Properties

Label 804.2.e.a.535.33
Level 804
Weight 2
Character 804.535
Analytic conductor 6.420
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(34\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 535.33
Character \(\chi\) = 804.535
Dual form 804.2.e.a.535.34

$q$-expansion

\(f(q)\) \(=\) \(q+(1.40514 - 0.159923i) q^{2} -1.00000 q^{3} +(1.94885 - 0.449428i) q^{4} +0.947080i q^{5} +(-1.40514 + 0.159923i) q^{6} +0.0251164 q^{7} +(2.66654 - 0.943176i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(1.40514 - 0.159923i) q^{2} -1.00000 q^{3} +(1.94885 - 0.449428i) q^{4} +0.947080i q^{5} +(-1.40514 + 0.159923i) q^{6} +0.0251164 q^{7} +(2.66654 - 0.943176i) q^{8} +1.00000 q^{9} +(0.151460 + 1.33078i) q^{10} +1.77930 q^{11} +(-1.94885 + 0.449428i) q^{12} -5.89167i q^{13} +(0.0352920 - 0.00401668i) q^{14} -0.947080i q^{15} +(3.59603 - 1.75174i) q^{16} +2.08504 q^{17} +(1.40514 - 0.159923i) q^{18} +4.96753i q^{19} +(0.425645 + 1.84572i) q^{20} -0.0251164 q^{21} +(2.50017 - 0.284551i) q^{22} +4.05820i q^{23} +(-2.66654 + 0.943176i) q^{24} +4.10304 q^{25} +(-0.942211 - 8.27863i) q^{26} -1.00000 q^{27} +(0.0489480 - 0.0112880i) q^{28} +5.86732 q^{29} +(-0.151460 - 1.33078i) q^{30} -3.69465 q^{31} +(4.77279 - 3.03653i) q^{32} -1.77930 q^{33} +(2.92978 - 0.333446i) q^{34} +0.0237872i q^{35} +(1.94885 - 0.449428i) q^{36} +5.82584 q^{37} +(0.794421 + 6.98009i) q^{38} +5.89167i q^{39} +(0.893263 + 2.52542i) q^{40} +6.60505i q^{41} +(-0.0352920 + 0.00401668i) q^{42} -2.25768 q^{43} +(3.46759 - 0.799669i) q^{44} +0.947080i q^{45} +(0.648998 + 5.70235i) q^{46} -11.4405i q^{47} +(-3.59603 + 1.75174i) q^{48} -6.99937 q^{49} +(5.76535 - 0.656169i) q^{50} -2.08504 q^{51} +(-2.64788 - 11.4820i) q^{52} -7.44096i q^{53} +(-1.40514 + 0.159923i) q^{54} +1.68514i q^{55} +(0.0669737 - 0.0236891i) q^{56} -4.96753i q^{57} +(8.24442 - 0.938318i) q^{58} -2.53323i q^{59} +(-0.425645 - 1.84572i) q^{60} +2.42545i q^{61} +(-5.19151 + 0.590858i) q^{62} +0.0251164 q^{63} +(6.22084 - 5.03003i) q^{64} +5.57988 q^{65} +(-2.50017 + 0.284551i) q^{66} +(-7.47363 - 3.33840i) q^{67} +(4.06344 - 0.937077i) q^{68} -4.05820i q^{69} +(0.00380411 + 0.0334244i) q^{70} +1.82520i q^{71} +(2.66654 - 0.943176i) q^{72} -9.08258 q^{73} +(8.18613 - 0.931684i) q^{74} -4.10304 q^{75} +(2.23255 + 9.68097i) q^{76} +0.0446896 q^{77} +(0.942211 + 8.27863i) q^{78} -12.9024 q^{79} +(1.65903 + 3.40573i) q^{80} +1.00000 q^{81} +(1.05630 + 9.28104i) q^{82} +14.6510i q^{83} +(-0.0489480 + 