi\)
−0.964757 + 0.263142i \(0.915241\pi\)
\(734\) 15.2000 37.5692i 0.561042 1.38670i
\(735\) 49.0206i 1.80815i
\(736\) −12.2162 + 33.3137i −0.450295 + 1.22796i
\(737\) 43.2232 30.8154i 1.59215 1.13510i
\(738\) 9.47032 + 3.83157i 0.348607 + 0.141042i
\(739\) −10.5314 −0.387405 −0.193702 0.981060i \(-0.562050\pi\)
−0.193702 + 0.981060i \(0.562050\pi\)
\(740\) −9.96058 + 10.2946i −0.366158 + 0.378437i
\(741\) 13.8165 0.507562
\(742\) −0.795024 0.321656i −0.0291863 0.0118084i
\(743\) 35.6194i 1.30675i 0.757035 + 0.653375i \(0.226647\pi\)
−0.757035 + 0.653375i \(0.773353\pi\)
\(744\) 2.04639 0.907570i 0.0750244 0.0332731i
\(745\) 51.1331i 1.87337i
\(746\) 23.0978 + 9.34506i 0.845670 + 0.342147i
\(747\) 13.8943i 0.508364i
\(748\) 38.6756 + 37.4207i 1.41412 + 1.36823i
\(749\) 30.3183i 1.10781i
\(750\) 6.91062 + 2.79595i 0.252340 + 0.102094i
\(751\) 12.8419i 0.468607i −0.972164 0.234303i \(-0.924719\pi\)
0.972164 0.234303i \(-0.0752809\pi\)
\(752\) 4.93185 0.162706i 0.179846 0.00593328i
\(753\) 4.05323 0.147708
\(754\) −17.1398 6.93455i −0.624196 0.252541i
\(755\) 43.9717 1.60029
\(756\) −7.06595 6.83668i −0.256986 0.248648i
\(757\) 9.91210i 0.360261i −0.983643 0.180131i \(-0.942348\pi\)
0.983643 0.180131i \(-0.0576521\pi\)
\(758\) −0.265840 + 0.657066i −0.00965575 + 0.0238657i
\(759\) 40.6785i 1.47653i
\(760\) −35.2708 + 15.6425i −1.27941 + 0.567413i
\(761\) 30.5324 1.10680 0.553399 0.832916i \(-0.313331\pi\)
0.553399 + 0.832916i \(0.313331\pi\)
\(762\) 6.71070 + 2.71506i 0.243103 + 0.0983562i
\(763\) 37.0169i 1.34010i
\(764\) 22.8433 + 22.1021i 0.826440 + 0.799625i
\(765\) 11.8479i 0.428362i
\(766\) −7.59397 + 18.7697i −0.274381 + 0.678176i
\(767\) 7.74960 0.279822
\(768\) −15.9652 + 1.05456i −0.576095 + 0.0380532i
\(769\) 7.68551i 0.277147i 0.990352 + 0.138573i \(0.0442516\pi\)
−0.990352 + 0.138573i \(0.955748\pi\)
\(770\) −119.347 48.2863i −4.30097 1.74012i
\(771\) 16.7288 0.602471
\(772\) 27.1605 + 26.2792i 0.977527 + 0.945809i
\(773\)