Properties

Label 804.2.e.b.535.1
Level 804
Weight 2
Character 804.535
Analytic conductor 6.420
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(34\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 535.1
Character \(\chi\) = 804.535
Dual form 804.2.e.b.535.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.40514 - 0.159923i) q^{2} +1.00000 q^{3} +(1.94885 + 0.449428i) q^{4} +0.947080i q^{5} +(-1.40514 - 0.159923i) q^{6} -0.0251164 q^{7} +(-2.66654 - 0.943176i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(-1.40514 - 0.159923i) q^{2} +1.00000 q^{3} +(1.94885 + 0.449428i) q^{4} +0.947080i q^{5} +(-1.40514 - 0.159923i) q^{6} -0.0251164 q^{7} +(-2.66654 - 0.943176i) q^{8} +1.00000 q^{9} +(0.151460 - 1.33078i) q^{10} -1.77930 q^{11} +(1.94885 + 0.449428i) q^{12} -5.89167i q^{13} +(0.0352920 + 0.00401668i) q^{14} +0.947080i q^{15} +(3.59603 + 1.75174i) q^{16} +2.08504 q^{17} +(-1.40514 - 0.159923i) q^{18} -4.96753i q^{19} +(-0.425645 + 1.84572i) q^{20} -0.0251164 q^{21} +(2.50017 + 0.284551i) q^{22} -4.05820i q^{23} +(-2.66654 - 0.943176i) q^{24} +4.10304 q^{25} +(-0.942211 + 8.27863i) q^{26} +1.00000 q^{27} +(-0.0489480 - 0.0112880i) q^{28} +5.86732 q^{29} +(0.151460 - 1.33078i) q^{30} +3.69465 q^{31} +(-4.77279 - 3.03653i) q^{32} -1.77930 q^{33} +(-2.92978 - 0.333446i) q^{34} -0.0237872i q^{35} +(1.94885 + 0.449428i) q^{36} +5.82584 q^{37} +(-0.794421 + 6.98009i) q^{38} -5.89167i q^{39} +(0.893263 - 2.52542i) q^{40} +6.60505i q^{41} +(0.0352920 + 0.00401668i) q^{42} +2.25768 q^{43} +(-3.46759 - 0.799669i) q^{44} +0.947080i q^{45} +(-0.648998 + 5.70235i) q^{46} +11.4405i q^{47} +(3.59603 + 1.75174i) q^{48} -6.99937 q^{49} +(-5.76535 - 0.656169i) q^{50} +2.08504 q^{51} +(2.64788 - 11.4820i) q^{52} -7.44096i q^{53} +(-1.40514 - 0.159923i) q^{54} -1.68514i q^{55} +(0.0669737 + 0.0236891i) q^{56} -4.96753i q^{57} +(-8.24442 - 0.938318i) q^{58} +2.53323i q^{59} +(-0.425645 + 1.84572i) q^{60} +2.42545i q^{61} +(-5.19151 - 0.590858i) q^{62} -0.0251164 q^{63} +(6.22084 + 5.03003i) q^{64} +5.57988 q^{65} +(2.50017 + 0.284551i) q^{66} +(7.47363 + 3.33840i) q^{67} +(4.06344 + 0.937077i) q^{68} -4.05820i q^{69} +(-0.00380411 + 0.0334244i) q^{70} -1.82520i q^{71} +(-2.66654 - 0.943176i) q^{72} -9.08258 q^{73} +(-8.18613 - 0.931684i) q^{74} +4.10304 q^{75} +(2.23255 - 9.68097i) q^{76} +0.0446896 q^{77} +(-0.942211 + 8.27863i) q^{78} +12.9024 q^{79} +(-1.65903 + 3.40573i) q^{80} +1.00000 q^{81} +(1.05630 - 9.28104i) q^{82} -14.6510i q^{83} +(-0.0489480 - 0.0112880i) q^{84} +1.97470i q^{85} +(-3.17237 - 0.361055i) q^{86} +5.86732 q^{87} +(4.74458 + 1.67820i) q^{88} -9.99659 q^{89} +(0.151460 - 1.33078i) q^{90} +0.147977i q^{91} +(1.82387 - 7.90882i) q^{92} +3.69465 q^{93} +(1.82959 - 16.0755i) q^{94} +4.70465 q^{95} +(-4.77279 - 3.03653i) q^{96} -3.04196i q^{97} +(9.83511 + 1.11936i) q^{98} -1.77930 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{3} + 2q^{4} + 4q^{7} - 6q^{8} + 34q^{9} + O(q^{10}) \) \( 34q + 34q^{3} + 2q^{4} + 4q^{7} - 6q^{8} + 34q^{9} - 6q^{10} + 2q^{12} - 4q^{14} + 2q^{16} - 12q^{20} + 4q^{21} - 8q^{22} - 6q^{24} - 34q^{25} + 10q^{26} + 34q^{27} - 8q^{28} - 16q^{29} - 6q^{30} - 4q^{31} + 2q^{36} + 12q^{37} + 26q^{38} - 18q^{40} - 4q^{42} - 4q^{43} + 26q^{44} - 4q^{46} + 2q^{48} + 46q^{49} - 18q^{50} + 32q^{52} + 14q^{56} + 4q^{58} - 12q^{60} - 2q^{62} + 4q^{63} + 26q^{64} - 8q^{66} - 18q^{67} - 34q^{68} + 56q^{70} - 6q^{72} + 12q^{73} + 22q^{74} - 34q^{75} - 32q^{76} - 8q^{77} + 10q^{78} - 12q^{79} - 2q^{80} + 34q^{81} + 26q^{82} - 8q^{84} + 6q^{86} - 16q^{87} - 28q^{88} - 6q^{90} - 46q^{92} - 4q^{93} + 32q^{94} - 40q^{95} - 40q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40514 0.159923i −0.993586 0.113082i
\(3\) 1.00000 0.577350
\(4\) 1.94885 + 0.449428i 0.974425 + 0.224714i
\(5\) 0.947080i 0.423547i 0.977319 + 0.211774i \(0.0679239\pi\)
−0.977319 + 0.211774i \(0.932076\pi\)
\(6\) −1.40514 0.159923i −0.573647 0.0652882i
\(7\) −0.0251164 −0.00949309 −0.00474654 0.999989i \(-0.501511\pi\)
−0.00474654 + 0.999989i \(0.501511\pi\)
\(8\) −2.66654 0.943176i −0.942763 0.333463i
\(9\) 1.00000 0.333333
\(10\) 0.151460 1.33078i 0.0478957 0.420830i
\(11\) −1.77930 −0.536480 −0.268240 0.963352i \(-0.586442\pi\)
−0.268240 + 0.963352i \(0.586442\pi\)
\(12\) 1.94885 + 0.449428i 0.562584 + 0.129739i
\(13\) 5.89167i 1.63405i −0.576599 0.817027i \(-0.695620\pi\)
0.576599 0.817027i \(-0.304380\pi\)
\(14\) 0.0352920 + 0.00401668i 0.00943220 + 0.00107350i
\(15\) 0.947080i 0.244535i
\(16\) 3.59603 + 1.75174i 0.899007 + 0.437934i
\(17\) 2.08504 0.505697 0.252849 0.967506i \(-0.418633\pi\)
0.252849 + 0.967506i \(0.418633\pi\)
\(18\) −1.40514 0.159923i −0.331195 0.0376941i
\(19\) 4.96753i 1.13963i −0.821773 0.569815i \(-0.807015\pi\)
0.821773 0.569815i \(-0.192985\pi\)
\(20\) −0.425645 + 1.84572i −0.0951771 + 0.412715i
\(21\) −0.0251164 −0.00548084
\(22\) 2.50017 + 0.284551i 0.533039 + 0.0606664i
\(23\) 4.05820i 0.846193i −0.906085 0.423097i \(-0.860943\pi\)
0.906085 0.423097i \(-0.139057\pi\)
\(24\) −2.66654 0.943176i −0.544305 0.192525i
\(25\) 4.10304 0.820608
\(26\) −0.942211 + 8.27863i −0.184783 + 1.62357i
\(27\) 1.00000 0.192450
\(28\) −0.0489480 0.0112880i −0.00925030 0.00213323i
\(29\) 5.86732 1.08953 0.544767 0.838587i \(-0.316618\pi\)
0.544767 + 0.838587i \(0.316618\pi\)
\(30\) 0.151460 1.33078i 0.0276526 0.242967i