0.0112880i) q^{84} +1.97470i q^{85} +(-3.17237 + 0.361055i) q^{86} -5.86732 q^{87} +(4.74458 - 1.67820i) q^{88} -9.99659 q^{89} +(0.151460 + 1.33078i) q^{90} -0.147977i q^{91} +(1.82387 + 7.90882i) q^{92} +3.69465 q^{93} +(-1.82959 - 16.0755i) q^{94} -4.70465 q^{95} +(-4.77279 + 3.03653i) q^{96} -3.04196i q^{97} +(-9.83511 + 1.11936i) q^{98} +1.77930 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} + O(q^{10}) \) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} - 6q^{10} - 2q^{12} - 4q^{14} + 2q^{16} + 12q^{20} + 4q^{21} - 8q^{22} - 6q^{24} - 34q^{25} + 10q^{26} - 34q^{27} + 8q^{28} - 16q^{29} + 6q^{30} + 4q^{31} + 2q^{36} + 12q^{37} - 26q^{38} - 18q^{40} + 4q^{42} + 4q^{43} - 26q^{44} + 4q^{46} - 2q^{48} + 46q^{49} + 18q^{50} - 32q^{52} + 14q^{56} - 4q^{58} - 12q^{60} - 2q^{62} - 4q^{63} + 26q^{64} + 8q^{66} + 18q^{67} - 34q^{68} - 56q^{70} + 6q^{72} + 12q^{73} - 22q^{74} + 34q^{75} - 32q^{76} - 8q^{77} - 10q^{78} + 12q^{79} + 2q^{80} + 34q^{81} + 26q^{82} - 8q^{84} + 6q^{86} + 16q^{87} - 28q^{88} - 6q^{90} - 46q^{92} - 4q^{93} - 32q^{94} + 40q^{95} + 40q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40514 0.159923i 0.993586 0.113082i
\(3\) −1.00000 −0.577350
\(4\) 1.94885 0.449428i 0.974425 0.224714i
\(5\) 0.947080i 0.423547i 0.977319 + 0.211774i \(0.0679239\pi\)
−0.977319 + 0.211774i \(0.932076\pi\)
\(6\) −1.40514 + 0.159923i −0.573647 + 0.0652882i
\(7\) 0.0251164 0.00949309 0.00474654 0.999989i \(-0.498489\pi\)
0.00474654 + 0.999989i \(0.498489\pi\)
\(8\) 2.66654 0.943176i 0.942763 0.333463i
\(9\) 1.00000 0.333333
\(10\) 0.151460 + 1.33078i 0.0478957 + 0.420830i
\(11\) 1.77930 0.536480 0.268240 0.963352i \(-0.413558\pi\)
0.268240 + 0.963352i \(0.413558\pi\)
\(12\) −1.94885 + 0.449428i −0.562584 + 0.129739i
\(13\) 5.89167i 1.63405i −0.576599 0.817027i \(-0.695620\pi\)
0.576599 0.817027i \(-0.304380\pi\)
\(14\) 0.0352920 0.00401668i 0.00943220 0.00107350i
\(15\) 0.947080i 0.244535i
\(16\) 3.59603 1.75174i 0.899007 0.437934i
\(17\) 2.08504 0.505697 0.252849 0.967506i \(-0.418633\pi\)
0.252849 + 0.967506i \(0.418633\pi\)
\(18\) 1.40514 0.159923i 0.331195 0.0376941i
\(19\) 4.96753i 1.13963i 0.821773 + 0.569815i \(0.192985\pi\)
−0.821773 + 0.569815i \(0.807015\pi\)
\(20\) 0.425645 + 1.84572i 0.0951771 + 0.412715i
\(21\) −0.0251164 −0.00548084
\(22\) 2.50017 0.284551i 0.533039 0.0606664i
\(23\) 4.05820i 0.846193i 0.906085 + 0.423097i \(0.139057\pi\)
−0.906085 + 0.423097i \(0.860943\pi\)
\(24\) −2.66654 + 0.943176i −0.544305 + 0.192525i