\(31\) 3.69465 0.663579 0.331789 0.943354i \(-0.392348\pi\)
0.331789 + 0.943354i \(0.392348\pi\)
\(32\) −4.77279 3.03653i −0.843718 0.536787i
\(33\) −1.77930 −0.309737
\(34\) −2.92978 0.333446i −0.502454 0.0571855i
\(35\) 0.0237872i 0.00402077i
\(36\) 1.94885 + 0.449428i 0.324808 + 0.0749047i
\(37\) 5.82584 0.957762 0.478881 0.877880i \(-0.341043\pi\)
0.478881 + 0.877880i \(0.341043\pi\)
\(38\) −0.794421 + 6.98009i −0.128872 + 1.13232i
\(39\) 5.89167i 0.943422i
\(40\) 0.893263 2.52542i 0.141237 0.399305i
\(41\) 6.60505i 1.03154i 0.856728 + 0.515768i \(0.172493\pi\)
−0.856728 + 0.515768i \(0.827507\pi\)
\(42\) 0.0352920 + 0.00401668i 0.00544568 + 0.000619786i
\(43\) 2.25768 0.344294 0.172147 0.985071i \(-0.444930\pi\)
0.172147 + 0.985071i \(0.444930\pi\)
\(44\) −3.46759 0.799669i −0.522759 0.120555i
\(45\) 0.947080i 0.141182i
\(46\) −0.648998 + 5.70235i −0.0956896 + 0.840765i
\(47\) 11.4405i 1.66877i 0.551185 + 0.834383i \(0.314176\pi\)
−0.551185 + 0.834383i \(0.685824\pi\)
\(48\) 3.59603 + 1.75174i 0.519042 + 0.252841i
\(49\) −6.99937 −0.999910
\(50\) −5.76535 0.656169i −0.815344 0.0927963i
\(51\) 2.08504 0.291964
\(52\) 2.64788 11.4820i 0.367195 1.59226i
\(53\) 7.44096i 1.02209i −0.859553 0.511047i \(-0.829258\pi\)
0.859553 0.511047i \(-0.170742\pi\)
\(54\) −1.40514 0.159923i −0.191216 0.0217627i
\(55\) 1.68514i 0.227225i
\(56\) 0.0669737 + 0.0236891i 0.00894973 + 0.00316559i
\(57\) 4.96753i 0.657966i
\(58\) −8.24442 0.938318i −1.08255 0.123207i
\(59\) 2.53323i 0.329798i 0.986310 + 0.164899i \(0.0527298\pi\)
−0.986310 + 0.164899i \(0.947270\pi\)
\(60\) −0.425645 + 1.84572i −0.0549505 + 0.238281i
\(61\) 2.42545i 0.310547i 0.987872 + 0.155273i \(0.0496258\pi\)
−0.987872 + 0.155273i \(0.950374\pi\)
\(62\) −5.19151 0.590858i −0.659322 0.0750391i
\(63\) −0.0251164 −0.00316436
\(64\) 6.22084 + 5.03003i 0.777605 + 0.628753i
\(65\) 5.57988 0.692099
\(66\) 2.50017 + 0.284551i 0.307750 + 0.0350258i
\(67\) 7.47363 + 3.33840i 0.913049 + 0.407850i
\(68\) 4.06344 + 0.937077i 0.492764 + 0.113637i
\(69\) 4.05820i 0.488550i
\(70\) −0.00380411 + 0.0334244i −0.000454679 + 0.00399498i
\(71\) 1.82520i 0.216611i −0.994118 0.108306i \(-0.965458\pi\)
0.994118 0.108306i \(-0.0345425\pi\)
\(72\) −2.66654 0.943176i −0.314254 0.111154i
\(73\) −9.08258 −1.06304 −0.531518 0.847047i \(-0.678378\pi\)
−0.531518 + 0.847047i \(0.678378\pi\)
\(74\) −8.18613 0.931684i −0.951618 0.108306i
\(75\) 4.10304 0.473778
\(76\) 2.23255 9.68097i 0.256091 1.11048i
\(77\) 0.0446896 0.00509285
\(78\) −0.942211 + 8.27863i −0.106684 + 0.937370i
\(79\) 12.9024 1.45163 0.725817 0.687888i \(-0.241462\pi\)
0.725817 + 0.687888i \(0.241462\pi\)
\(80\) −1.65903 + 3.40573i −0.185486 + 0.380772i
\(81\) 1.00000 0.111111
\(82\) 1.05630 9.28104i 0.116649 1.02492i
\(83\) 14.6510i 1.60815i −0.594525 0.804077i \(-0.702660\pi\)
0.594525 0.804077i \(-0.297340\pi\)
\(84\) −0.0489480 0.0112880i −0.00534066 0.00123162i
\(85\) 1.97470i 0.214187i
\(86\) −3.17237 0.361055i −0.342085 0.0389335i
\(87\) 5.86732 0.629043
\(88\) 4.74458 + 1.67820i 0.505773 + 0.178896i
\(89\) −9.99659 −1.05964 −0.529818 0.848111i \(-0.677740\pi\)
−0.529818 + 0.848111i \(0.677740\pi\)
\(90\) 0.151460 1.33078i 0.0159652 0.140277i
\(91\) 0.147977i 0.0155122i
\(92\) 1.82387 7.90882i 0.190152 0.824551i
\(93\) 3.69465 0.383117
\(94\) 1.82959 16.0755i 0.188708 1.65806i
\(95\) 4.70465 0.482687
\(96\) −4.77279 3.03653i −0.487121 0.309914i
\(97\) 3.04196i 0.308864i −0.988003 0.154432i \(-0.950645\pi\)
0.988003 0.154432i \(-0.0493547\pi\)
\(98\) 9.83511 + 1.11936i 0.993496 + 0.113072i
\(99\) −1.77930 −0.178827
\(100\) 7.99620 + 1.84402i 0.799620 + 0.184402i
\(101\) 12.2472i 1.21864i −0.792923 0.609322i \(-0.791442\pi\)
0.792923 0.609322i \(-0.208558\pi\)
\(102\) −2.92978 0.333446i −0.290092 0.0330161i
\(103\) 5.90791i 0.582124i −0.956704 0.291062i \(-0.905991\pi\)
0.956704 0.291062i \(-0.0940086\pi\)
\(104\) −5.55688 + 15.7103i −0.544897 + 1.54053i
\(105\) 0.0237872i 0.00232139i
\(106\) −1.18998 + 10.4556i −0.115581 + 1.01554i
\(107\) 3.36968i 0.325760i −0.986646 0.162880i \(-0.947922\pi\)
0.986646 0.162880i \(-0.0520783\pi\)
\(108\) 1.94885 + 0.449428i 0.187528 + 0.0432463i
\(109\) 10.9353i 1.04741i 0.851898 + 0.523707i \(0.175451\pi\)
−0.851898 + 0.523707i \(0.824549\pi\)
\(110\) −0.269493 + 2.36786i −0.0256951 + 0.225767i
\(111\) 5.82584 0.552964
\(112\) −0.0903191 0.0439972i −0.00853435 0.00415735i
\(113\) 12.5428i 1.17993i 0.807428 + 0.589966i \(0.200859\pi\)
−0.807428 + 0.589966i \(0.799141\pi\)
\(114\) −0.794421 + 6.98009i −0.0744043 + 0.653745i
\(115\) 3.84344 0.358403
\(116\) 11.4345 + 2.63694i 1.06167 + 0.244834i
\(117\) 5.89167i 0.544685i
\(118\) 0.405120 3.55954i 0.0372944 0.327683i
\(119\) −0.0523687 −0.00480063
\(120\) 0.893263 2.52542i 0.0815434 0.230539i
\(121\) −7.83408 −0.712189
\(122\) 0.387884 3.40810i 0.0351174 0.308555i
\(123\) 6.60505i 0.595557i
\(124\) 7.20032 + 1.66048i 0.646607 + 0.149115i
\(125\) 8.62131i 0.771113i
\(126\) 0.0352920 + 0.00401668i 0.00314407 + 0.000357834i
\(127\) 18.3109i 1.62483i −0.583082 0.812413i \(-0.698154\pi\)
0.583082 0.812413i \(-0.301846\pi\)
\(128\) −7.93675 8.06276i −0.701516 0.712654i
\(129\) 2.25768 0.198778
\(130\) −7.84053 0.892350i −0.687660 0.0782643i
\(131\) 0.858472i 0.0750051i −0.999297 0.0375025i \(-0.988060\pi\)
0.999297 0.0375025i \(-0.0119402\pi\)
\(132\) −3.46759 0.799669i −0.301815 0.0696022i