\(25\) 4.10304 0.820608
\(26\) −0.942211 8.27863i −0.184783 1.62357i
\(27\) −1.00000 −0.192450
\(28\) 0.0489480 0.0112880i 0.00925030 0.00213323i
\(29\) 5.86732 1.08953 0.544767 0.838587i \(-0.316618\pi\)
0.544767 + 0.838587i \(0.316618\pi\)
\(30\) −0.151460 1.33078i −0.0276526 0.242967i
\(31\) −3.69465 −0.663579 −0.331789 0.943354i \(-0.607652\pi\)
−0.331789 + 0.943354i \(0.607652\pi\)
\(32\) 4.77279 3.03653i 0.843718 0.536787i
\(33\) −1.77930 −0.309737
\(34\) 2.92978 0.333446i 0.502454 0.0571855i
\(35\) 0.0237872i 0.00402077i
\(36\) 1.94885 0.449428i 0.324808 0.0749047i
\(37\) 5.82584 0.957762 0.478881 0.877880i \(-0.341043\pi\)
0.478881 + 0.877880i \(0.341043\pi\)
\(38\) 0.794421 + 6.98009i 0.128872 + 1.13232i
\(39\) 5.89167i 0.943422i
\(40\) 0.893263 + 2.52542i 0.141237 + 0.399305i
\(41\) 6.60505i 1.03154i 0.856728 + 0.515768i \(0.172493\pi\)
−0.856728 + 0.515768i \(0.827507\pi\)
\(42\) −0.0352920 + 0.00401668i −0.00544568 + 0.000619786i
\(43\) −2.25768 −0.344294 −0.172147 0.985071i \(-0.555070\pi\)
−0.172147 + 0.985071i \(0.555070\pi\)
\(44\) 3.46759 0.799669i 0.522759 0.120555i
\(45\) 0.947080i 0.141182i
\(46\) 0.648998 + 5.70235i 0.0956896 + 0.840765i
\(47\) 11.4405i 1.66877i −0.551185 0.834383i \(-0.685824\pi\)
0.551185 0.834383i \(-0.314176\pi\)
\(48\) −3.59603 + 1.75174i −0.519042 + 0.252841i
\(49\) −6.99937 −0.999910
\(50\) 5.76535 0.656169i 0.815344 0.0927963i
\(51\) −2.08504 −0.291964
\(52\) −2.64788 11.4820i −0.367195 1.59226i
\(53\) 7.44096i 1.02209i −0.859553 0.511047i \(-0.829258\pi\)
0.859553 0.511047i \(-0.170742\pi\)
\(54\) −1.40514 + 0.159923i −0.191216 + 0.0217627i
\(55\) 1.68514i 0.227225i
\(56\) 0.0669737 0.0236891i 0.00894973 0.00316559i
\(57\) 4.96753i 0.657966i
\(58\) 8.24442 0.938318i 1.08255 0.123207i
\(59\) 2.53323i 0.329798i −0.986310 0.164899i \(-0.947270\pi\)
0.986310 0.164899i \(-0.0527298\pi\)
\(60\) −0.425645 1.84572i −0.0549505 0.238281i
\(61\) 2.42545i 0.310547i 0.987872 + 0.155273i \(0.0496258\pi\)
−0.987872 + 0.155273i \(0.950374\pi\)
\(62\) −5.19151 + 0.590858i −0.659322 + 0.0750391i
\(63\) 0.0251164 0.00316436
\(64\) 6.22084 5.03003i 0.777605 0.628753i
\(65\) 5.57988 0.692099
\(66\) −2.50017 + 0.284551i −0.307750 + 0.0350258i
\(67\) −7.47363 3.33840i −0.913049 0.407850i
\(68\) 4.06344 0.937077i 0.492764 0.113637i
\(69\) 4.05820i 0.488550i
\(70\) 0.00380411 + 0.0334244i 0.000454679 + 0.00399498i
\(71\) 1.82520i 0.216611i 0.994118 + 0.108306i \(0.0345425\pi\)
−0.994118 + 0.108306i \(0.965458\pi\)