\(133\) 0.124766i 0.0108186i
\(134\) −9.96762 5.88613i −0.861072 0.508484i
\(135\) 0.947080i 0.0815117i
\(136\) −5.55984 1.96656i −0.476753 0.168631i
\(137\) 19.5425i 1.66963i −0.550529 0.834816i \(-0.685574\pi\)
0.550529 0.834816i \(-0.314426\pi\)
\(138\) −0.648998 + 5.70235i −0.0552464 + 0.485416i
\(139\) −3.18812 −0.270413 −0.135206 0.990817i \(-0.543170\pi\)
−0.135206 + 0.990817i \(0.543170\pi\)
\(140\) 0.0106906 0.0463577i 0.000903524 0.00391794i
\(141\) 11.4405i 0.963463i
\(142\) −0.291891 + 2.56466i −0.0244949 + 0.215222i
\(143\) 10.4831i 0.876637i
\(144\) 3.59603 + 1.75174i 0.299669 + 0.145978i
\(145\) 5.55683i 0.461469i
\(146\) 12.7623 + 1.45251i 1.05622 + 0.120211i
\(147\) −6.99937 −0.577298
\(148\) 11.3537 + 2.61830i 0.933267 + 0.215223i
\(149\) −3.18333 −0.260788 −0.130394 0.991462i \(-0.541624\pi\)
−0.130394 + 0.991462i \(0.541624\pi\)
\(150\) −5.76535 0.656169i −0.470739 0.0535760i
\(151\) 9.58369i 0.779910i −0.920834 0.389955i \(-0.872491\pi\)
0.920834 0.389955i \(-0.127509\pi\)
\(152\) −4.68526 + 13.2461i −0.380024 + 1.07440i
\(153\) 2.08504 0.168566
\(154\) −0.0627952 0.00714688i −0.00506018 0.000575912i
\(155\) 3.49913i 0.281057i
\(156\) 2.64788 11.4820i 0.212000 0.919294i
\(157\) −0.495196 −0.0395209 −0.0197605 0.999805i \(-0.506290\pi\)
−0.0197605 + 0.999805i \(0.506290\pi\)
\(158\) −18.1297 2.06339i −1.44232 0.164154i
\(159\) 7.44096i 0.590106i
\(160\) 2.87583 4.52021i 0.227355 0.357354i
\(161\) 0.101927i 0.00803299i
\(162\) −1.40514 0.159923i −0.110398 0.0125647i
\(163\) 18.2942i 1.43292i 0.697630 + 0.716458i \(0.254238\pi\)
−0.697630 + 0.716458i \(0.745762\pi\)
\(164\) −2.96850 + 12.8723i −0.231801 + 1.00515i
\(165\) 1.68514i 0.131188i
\(166\) −2.34302 + 20.5867i −0.181854 + 1.59784i
\(167\) 9.79844i 0.758226i 0.925350 + 0.379113i \(0.123771\pi\)
−0.925350 + 0.379113i \(0.876229\pi\)
\(168\) 0.0669737 + 0.0236891i 0.00516713 + 0.00182766i
\(169\) −21.7117 −1.67013
\(170\) 0.315800 2.77474i 0.0242207 0.212813i
\(171\) 4.96753i 0.379877i
\(172\) 4.39989 + 1.01467i 0.335488 + 0.0773676i
\(173\) 4.12328 0.313487 0.156744 0.987639i \(-0.449900\pi\)
0.156744 + 0.987639i \(0.449900\pi\)
\(174\) −8.24442 0.938318i −0.625008 0.0711337i
\(175\) −0.103053 −0.00779010
\(176\) −6.39842 3.11687i −0.482299 0.234943i
\(177\) 2.53323i 0.190409i
\(178\) 14.0466 + 1.59868i 1.05284 + 0.119826i
\(179\) −3.42794 −0.256216 −0.128108 0.991760i \(-0.540890\pi\)
−0.128108 + 0.991760i \(0.540890\pi\)
\(180\) −0.425645 + 1.84572i −0.0317257 + 0.137572i
\(181\) −19.6517 −1.46070 −0.730351 0.683072i \(-0.760643\pi\)
−0.730351 + 0.683072i \(0.760643\pi\)
\(182\) 0.0236649 0.207929i 0.00175416 0.0154127i
\(183\) 2.42545i 0.179294i
\(184\) −3.82760 + 10.8213i −0.282174 + 0.797760i
\(185\) 5.51754i 0.405657i
\(186\) −5.19151 0.590858i −0.380660 0.0433238i
\(187\) −3.70992 −0.271296
\(188\) −5.14168 + 22.2958i −0.374995 + 1.62609i
\(189\) −0.0251164 −0.00182695
\(190\) −6.61070 0.752381i −0.479591 0.0545834i
\(191\) −2.52854 −0.182959 −0.0914793 0.995807i \(-0.529160\pi\)
−0.0914793 + 0.995807i \(0.529160\pi\)
\(192\) 6.22084 + 5.03003i 0.448950 + 0.363011i
\(193\) −10.4620 −0.753073 −0.376537 0.926402i \(-0.622885\pi\)
−0.376537 + 0.926402i \(0.622885\pi\)
\(194\) −0.486478 + 4.27438i −0.0349271 + 0.306883i
\(195\) 5.57988 0.399584
\(196\) −13.6407 3.14571i −0.974337 0.224694i
\(197\) 21.9353i 1.56282i 0.624016 + 0.781412i \(0.285500\pi\)
−0.624016 + 0.781412i \(0.714500\pi\)
\(198\) 2.50017 + 0.284551i 0.177680 + 0.0202221i
\(199\) 17.6608i 1.25194i 0.779846 + 0.625971i \(0.215297\pi\)
−0.779846 + 0.625971i \(0.784703\pi\)
\(200\) −10.9409 3.86989i −0.773639 0.273642i
\(201\) 7.47363 + 3.33840i 0.527149 + 0.235472i
\(202\) −1.95861 + 17.2091i −0.137807 + 1.21083i
\(203\) −0.147366 −0.0103430
\(204\) 4.06344 + 0.937077i 0.284497 + 0.0656085i
\(205\) −6.25551 −0.436904
\(206\) −0.944809 + 8.30146i −0.0658280 + 0.578390i
\(207\) 4.05820i 0.282064i
\(208\) 10.3206 21.1866i 0.715608 1.46903i
\(209\) 8.83874i 0.611388i
\(210\) −0.00380411 + 0.0334244i −0.000262509 + 0.00230650i
\(211\) 13.3556i 0.919441i 0.888064 + 0.459720i \(0.152050\pi\)
−0.888064 + 0.459720i \(0.847950\pi\)
\(212\) 3.34418 14.5013i 0.229679 0.995954i
\(213\) 1.82520i 0.125060i
\(214\) −0.538889 + 4.73488i −0.0368377 + 0.323670i
\(215\) 2.13821i 0.145825i
\(216\) −2.66654 0.943176i −0.181435 0.0641750i
\(217\) −0.0927961 −0.00629941
\(218\) 1.74881 15.3657i 0.118444 1.04070i
\(219\) −9.08258 −0.613744
\(220\) 0.757351 3.28409i 0.0510606 0.221413i
\(221\) 12.2844i 0.826337i
\(222\) −8.18613 0.931684i −0.549417 0.0625305i
\(223\) 5.28059i 0.353614i 0.984246 + 0.176807i \(0.0565769\pi\)
−0.984246 + 0.176807i \(0.943423\pi\)
\(224\) 0.119875 + 0.0762664i 0.00800949 + 0.00509577i
\(225\) 4.10304 0.273536
\(226\) 2.00589 17.6245i 0.133430 1.17236i
\(227\) 3.00443i 0.199411i 0.995017 + 0.0997054i \(0.0317900\pi\)
−0.995017 + 0.0997054i \(0.968210\pi\)
\(228\) 2.23255 9.68097i 0.147854 0.641138i
\(229\) 16.7641i 1.10780i 0.832583 + 0.553900i \(0.186861\pi\)
−0.832583 + 0.553900i \(0.813139\pi\)
\(230\) −5.40058 0.614653i −0.356104 0.0405291i
\(231\) 0.0446896 0.00294036
\(232\) −15.6454 5.53392i −1.02717 0.363320i
\(233\) 14.8547i 0.973164i −0.873635 0.486582i \(-0.838243\pi\)
0.873635 0.486582i \(-0.161757\pi\)
\(234\) −0.942211 + 8.27863i −0.0615943 + 0.541191i