\(72\) 2.66654 0.943176i 0.314254 0.111154i
\(73\) −9.08258 −1.06304 −0.531518 0.847047i \(-0.678378\pi\)
−0.531518 + 0.847047i \(0.678378\pi\)
\(74\) 8.18613 0.931684i 0.951618 0.108306i
\(75\) −4.10304 −0.473778
\(76\) 2.23255 + 9.68097i 0.256091 + 1.11048i
\(77\) 0.0446896 0.00509285
\(78\) 0.942211 + 8.27863i 0.106684 + 0.937370i
\(79\) −12.9024 −1.45163 −0.725817 0.687888i \(-0.758538\pi\)
−0.725817 + 0.687888i \(0.758538\pi\)
\(80\) 1.65903 + 3.40573i 0.185486 + 0.380772i
\(81\) 1.00000 0.111111
\(82\) 1.05630 + 9.28104i 0.116649 + 1.02492i
\(83\) 14.6510i 1.60815i 0.594525 + 0.804077i \(0.297340\pi\)
−0.594525 + 0.804077i \(0.702660\pi\)
\(84\) −0.0489480 + 0.0112880i −0.00534066 + 0.00123162i
\(85\) 1.97470i 0.214187i
\(86\) −3.17237 + 0.361055i −0.342085 + 0.0389335i
\(87\) −5.86732 −0.629043
\(88\) 4.74458 1.67820i 0.505773 0.178896i
\(89\) −9.99659 −1.05964 −0.529818 0.848111i \(-0.677740\pi\)
−0.529818 + 0.848111i \(0.677740\pi\)
\(90\) 0.151460 + 1.33078i 0.0159652 + 0.140277i
\(91\) 0.147977i 0.0155122i
\(92\) 1.82387 + 7.90882i 0.190152 + 0.824551i
\(93\) 3.69465 0.383117
\(94\) −1.82959 16.0755i −0.188708 1.65806i
\(95\) −4.70465 −0.482687
\(96\) −4.77279 + 3.03653i −0.487121 + 0.309914i
\(97\) 3.04196i 0.308864i −0.988003 0.154432i \(-0.950645\pi\)
0.988003 0.154432i \(-0.0493547\pi\)
\(98\) −9.83511 + 1.11936i −0.993496 + 0.113072i
\(99\) 1.77930 0.178827
\(100\) 7.99620 1.84402i 0.799620 0.184402i
\(101\) 12.2472i 1.21864i −0.792923 0.609322i \(-0.791442\pi\)
0.792923 0.609322i \(-0.208558\pi\)
\(102\) −2.92978 + 0.333446i −0.290092 + 0.0330161i
\(103\) 5.90791i 0.582124i 0.956704 + 0.291062i \(0.0940086\pi\)
−0.956704 + 0.291062i \(0.905991\pi\)
\(104\) −5.55688 15.7103i −0.544897 1.54053i
\(105\) 0.0237872i 0.00232139i
\(106\) −1.18998 10.4556i −0.115581 1.01554i
\(107\) 3.36968i 0.325760i 0.986646 + 0.162880i \(0.0520783\pi\)
−0.986646 + 0.162880i \(0.947922\pi\)
\(108\) −1.94885 + 0.449428i −0.187528 + 0.0432463i
\(109\) 10.9353i 1.04741i 0.851898 + 0.523707i \(0.175451\pi\)
−0.851898 + 0.523707i \(0.824549\pi\)
\(110\) 0.269493 + 2.36786i 0.0256951 + 0.225767i
\(111\) −5.82584 −0.552964
\(112\) 0.0903191 0.0439972i 0.00853435 0.00415735i
\(113\) 12.5428i 1.17993i 0.807428 + 0.589966i \(0.200859\pi\)
−0.807428 + 0.589966i \(0.799141\pi\)
\(114\) −0.794421 6.98009i −0.0744043 0.653745i
\(115\) −3.84344 −0.358403
\(116\) 11.4345 2.63694i 1.06167 0.244834i
\(117\) 5.89167i 0.544685i
\(118\) −0.405120 3.55954i −0.0372944 0.327683i