\(235\) −10.8351 −0.706801
\(236\) −1.13850 + 4.93688i −0.0741103 + 0.321363i
\(237\) 12.9024 0.838102
\(238\) 0.0735855 + 0.00837494i 0.00476984 + 0.000542867i
\(239\) −25.2628 −1.63411 −0.817057 0.576556i \(-0.804396\pi\)
−0.817057 + 0.576556i \(0.804396\pi\)
\(240\) −1.65903 + 3.40573i −0.107090 + 0.219839i
\(241\) −21.3105 −1.37273 −0.686366 0.727257i \(-0.740795\pi\)
−0.686366 + 0.727257i \(0.740795\pi\)
\(242\) 11.0080 + 1.25285i 0.707621 + 0.0805361i
\(243\) 1.00000 0.0641500
\(244\) −1.09006 + 4.72683i −0.0697842 + 0.302604i
\(245\) 6.62897i 0.423509i
\(246\) 1.05630 9.28104i 0.0673471 0.591737i
\(247\) −29.2670 −1.86222
\(248\) −9.85192 3.48470i −0.625597 0.221279i
\(249\) 14.6510i 0.928468i
\(250\) 1.37874 12.1142i 0.0871994 0.766167i
\(251\) −4.16214 −0.262712 −0.131356 0.991335i \(-0.541933\pi\)
−0.131356 + 0.991335i \(0.541933\pi\)
\(252\) −0.0489480 0.0112880i −0.00308343 0.000711077i
\(253\) 7.22076i 0.453966i
\(254\) −2.92832 + 25.7294i −0.183739 + 1.61440i
\(255\) 1.97470i 0.123661i
\(256\) 9.86284 + 12.5986i 0.616428 + 0.787412i
\(257\) 5.06462 0.315923 0.157961 0.987445i \(-0.449508\pi\)
0.157961 + 0.987445i \(0.449508\pi\)
\(258\) −3.17237 0.361055i −0.197503 0.0224783i
\(259\) −0.146324 −0.00909212
\(260\) 10.8744 + 2.50776i 0.674399 + 0.155524i
\(261\) 5.86732 0.363178
\(262\) −0.137289 + 1.20628i −0.00848176 + 0.0745240i
\(263\) 23.1973i 1.43040i −0.698918 0.715202i \(-0.746335\pi\)
0.698918 0.715202i \(-0.253665\pi\)
\(264\) 4.74458 + 1.67820i 0.292008 + 0.103286i
\(265\) 7.04719 0.432905
\(266\) 0.0199530 0.175314i 0.00122339 0.0107492i
\(267\) −9.99659 −0.611782
\(268\) 13.0646 + 9.86489i 0.798048 + 0.602594i
\(269\) 23.2052 1.41485 0.707424 0.706789i \(-0.249857\pi\)
0.707424 + 0.706789i \(0.249857\pi\)
\(270\) 0.151460 1.33078i 0.00921754 0.0809889i
\(271\) 30.7842 1.87000 0.935002 0.354642i \(-0.115397\pi\)
0.935002 + 0.354642i \(0.115397\pi\)
\(272\) 7.49787 + 3.65245i 0.454625 + 0.221462i
\(273\) 0.147977i 0.00895599i
\(274\) −3.12530 + 27.4600i −0.188806 + 1.65892i
\(275\) −7.30055 −0.440240
\(276\) 1.82387 7.90882i 0.109784 0.476055i
\(277\) 16.3644 0.983244 0.491622 0.870809i \(-0.336404\pi\)
0.491622 + 0.870809i \(0.336404\pi\)
\(278\) 4.47976 + 0.509852i 0.268678 + 0.0305789i
\(279\) 3.69465 0.221193
\(280\) −0.0224355 + 0.0634295i −0.00134078 + 0.00379064i
\(281\) 4.90280i 0.292477i −0.989249 0.146238i \(-0.953283\pi\)
0.989249 0.146238i \(-0.0467166\pi\)
\(282\) 1.82959 16.0755i 0.108951 0.957283i
\(283\) 4.94961i 0.294223i 0.989120 + 0.147112i \(0.0469977\pi\)
−0.989120 + 0.147112i \(0.953002\pi\)
\(284\) 0.820295 3.55704i 0.0486756 0.211071i
\(285\) 4.70465 0.278679
\(286\) 1.67648 14.7302i 0.0991323 0.871014i
\(287\) 0.165895i 0.00979246i
\(288\) −4.77279 3.03653i −0.281239 0.178929i
\(289\) −12.6526 −0.744270
\(290\) 0.888663 7.80813i 0.0521841 0.458509i
\(291\) 3.04196i 0.178323i
\(292\) −17.7006 4.08197i −1.03585 0.238879i
\(293\) 11.7129 0.684274 0.342137 0.939650i \(-0.388849\pi\)
0.342137 + 0.939650i \(0.388849\pi\)
\(294\) 9.83511 + 1.11936i 0.573595 + 0.0652823i
\(295\) −2.39917 −0.139685
\(296\) −15.5348 5.49479i −0.902943 0.319378i
\(297\) −1.77930 −0.103246
\(298\) 4.47303 + 0.509087i 0.259116 + 0.0294906i
\(299\) −23.9096 −1.38273
\(300\) 7.99620 + 1.84402i 0.461661 + 0.106465i
\(301\) −0.0567048 −0.00326841
\(302\) −1.53265 + 13.4665i −0.0881941 + 0.774907i
\(303\) 12.2472i 0.703584i
\(304\) 8.70180 17.8634i 0.499083 1.02454i
\(305\) −2.29709 −0.131531
\(306\) −2.92978 0.333446i −0.167485 0.0190618i
\(307\) 11.7010i 0.667813i 0.942606 + 0.333907i \(0.108367\pi\)
−0.942606 + 0.333907i \(0.891633\pi\)
\(308\) 0.0870933 + 0.0200848i 0.00496260 + 0.00114444i
\(309\) 5.90791i 0.336089i
\(310\) 0.559590 4.91677i 0.0317826 0.279254i
\(311\) 9.01428 0.511153 0.255577 0.966789i \(-0.417735\pi\)
0.255577 + 0.966789i \(0.417735\pi\)
\(312\) −5.55688 + 15.7103i −0.314596 + 0.889423i
\(313\) 14.3607i 0.811717i 0.913936 + 0.405859i \(0.133027\pi\)
−0.913936 + 0.405859i \(0.866973\pi\)
\(314\) 0.695821 + 0.0791931i 0.0392674 + 0.00446912i
\(315\) 0.0237872i 0.00134026i
\(316\) 25.1449 + 5.79871i 1.41451 + 0.326203i
\(317\) 28.4682 1.59893 0.799465 0.600712i \(-0.205116\pi\)
0.799465 + 0.600712i \(0.205116\pi\)
\(318\) −1.18998 + 10.4556i −0.0667307 + 0.586321i
\(319\) −10.4397 −0.584513
\(320\) −4.76384 + 5.89163i −0.266307 + 0.329352i
\(321\) 3.36968i 0.188077i
\(322\) 0.0163005 0.143222i 0.000908390 0.00798146i
\(323\) 10.3575i 0.576308i
\(324\) 1.94885 + 0.449428i 0.108269 + 0.0249682i
\(325\) 24.1737i 1.34092i
\(326\) 2.92566 25.7060i 0.162038 1.42372i
\(327\) 10.9353i 0.604725i
\(328\) 6.22973 17.6126i 0.343979 0.972494i
\(329\) 0.287343i 0.0158417i
\(330\) −0.269493 + 2.36786i −0.0148351 + 0.130347i
\(331\) 12.1555 0.668126 0.334063 0.942551i \(-0.391580\pi\)
0.334063 + 0.942551i \(0.391580\pi\)
\(332\) 6.58457 28.5526i 0.361375 1.56703i
\(333\) 5.82584 0.319254
\(334\) 1.56699 13.7682i 0.0857420 0.753362i
\(335\) −3.16173 + 7.07813i −0.172744 + 0.386719i
\(336\) −0.0903191 0.0439972i −0.00492731 0.00240025i
\(337\) 24.8528i 1.35382i 0.736066 + 0.676910i \(0.236681\pi\)
−0.736066 + 0.676910i \(0.763319\pi\)
\(338\) 30.5081 + 3.47220i 1.65942 + 0.188863i
\(339\) 12.5428i 0.681234i
\(340\) −0.887488 + 3.84840i −0.0481308 + 0.208709i
\(341\) −6.57390 −0.355997
\(342\) −0.794421 + 6.98009i −0.0429574 + 0.377440i
\(343\) 0.351613 0.0189853
\(344\) −6.02020 2.12939i −0.324587 0.114809i
\(345\) 3.84344 0.206924
\(346\) −5.79379 0.659406i −0.311476 0.0354499i
\(347\) 1.31925 0.0708212 0.0354106 0.999373i \(-0.488726\pi\)
0.0354106 + 0.999373i \(0.488726\pi\)
\(348\) 11.4345 + 2.63694i 0.612955 + 0.141355i
\(349\) 8.84302 0.473356 0.236678 0.971588i \(-0.423941\pi\)
0.236678 + 0.971588i \(0.423941\pi\)
\(350\) 0.144805 + 0.0164806i 0.00774013 + 0.000880924i
\(351\) 5.89167i 0.314474i
\(352\) 8.49224 + 5.40290i 0.452638 + 0.287975i
\(353\) 8.19013i 0.435917i −0.975958 0.217958i \(-0.930060\pi\)
0.975958 0.217958i \(-0.0699397\pi\)
\(354\) 0.405120 3.55954i 0.0215319 0.189188i
\(355\) 1.72861 0.0917450
\(356\) −19.4819 4.49275i −1.03254 0.238115i
\(357\) −0.0523687 −0.00277164
\(358\) 4.81674 + 0.548205i 0.254573 + 0.0289735i
\(359\) 23.4837i 1.23942i 0.784829 + 0.619712i \(0.212751\pi\)
−0.784829 + 0.619712i \(0.787249\pi\)
\(360\) 0.893263 2.52542i 0.0470791 0.133102i
\(361\) −5.67637 −0.298756
\(362\) 27.6135 + 3.14276i 1.45133 + 0.165180i
\(363\) −7.83408 −0.411183
\(364\) −0.0665051 + 0.288385i −0.00348582 + 0.0151155i
\(365\) 8.60193i 0.450246i
\(366\) 0.387884 3.40810i 0.0202750 0.178144i
\(367\) −6.29768 −0.328736 −0.164368 0.986399i \(-0.552558\pi\)
−0.164368 + 0.986399i \(0.552558\pi\)
\(368\) 7.10889 14.5934i 0.370577 0.760734i
\(369\) 6.60505i 0.343845i
\(370\) 0.882379 7.75292i 0.0458727 0.403055i
\(371\) 0.186890i 0.00970283i
\(372\) 7.20032 + 1.66048i 0.373319 + 0.0860919i
\(373\) 16.1029i 0.833779i −0.908957 0.416890i \(-0.863120\pi\)
0.908957 0.416890i \(-0.136880\pi\)
\(374\) 5.21297 + 0.593301i 0.269556 + 0.0306789i
\(375\) 8.62131i 0.445202i
\(376\) 10.7904 30.5065i 0.556472 1.57325i
\(377\) 34.5683i 1.78036i
\(378\) 0.0352920 + 0.00401668i 0.00181523 + 0.000206595i
\(379\) −29.5997 −1.52044 −0.760218 0.649668i \(-0.774908\pi\)
−0.760218 + 0.649668i \(0.774908\pi\)
\(380\) 9.16866 + 2.11440i 0.470342 + 0.108467i
\(381\) 18.3109i 0.938094i
\(382\) 3.55296 + 0.404371i 0.181785 + 0.0206894i
\(383\) 29.7912 1.52226 0.761129 0.648601i \(-0.224645\pi\)
0.761129 + 0.648601i \(0.224645\pi\)
\(384\) −7.93675 8.06276i −0.405020 0.411451i
\(385\) 0.0423246i 0.00215706i
\(386\) 14.7006 + 1.67312i 0.748243 + 0.0851594i
\(387\) 2.25768 0.114765
\(388\) 1.36714 5.92831i 0.0694061 0.300965i
\(389\) 7.47432 0.378963 0.189481 0.981884i \(-0.439319\pi\)
0.189481 + 0.981884i \(0.439319\pi\)
\(390\) −7.84053 0.892350i −0.397021 0.0451859i
\(391\) 8.46152i 0.427918i
\(392\) 18.6641 + 6.60164i 0.942678 + 0.333433i
\(393\) 0.858472i 0.0433042i
\(394\) 3.50795 30.8222i 0.176728 1.55280i
\(395\) 12.2196i 0.614836i
\(396\) −3.46759 0.799669i −0.174253 0.0401849i
\(397\) 4.50959 0.226330 0.113165 0.993576i \(-0.463901\pi\)
0.113165 + 0.993576i \(0.463901\pi\)
\(398\) 2.82437 24.8160i 0.141573 1.24391i
\(399\) 0.124766i 0.00624613i
\(400\) 14.7546 + 7.18744i 0.737732 + 0.359372i
\(401\) 33.5008i 1.67295i 0.548004 + 0.836476i \(0.315388\pi\)
−0.548004 + 0.836476i \(0.684612\pi\)
\(402\) −9.96762 5.88613i −0.497140 0.293573i
\(403\) 21.7676i 1.08432i
\(404\) 5.50424 23.8680i 0.273846 1.18748i
\(405\) 0.947080i 0.0470608i
\(406\) 0.207070 + 0.0235671i 0.0102767 + 0.00116962i
\(407\) −10.3659 −0.513820
\(408\) −5.55984 1.96656i −0.275253 0.0973594i
\(409\) 23.1180i 1.14311i 0.820564 + 0.571555i \(0.193659\pi\)
−0.820564 + 0.571555i \(0.806341\pi\)
\(410\) 8.78989 + 1.00040i 0.434102 + 0.0494062i
\(411\) 19.5425i 0.963962i
\(412\) 2.65518 11.5136i 0.130811 0.567236i
\(413\) 0.0636254i 0.00313080i
\(414\) −0.648998 + 5.70235i −0.0318965 + 0.280255i
\(415\) 13.8757 0.681129
\(416\) −17.8902 + 28.1197i −0.877139 + 1.37868i
\(417\) −3.18812 −0.156123
\(418\) 1.41352 12.4197i 0.0691373 0.607467i
\(419\) 1.11408i 0.0544262i −0.999630 0.0272131i \(-0.991337\pi\)
0.999630 0.0272131i \(-0.00866327\pi\)
\(420\) 0.0106906 0.0463577i 0.000521650 0.00226202i
\(421\) −8.22429 −0.400827 −0.200414 0.979711i \(-0.564229\pi\)
−0.200414 + 0.979711i \(0.564229\pi\)
\(422\) 2.13587 18.7666i 0.103973 0.913543i
\(423\) 11.4405i 0.556255i
\(424\) −7.01813 + 19.8416i −0.340831 + 0.963593i
\(425\) 8.55501 0.414979
\(426\) −0.291891 + 2.56466i −0.0141421 + 0.124258i
\(427\) 0.0609184i 0.00294805i
\(428\) 1.51443 6.56701i 0.0732028 0.317428i
\(429\) 10.4831i 0.506127i
\(430\) 0.341948 3.00449i 0.0164902 0.144889i
\(431\) 3.87687i 0.186742i −0.995631 0.0933712i \(-0.970236\pi\)
0.995631 0.0933712i \(-0.0297643\pi\)
\(432\) 3.59603 + 1.75174i 0.173014 + 0.0842804i
\(433\) 19.7299i 0.948159i 0.880482 + 0.474080i \(0.157219\pi\)
−0.880482 + 0.474080i \(0.842781\pi\)
\(434\) 0.130392 + 0.0148402i 0.00625900 + 0.000712353i
\(435\) 5.55683i 0.266429i
\(436\) −4.91465 + 21.3113i −0.235369 + 1.02063i
\(437\) −20.1592 −0.964347
\(438\) 12.7623 + 1.45251i 0.609807 + 0.0694036i
\(439\) 22.7099i 1.08388i 0.840416 + 0.541941i \(0.182310\pi\)
−0.840416 + 0.541941i \(0.817690\pi\)
\(440\) −1.58939 + 4.49349i −0.0757710 + 0.214219i
\(441\) −6.99937 −0.333303
\(442\) −1.96455 + 17.2613i −0.0934442 + 0.821037i
\(443\) 30.8156 1.46409 0.732046 0.681255i \(-0.238565\pi\)
0.732046 + 0.681255i \(0.238565\pi\)
\(444\) 11.3537 + 2.61830i 0.538822 + 0.124259i
\(445\) 9.46758i 0.448806i
\(446\) 0.844486 7.41998i 0.0399876 0.351346i
\(447\) −3.18333 −0.150566
\(448\) −0.156245 0.126336i −0.00738187 0.00596881i