\(119\) 0.0523687 0.00480063
\(120\) −0.893263 2.52542i −0.0815434 0.230539i
\(121\) −7.83408 −0.712189
\(122\) 0.387884 + 3.40810i 0.0351174 + 0.308555i
\(123\) 6.60505i 0.595557i
\(124\) −7.20032 + 1.66048i −0.646607 + 0.149115i
\(125\) 8.62131i 0.771113i
\(126\) 0.0352920 0.00401668i 0.00314407 0.000357834i
\(127\) 18.3109i 1.62483i 0.583082 + 0.812413i \(0.301846\pi\)
−0.583082 + 0.812413i \(0.698154\pi\)
\(128\) 7.93675 8.06276i 0.701516 0.712654i
\(129\) 2.25768 0.198778
\(130\) 7.84053 0.892350i 0.687660 0.0782643i
\(131\) 0.858472i 0.0750051i 0.999297 + 0.0375025i \(0.0119402\pi\)
−0.999297 + 0.0375025i \(0.988060\pi\)
\(132\) −3.46759 + 0.799669i −0.301815 + 0.0696022i
\(133\) 0.124766i 0.0108186i
\(134\) −11.0354 3.49572i −0.953313 0.301984i
\(135\) 0.947080i 0.0815117i
\(136\) 5.55984 1.96656i 0.476753 0.168631i
\(137\) 19.5425i 1.66963i −0.550529 0.834816i \(-0.685574\pi\)
0.550529 0.834816i \(-0.314426\pi\)
\(138\) −0.648998 5.70235i −0.0552464 0.485416i
\(139\) 3.18812 0.270413 0.135206 0.990817i \(-0.456830\pi\)
0.135206 + 0.990817i \(0.456830\pi\)
\(140\) 0.0106906 + 0.0463577i 0.000903524 + 0.00391794i
\(141\) 11.4405i 0.963463i
\(142\) 0.291891 + 2.56466i 0.0244949 + 0.215222i
\(143\) 10.4831i 0.876637i
\(144\) 3.59603 1.75174i 0.299669 0.145978i
\(145\) 5.55683i 0.461469i
\(146\) −12.7623 + 1.45251i −1.05622 + 0.120211i
\(147\) 6.99937 0.577298
\(148\) 11.3537 2.61830i 0.933267 0.215223i
\(149\) −3.18333 −0.260788 −0.130394 0.991462i \(-0.541624\pi\)
−0.130394 + 0.991462i \(0.541624\pi\)
\(150\) −5.76535 + 0.656169i −0.470739 + 0.0535760i
\(151\) 9.58369i 0.779910i 0.920834 + 0.389955i \(0.127509\pi\)
−0.920834 + 0.389955i \(0.872491\pi\)
\(152\) 4.68526 + 13.2461i 0.380024 + 1.07440i
\(153\) 2.08504 0.168566
\(154\) 0.0627952 0.00714688i 0.00506018 0.000575912i
\(155\) 3.49913i 0.281057i
\(156\) 2.64788 + 11.4820i 0.212000 + 0.919294i
\(157\) −0.495196 −0.0395209 −0.0197605 0.999805i \(-0.506290\pi\)
−0.0197605 + 0.999805i \(0.506290\pi\)
\(158\) −18.1297 + 2.06339i −1.44232 + 0.164154i
\(159\) 7.44096i 0.590106i
\(160\) 2.87583 + 4.52021i 0.227355 + 0.357354i
\(161\) 0.101927i 0.00803299i
\(162\) 1.40514 0.159923i 0.110398 0.0125647i
\(163\) 18.2942i 1.43292i −0.697630 0.716458i \(-0.745762\pi\)
0.697630 0.716458i \(-0.254238\pi\)
\(164\) 2.96850 + 12.8723i 0.231801 + 1.00515i
\(165\) 1.68514i 0.131188i
\(166\) 2.34302 + 20.5867i 0.181854 + 1.59784i
\(167\) 9.79844i 0.758226i −0.925350 0.379113i \(-0.876229\pi\)
0.925350 0.379113i \(-0.123771\pi\)
\(168\) −0.0669737 + 0.0236891i −0.00516713 + 0.00182766i
\(169\) −21.7117 −1.67013
\(170\) 0.315800 + 2.77474i 0.0242207 + 0.212813i
\(171\) 4.96753i 0.379877i
\(172\) −4.39989 + 1.01467i −0.335488 + 0.0773676i
\(173\) 4.12328 0.313487 0.156744 0.987639i \(-0.449900\pi\)
0.156744 + 0.987639i \(0.449900\pi\)
\(174\) −8.24442 + 0.938318i −0.625008 + 0.0711337i
\(175\) 0.103053 0.00779010
\(176\) 6.39842 3.11687i 0.482299 0.234943i
\(177\) 2.53323i 0.190409i
\(178\) −14.0466 + 1.59868i −1.05284 + 0.119826i
\(179\) 3.42794 0.256216 0.128108 0.991760i \(-0.459110\pi\)
0.128108 + 0.991760i \(0.459110\pi\)
\(180\) 0.425645 + 1.84572i 0.0317257 + 0.137572i
\(181\) −19.6517 −1.46070 −0.730351 0.683072i \(-0.760643\pi\)
−0.730351 + 0.683072i \(0.760643\pi\)
\(182\) −0.0236649 0.207929i −0.00175416 0.0154127i
\(183\) 2.42545i 0.179294i
\(184\) 3.82760 + 10.8213i 0.282174 + 0.797760i
\(185\) 5.51754i 0.405657i
\(186\) 5.19151 0.590858i 0.380660 0.0433238i
\(187\) 3.70992 0.271296
\(188\) −5.14168 22.2958i −0.374995 1.62609i
\(189\) −0.0251164 −0.00182695
\(190\) −6.61070 + 0.752381i −0.479591 + 0.0545834i
\(191\) 2.52854 0.182959 0.0914793 0.995807i \(-0.470840\pi\)
0.0914793 + 0.995807i \(0.470840\pi\)
\(192\) −6.22084 + 5.03003i −0.448950 + 0.363011i
\(193\) −10.4620 −0.753073 −0.376537 0.926402i \(-0.622885\pi\)
−0.376537 + 0.926402i \(0.622885\pi\)
\(194\) −0.486478 4.27438i −0.0349271 0.306883i
\(195\) −5.57988 −0.399584
\(196\) −13.6407 + 3.14571i −0.974337 + 0.224694i
\(197\) 21.9353i 1.56282i 0.624016 + 0.781412i \(0.285500\pi\)
−0.624016 + 0.781412i \(0.714500\pi\)
\(198\) 2.50017 0.284551i 0.177680 0.0202221i
\(199\) 17.6608i 1.25194i −0.779846 0.625971i \(-0.784703\pi\)
0.779846 0.625971i \(-0.215297\pi\)
\(200\) 10.9409 3.86989i 0.773639 0.273642i
\(201\) 7.47363 + 3.33840i 0.527149 + 0.235472i
\(202\) −1.95861 17.2091i −0.137807 1.21083i
\(203\) 0.147366 0.0103430
\(204\) −4.06344 + 0.937077i −0.284497 + 0.0656085i
\(205\) −6.25551 −0.436904
\(206\) 0.944809 + 8.30146i 0.0658280 + 0.578390i
\(207\) 4.05820i 0.282064i
\(208\) −10.3206 21.1866i −0.715608 1.46903i
\(209\) 8.83874i 0.611388i
\(210\) −0.00380411 0.0334244i −0.000262509 0.00230650i
\(211\) 13.3556i 0.919441i −0.888064 0.459720i \(-0.847950\pi\)
0.888064 0.459720i \(-0.152050\pi\)
\(212\) −3.34418 14.5013i −0.229679 0.995954i
\(213\) 1.82520i 0.125060i
\(214\) 0.538889 + 4.73488i 0.0368377 + 0.323670i
\(215\) 2.13821i 0.145825i
\(216\) −2.66654 + 0.943176i −0.181435 + 0.0641750i