\(449\) −30.8425 −1.45555 −0.727774 0.685817i \(-0.759445\pi\)
−0.727774 + 0.685817i \(0.759445\pi\)
\(450\) −5.76535 0.656169i −0.271781 0.0309321i
\(451\) 11.7524i 0.553398i
\(452\) −5.63711 + 24.4441i −0.265147 + 1.14975i
\(453\) 9.58369i 0.450281i
\(454\) 0.480476 4.22164i 0.0225498 0.198132i
\(455\) −0.140146 −0.00657016
\(456\) −4.68526 + 13.2461i −0.219407 + 0.620306i
\(457\) 13.6098 0.636641 0.318321 0.947983i \(-0.396881\pi\)
0.318321 + 0.947983i \(0.396881\pi\)
\(458\) 2.68095 23.5559i 0.125273 1.10069i
\(459\) 2.08504 0.0973215
\(460\) 7.49029 + 1.72735i 0.349236 + 0.0805382i
\(461\) 16.1508 0.752219 0.376110 0.926575i \(-0.377262\pi\)
0.376110 + 0.926575i \(0.377262\pi\)
\(462\) −0.0627952 0.00714688i −0.00292150 0.000332503i
\(463\) −25.4577 −1.18312 −0.591560 0.806261i \(-0.701488\pi\)
−0.591560 + 0.806261i \(0.701488\pi\)
\(464\) 21.0991 + 10.2780i 0.979499 + 0.477144i
\(465\) 3.49913i 0.162268i
\(466\) −2.37560 + 20.8730i −0.110048 + 0.966922i
\(467\) 19.5912i 0.906574i −0.891365 0.453287i \(-0.850251\pi\)
0.891365 0.453287i \(-0.149749\pi\)
\(468\) 2.64788 11.4820i 0.122398 0.530754i
\(469\) −0.187710 0.0838484i −0.00866765 0.00387176i
\(470\) 15.2248 + 1.73277i 0.702268 + 0.0799268i
\(471\) −0.495196 −0.0228174
\(472\) 2.38928 6.75494i 0.109975 0.310921i
\(473\) −4.01710 −0.184707
\(474\) −18.1297 2.06339i −0.832726 0.0947746i
\(475\) 20.3820i 0.935189i
\(476\) −0.102059 0.0235360i −0.00467785 0.00107877i
\(477\) 7.44096i 0.340698i
\(478\) 35.4978 + 4.04010i 1.62363 + 0.184790i
\(479\) 11.1131i 0.507772i −0.967234 0.253886i \(-0.918291\pi\)
0.967234 0.253886i \(-0.0817088\pi\)
\(480\) 2.87583 4.52021i 0.131263 0.206319i
\(481\) 34.3239i 1.56503i
\(482\) 29.9443 + 3.40804i 1.36393 + 0.155232i
\(483\) 0.101927i 0.00463785i
\(484\) −15.2674 3.52086i −0.693975 0.160039i
\(485\) 2.88098 0.130818
\(486\) −1.40514 0.159923i −0.0637385 0.00725424i
\(487\) −2.88454 −0.130711 −0.0653556 0.997862i \(-0.520818\pi\)
−0.0653556 + 0.997862i \(0.520818\pi\)
\(488\) 2.28762 6.46754i 0.103556 0.292772i
\(489\) 18.2942i 0.827294i
\(490\) −1.06012 + 9.31464i −0.0478914 + 0.420792i
\(491\) 16.4591i 0.742788i 0.928475 + 0.371394i \(0.121120\pi\)
−0.928475 + 0.371394i \(0.878880\pi\)
\(492\) −2.96850 + 12.8723i −0.133830 + 0.580326i
\(493\) 12.2336 0.550975
\(494\) 41.1244 + 4.68046i 1.85027 + 0.210584i
\(495\) 1.68514i 0.0757415i
\(496\) 13.2861 + 6.47205i 0.596562 + 0.290604i
\(497\) 0.0458423i 0.00205631i
\(498\) −2.34302 + 20.5867i −0.104993 + 0.922513i
\(499\) −20.7269 −0.927864 −0.463932 0.885871i \(-0.653562\pi\)
−0.463932 + 0.885871i \(0.653562\pi\)
\(500\) −3.87466 + 16.8016i −0.173280 + 0.751392i
\(501\) 9.79844i 0.437762i
\(502\) 5.84840 + 0.665621i 0.261027 + 0.0297081i
\(503\) −27.2712 −1.21596 −0.607982 0.793951i \(-0.708021\pi\)
−0.607982 + 0.793951i \(0.708021\pi\)
\(504\) 0.0669737 + 0.0236891i 0.00298324 + 0.00105520i
\(505\) 11.5991 0.516153
\(506\) 1.15476 10.1462i 0.0513355 0.451054i
\(507\) −21.7117 −0.964253
\(508\) 8.22942 35.6851i 0.365121 1.58327i
\(509\) −27.3306 −1.21141 −0.605704 0.795690i \(-0.707108\pi\)
−0.605704 + 0.795690i \(0.707108\pi\)
\(510\) 0.315800 2.77474i 0.0139839 0.122868i
\(511\) 0.228121 0.0100915
\(512\) −11.8439 19.2801i −0.523431 0.852068i
\(513\) 4.96753i 0.219322i
\(514\) −7.11652 0.809948i −0.313896 0.0357253i
\(515\) 5.59527 0.246557
\(516\) 4.39989 + 1.01467i 0.193694 + 0.0446682i
\(517\) 20.3561i 0.895259i
\(518\) 0.205606 + 0.0234005i 0.00903380 + 0.00102816i
\(519\) 4.12328 0.180992
\(520\) −14.8790 5.26281i −0.652486 0.230790i
\(521\) 37.7366i 1.65327i 0.562737 + 0.826636i \(0.309748\pi\)
−0.562737 + 0.826636i \(0.690252\pi\)
\(522\) −8.24442 0.938318i −0.360849 0.0410691i
\(523\) 0.772841i 0.0337940i −0.999857 0.0168970i \(-0.994621\pi\)
0.999857 0.0168970i \(-0.00537873\pi\)
\(524\) 0.385822 1.67303i 0.0168547 0.0730868i
\(525\) −0.103053 −0.00449762
\(526\) −3.70977 + 32.5954i −0.161754 + 1.42123i
\(527\) 7.70350 0.335570
\(528\) −6.39842 3.11687i −0.278456 0.135644i
\(529\) 6.53102 0.283957
\(530\) −9.90230 1.12701i −0.430128 0.0489540i
\(531\) 2.53323i 0.109933i
\(532\) −0.0560735 + 0.243151i −0.00243109 + 0.0105419i
\(533\) 38.9148 1.68559
\(534\) 14.0466 + 1.59868i 0.607857 + 0.0691817i
\(535\) 3.19136 0.137975
\(536\) −16.7800 15.9509i −0.724786 0.688974i
\(537\) −3.42794 −0.147926
\(538\) −32.6067 3.71104i −1.40577 0.159994i
\(539\) 12.4540 0.536432
\(540\) −0.425645 + 1.84572i −0.0183168 + 0.0794270i
\(541\) 37.0313i 1.59210i −0.605230 0.796051i \(-0.706919\pi\)
0.605230 0.796051i \(-0.293081\pi\)
\(542\) −43.2561 4.92309i −1.85801 0.211465i
\(543\) −19.6517 −0.843337
\(544\) −9.95147 6.33129i −0.426666 0.271452i
\(545\) −10.3566 −0.443630
\(546\) 0.0236649 0.207929i 0.00101276 0.00889854i
\(547\) −36.4076 −1.55667 −0.778337 0.627846i \(-0.783937\pi\)
−0.778337 + 0.627846i \(0.783937\pi\)
\(548\) 8.78297 38.0855i 0.375190 1.62693i
\(549\) 2.42545i 0.103516i
\(550\) 10.2583 + 1.16752i 0.437416 + 0.0497834i
\(551\) 29.1461i 1.24167i
\(552\) −3.82760 + 10.8213i −0.162913 + 0.460587i
\(553\) −0.324061 −0.0137805
\(554\) −22.9944 2.61704i −0.976937 0.111188i
\(555\) 5.51754i 0.234206i
\(556\) −6.21316 1.43283i −0.263497 0.0607655i
\(557\) −16.4941 −0.698875 −0.349438 0.936960i \(-0.613627\pi\)
−0.349438 + 0.936960i \(0.613627\pi\)
\(558\) −5.19151 0.590858i −0.219774 0.0250130i
\(559\) 13.3015i 0.562594i
\(560\) 0.0416689 0.0855395i 0.00176083 0.00361470i
\(561\) −3.70992 −0.156633
\(562\) −0.784069 + 6.88913i −0.0330740 + 0.290601i
\(563\) 18.8664 0.795123 0.397561 0.917576i \(-0.369857\pi\)
0.397561 + 0.917576i \(0.369857\pi\)
\(564\) −5.14168 + 22.2958i −0.216504 + 0.938822i
\(565\) −11.8791 −0.499757
\(566\) 0.791554 6.95490i 0.0332715 0.292336i
\(567\) −0.0251164 −0.00105479
\(568\) −1.72148 + 4.86696i −0.0722318 + 0.204213i
\(569\) 30.7310 1.28831 0.644156 0.764894i \(-0.277209\pi\)
0.644156 + 0.764894i \(0.277209\pi\)
\(570\) −6.61070 0.752381i −0.276892 0.0315138i
\(571\) 40.3913i 1.69032i 0.534512 + 0.845161i \(0.320495\pi\)
−0.534512 + 0.845161i \(0.679505\pi\)
\(572\) −4.71138 + 20.4299i −0.196993 + 0.854217i
\(573\) −2.52854 −0.105631
\(574\) −0.0265303 + 0.233106i −0.00110736 + 0.00972965i
\(575\) 16.6509i 0.694393i
\(576\) 6.22084 + 5.03003i 0.259202 + 0.209584i
\(577\) 27.5479i 1.14683i 0.819264 + 0.573416i \(0.194382\pi\)
−0.819264 + 0.573416i \(0.805618\pi\)
\(578\) 17.7787 + 2.02344i 0.739496 + 0.0841639i
\(579\) −10.4620 −0.434787
\(580\) −2.49740 + 10.8294i −0.103699 + 0.449667i
\(581\) 0.367979i 0.0152664i
\(582\) −0.486478 + 4.27438i −0.0201652 + 0.177179i
\(583\) 13.2397i 0.548333i
\(584\) 24.2190 + 8.56647i 1.00219 + 0.354483i
\(585\) 5.57988 0.230700
\(586\) −16.4583 1.87316i −0.679885 0.0773794i
\(587\) −0.747463 −0.0308511 −0.0154255 0.999881i \(-0.504910\pi\)
−0.0154255 + 0.999881i \(0.504910\pi\)
\(588\) −13.6407 3.14571i −0.562534 0.129727i
\(589\) 18.3533i 0.756234i
\(590\) 3.37117 + 0.383682i 0.138789 + 0.0157959i
\(591\) 21.9353i 0.902297i
\(592\) 20.9499 + 10.2053i 0.861035 + 0.419436i
\(593\) 0.417184i 0.0171317i −0.999963 0.00856585i \(-0.997273\pi\)
0.999963 0.00856585i \(-0.00272663\pi\)
\(594\) 2.50017 + 0.284551i 0.102583 + 0.0116753i
\(595\) 0.0495974i 0.00203329i
\(596\) −6.20383 1.43068i −0.254119 0.0586029i
\(597\) 17.6608i 0.722809i
\(598\) 33.5963 + 3.82368i 1.37386 + 0.156362i
\(599\) −32.1017 −1.31164 −0.655820 0.754917i \(-0.727677\pi\)
−0.655820 + 0.754917i \(0.727677\pi\)
\(600\) −10.9409 3.86989i −0.446661 0.157988i
\(601\) −15.4178 −0.628904 −0.314452 0.949273i \(-0.601821\pi\)
−0.314452 + 0.949273i \(0.601821\pi\)
\(602\) 0.0796783 + 0.00906838i 0.00324744 + 0.000369600i
\(603\) 7.47363 + 3.33840i 0.304350 + 0.135950i
\(604\) 4.30718 18.6772i 0.175257 0.759964i
\(605\) 7.41951i 0.301646i
\(606\) −1.95861 + 17.2091i −0.0795630 + 0.699071i
\(607\) 20.1129i 0.816359i 0.912902 + 0.408179i \(0.133836\pi\)
−0.912902 + 0.408179i \(0.866164\pi\)
\(608\) −15.0840 + 23.7090i −0.611738 + 0.961526i
\(609\) −0.147366 −0.00597156
\(610\) 3.22774 + 0.367357i 0.130687 + 0.0148739i
\(611\) 67.4035 2.72686
\(612\) 4.06344 + 0.937077i 0.164255 + 0.0378791i
\(613\) 24.5352 0.990969 0.495485 0.868617i \(-0.334991\pi\)
0.495485 + 0.868617i \(0.334991\pi\)
\(614\) 1.87126 16.4416i 0.0755180 0.663530i
\(615\) −6.25551 −0.252247
\(616\) −0.119166 0.0421501i −0.00480135 0.00169828i
\(617\) −33.2831 −1.33993 −0.669963 0.742394i \(-0.733690\pi\)
−0.669963 + 0.742394i \(0.733690\pi\)
\(618\) −0.944809 + 8.30146i −0.0380058 + 0.333934i
\(619\) 39.5688i 1.59040i 0.606346 + 0.795201i \(0.292635\pi\)
−0.606346 + 0.795201i \(0.707365\pi\)
\(620\) −1.57261 + 6.81928i −0.0631575 + 0.273869i
\(621\) 4.05820i 0.162850i
\(622\) −12.6663 1.44159i −0.507874 0.0578024i
\(623\) 0.251078 0.0100592
\(624\) 10.3206 21.1866i 0.413157 0.848143i
\(625\) 12.3501 0.494005
\(626\) 2.29661 20.1789i 0.0917909 0.806510i
\(627\) 8.83874i 0.352985i
\(628\) −0.965062 0.222555i −0.0385102 0.00888091i
\(629\) 12.1471 0.484338
\(630\) −0.00380411 + 0.0334244i −0.000151560 + 0.00133166i
\(631\) 28.0832 1.11797 0.558987 0.829176i \(-0.311190\pi\)
0.558987 + 0.829176i \(0.311190\pi\)
\(632\) −34.4048 12.1692i −1.36855 0.484066i
\(633\) 13.3556i 0.530839i
\(634\) −40.0018 4.55270i −1.58867 0.180811i
\(635\) 17.3419 0.688191
\(636\) 3.34418 14.5013i 0.132605 0.575014i
\(637\) 41.2380i 1.63391i
\(638\) 14.6693 + 1.66955i 0.580764 + 0.0660982i
\(639\) 1.82520i 0.0722037i
\(640\) 7.63608 7.51674i 0.301843 0.297125i
\(641\) 20.4561i 0.807969i 0.914766 + 0.403985i \(0.132375\pi\)
−0.914766 + 0.403985i \(0.867625\pi\)
\(642\) −0.538889 + 4.73488i −0.0212682 + 0.186871i
\(643\) 1.91129i 0.0753740i −0.999290 0.0376870i \(-0.988001\pi\)
0.999290 0.0376870i \(-0.0119990\pi\)
\(644\) −0.0458090 + 0.198641i −0.00180513 + 0.00782754i
\(645\) 2.13821i 0.0841919i
\(646\) −1.65640 + 14.5538i −0.0651703 + 0.572611i
\(647\) −12.7036 −0.499429 −0.249714 0.968320i \(-0.580337\pi\)
−0.249714 + 0.968320i \(0.580337\pi\)
\(648\) −2.66654 0.943176i −0.104751 0.0370515i
\(649\) 4.50738i 0.176930i
\(650\) −3.86593 + 33.9675i −0.151634 + 1.33232i
\(651\) −0.0927961 −0.00363697
\(652\) −8.22195 + 35.6527i −0.321996 + 1.39627i
\(653\) 42.9720i 1.68162i −0.541327 0.840812i \(-0.682078\pi\)
0.541327 0.840812i \(-0.317922\pi\)
\(654\) 1.74881 15.3657i 0.0683838 0.600846i
\(655\) 0.813042 0.0317682
\(656\) −11.5703 + 23.7520i −0.451745 + 0.927358i
\(657\) −9.08258 −0.354345
\(658\) −0.0459527 + 0.403758i −0.00179142 + 0.0157401i
\(659\) 13.7403i 0.535245i −0.963524 0.267623i \(-0.913762\pi\)
0.963524 0.267623i \(-0.0862381\pi\)
\(660\) 0.757351 3.28409i 0.0294798 0.127833i
\(661\) 13.7809i 0.536015i 0.963417 + 0.268008i \(0.0863653\pi\)
−0.963417 + 0.268008i \(0.913635\pi\)
\(662\) −17.0802 1.94394i −0.663841 0.0755533i
\(663\) 12.2844i 0.477086i
\(664\) −13.8185 + 39.0674i −0.536260 + 1.51611i
\(665\) −0.118164 −0.00458219
\(666\) −8.18613 0.931684i −0.317206 0.0361020i
\(667\) 23.8108i 0.921957i
\(668\) −4.40370 + 19.0957i −0.170384 + 0.738834i
\(669\) 5.28059i 0.204159i
\(670\) 5.57463 9.44014i 0.215367 0.364704i
\(671\) 4.31560i 0.166602i
\(672\) 0.119875 + 0.0762664i 0.00462428 + 0.00294204i
\(673\) 12.7527i 0.491581i −0.969323 0.245791i \(-0.920952\pi\)
0.969323 0.245791i \(-0.0790476\pi\)
\(674\) 3.97453 34.9217i 0.153093 1.34514i
\(675\) 4.10304 0.157926
\(676\) −42.3129 9.75787i −1.62742 0.375303i
\(677\) 4.49207i 0.172644i 0.996267 + 0.0863220i \(0.0275114\pi\)
−0.996267 + 0.0863220i \(0.972489\pi\)
\(678\) 2.00589 17.6245i 0.0770356 0.676864i
\(679\) 0.0764028i 0.00293207i
\(680\) 1.86249 5.26562i 0.0714233 0.201927i
\(681\) 3.00443i 0.115130i
\(682\) 9.23726 + 1.05132i 0.353713 + 0.0402570i
\(683\) 12.7534 0.487996 0.243998 0.969776i \(-0.421541\pi\)
0.243998 + 0.969776i \(0.421541\pi\)
\(684\) 2.23255 9.68097i 0.0853636 0.370161i
\(685\) 18.5084 0.707168
\(686\) −0.494066 0.0562309i −0.0188635 0.00214691i
\(687\) 16.7641i 0.639589i
\(688\) 8.11869 + 3.95487i 0.309522 + 0.150778i
\(689\) −43.8397 −1.67016
\(690\) −5.40058 0.614653i −0.205597 0.0233995i
\(691\) 14.3784i 0.546982i −0.961875 0.273491i \(-0.911822\pi\)
0.961875 0.273491i \(-0.0881784\pi\)
\(692\) 8.03565 + 1.85312i 0.305470 + 0.0704450i
\(693\) 0.0446896 0.00169762
\(694\) −1.85374 0.210978i −0.0703669 0.00800863i
\(695\) 3.01940i 0.114533i
\(696\) −15.6454 5.53392i −0.593039 0.209763i
\(697\) 13.7718i 0.521645i
\(698\) −12.4257 1.41420i −0.470320 0.0535283i
\(699\) 14.8547i 0.561857i
\(700\) −0.200836 0.0463151i −0.00759087 0.00175055i
\(701\) 18.2445i 0.689084i 0.938771 + 0.344542i \(0.111966\pi\)
−0.938771 + 0.344542i \(0.888034\pi\)
\(702\) −0.942211 + 8.27863i −0.0355615 + 0.312457i
\(703\) 28.9400i 1.09149i
\(704\) −11.0688 8.94994i −0.417169 0.337314i
\(705\) −10.8351 −0.408072
\(706\) −1.30979 + 11.5083i −0.0492945 + 0.433120i
\(707\) 0.307605i 0.0115687i
\(708\) −1.13850 + 4.93688i −0.0427876 + 0.185539i
\(709\) 9.58820 0.360092 0.180046 0.983658i \(-0.442375\pi\)
0.180046 + 0.983658i \(0.442375\pi\)
\(710\) −2.42894 0.276444i −0.0911565 0.0103748i
\(711\) 12.9024 0.483878
\(712\) 26.6563 + 9.42855i 0.998987 + 0.353350i
\(713\) 14.9936i 0.561516i
\(714\) 0.0735855 + 0.00837494i 0.00275387 + 0.000313424i
\(715\) −9.92830 −0.371297
\(716\) −6.68054 1.54061i −0.249663 0.0575754i
\(717\) −25.2628 −0.943457
\(718\) 3.75558 32.9980i 0.140157 1.23147i
\(719\) 25.6628i 0.957063i 0.878070 + 0.478531i \(0.158831\pi\)
−0.878070 + 0.478531i \(0.841169\pi\)
\(720\) −1.65903 + 3.40573i −0.0618286 + 0.126924i
\(721\) 0.148385i 0.00552615i
\(722\) 7.97610 + 0.907780i 0.296840 + 0.0337841i
\(723\) −21.3105 −0.792547
\(724\) −38.2983 8.83205i −1.42334 0.328240i
\(725\) 24.0739 0.894081
\(726\) 11.0080 + 1.25285i 0.408545 + 0.0464975i
\(727\) −2.96124 −0.109826 −0.0549131 0.998491i \(-0.517488\pi\)
−0.0549131 + 0.998491i \(0.517488\pi\)
\(728\) 0.139569 0.394587i 0.00517275 0.0146244i
\(729\) 1.00000 0.0370370
\(730\) −1.37564 + 12.0869i −0.0509149 + 0.447358i
\(731\) 4.70737 0.174108
\(732\) −1.09006 + 4.72683i −0.0402899 + 0.174709i
\(733\) 12.9440i 0.478097i 0.971008 + 0.239049i \(0.0768355\pi\)
−0.971008 + 0.239049i \(0.923164\pi\)
\(734\) 8.84913 + 1.00714i 0.326627 + 0.0371743i
\(735\) 6.62897i 0.244513i
\(736\) −12.3228 + 19.3689i −0.454225 + 0.713948i
\(737\) −13.2978 5.94002i −0.489832 0.218803i
\(738\) 1.05630 9.28104i 0.0388829 0.341640i
\(739\) 29.5210 1.08595 0.542974 0.839749i \(-0.317298\pi\)
0.542974 + 0.839749i \(0.317298\pi\)
\(740\) −2.47974 + 10.7528i −0.0911569 + 0.395283i
\(741\) −29.2670 −1.07515
\(742\) 0.0298879 0.262607i 0.00109722 0.00964060i
\(743\) 43.6088i 1.59985i 0.600099 + 0.799926i \(0.295128\pi\)
−0.600099 + 0.799926i \(0.704872\pi\)
\(744\) −9.85192 3.48470i −0.361189 0.127755i
\(745\) 3.01487i 0.110456i
\(746\) −2.57523 + 22.6269i −0.0942858 + 0.828431i
\(747\) 14.6510i 0.536051i
\(748\) −7.23008 1.66734i −0.264358 0.0609641i
\(749\) 0.0846342i 0.00309246i
\(750\) 1.37874 12.1142i 0.0503446 0.442347i
\(751\) 47.3689i 1.72852i −0.503049 0.864258i \(-0.667788\pi\)
0.503049 0.864258i \(-0.332212\pi\)
\(752\) −20.0407 + 41.1403i −0.730810 + 1.50023i
\(753\) −4.16214 −0.151677
\(754\) −5.52826 + 48.5734i −0.201327 + 1.76894i
\(755\) 9.07653 0.330329
\(756\) −0.0489480 0.0112880i −0.00178022 0.000410541i
\(757\) 12.6050i 0.458135i −0.973411 0.229067i \(-0.926432\pi\)
0.973411 0.229067i \(-0.0735676\pi\)
\(758\) 41.5918 + 4.73367i 1.51068 + 0.171935i
\(759\) 7.22076i 0.262097i
\(760\) −12.5451 4.43731i −0.455060 0.160958i
\(761\) −37.0014 −1.34130 −0.670649 0.741774i \(-0.733984\pi\)
−0.670649 + 0.741774i \(0.733984\pi\)
\(762\) −2.92832 + 25.7294i −0.106082 + 0.932076i
\(763\) 0.274656i 0.00994320i
\(764\) −4.92774 1.13640i −0.178279 0.0411134i
\(765\) 1.97470i 0.0713956i
\(766\) −41.8608 4.76428i −1.51249 0.172141i
\(767\) 14.9249 0.538908
\(768\) 9.86284 + 12.5986i 0.355895 + 0.454612i
\(769\) 43.1762i 1.55697i −0.627660 0.778487i \(-0.715987\pi\)
0.627660 0.778487i \(-0.284013\pi\)
\(770\) 0.00676867 0.0594721i 0.000243926 0.00214323i
\(771\) 5.06462 0.182398
\(772\) −20.3889 − </