\(217\) −0.0927961 −0.00629941
\(218\) 1.74881 + 15.3657i 0.118444 + 1.04070i
\(219\) 9.08258 0.613744
\(220\) 0.757351 + 3.28409i 0.0510606 + 0.221413i
\(221\) 12.2844i 0.826337i
\(222\) −8.18613 + 0.931684i −0.549417 + 0.0625305i
\(223\) 5.28059i 0.353614i −0.984246 0.176807i \(-0.943423\pi\)
0.984246 0.176807i \(-0.0565769\pi\)
\(224\) 0.119875 0.0762664i 0.00800949 0.00509577i
\(225\) 4.10304 0.273536
\(226\) 2.00589 + 17.6245i 0.133430 + 1.17236i
\(227\) 3.00443i 0.199411i −0.995017 0.0997054i \(-0.968210\pi\)
0.995017 0.0997054i \(-0.0317900\pi\)
\(228\) −2.23255 9.68097i −0.147854 0.641138i
\(229\) 16.7641i 1.10780i 0.832583 + 0.553900i \(0.186861\pi\)
−0.832583 + 0.553900i \(0.813139\pi\)
\(230\) −5.40058 + 0.614653i −0.356104 + 0.0405291i
\(231\) −0.0446896 −0.00294036
\(232\) 15.6454 5.53392i 1.02717 0.363320i
\(233\) 14.8547i 0.973164i −0.873635 0.486582i \(-0.838243\pi\)
0.873635 0.486582i \(-0.161757\pi\)
\(234\) −0.942211 8.27863i −0.0615943 0.541191i
\(235\) 10.8351 0.706801
\(236\) −1.13850 4.93688i −0.0741103 0.321363i
\(237\) 12.9024 0.838102
\(238\) 0.0735855 0.00837494i 0.00476984 0.000542867i
\(239\) 25.2628 1.63411 0.817057 0.576556i \(-0.195604\pi\)
0.817057 + 0.576556i \(0.195604\pi\)
\(240\) −1.65903 3.40573i −0.107090 0.219839i
\(241\) −21.3105 −1.37273 −0.686366 0.727257i \(-0.740795\pi\)
−0.686366 + 0.727257i \(0.740795\pi\)
\(242\) −11.0080 + 1.25285i −0.707621 + 0.0805361i
\(243\) −1.00000 −0.0641500
\(244\) 1.09006 + 4.72683i 0.0697842 + 0.302604i
\(245\) 6.62897i 0.423509i
\(246\) −1.05630 9.28104i −0.0673471 0.591737i
\(247\) 29.2670 1.86222
\(248\) −9.85192 + 3.48470i −0.625597 + 0.221279i
\(249\) 14.6510i 0.928468i
\(250\) 1.37874 + 12.1142i 0.0871994 + 0.766167i
\(251\) 4.16214 0.262712 0.131356 0.991335i \(-0.458067\pi\)
0.131356 + 0.991335i \(0.458067\pi\)
\(252\) 0.0489480 0.0112880i 0.00308343 0.000711077i
\(253\) 7.22076i 0.453966i
\(254\) 2.92832 + 25.7294i 0.183739 + 1.61440i
\(255\) 1.97470i 0.123661i
\(256\) 9.86284 12.5986i 0.616428 0.787412i
\(257\) 5.06462 0.315923 0.157961 0.987445i \(-0.449508\pi\)
0.157961 + 0.987445i \(0.449508\pi\)
\(258\) 3.17237 0.361055i 0.197503 0.0224783i
\(259\) 0.146324 0.00909212
\(260\) 10.8744 2.50776i 0.674399 0.155524i
\(261\) 5.86732 0.363178
\(262\) 0.137289 + 1.20628i 0.00848176 + 0.0745240i
\(263\) 23.1973i 1.43040i 0.698918 + 0.715202i \(0.253665\pi\)
−0.698918 + 0.715202i \(0.746335\pi\)
\(264\) −4.74458 + 1.67820i −0.292008 + 0.103286i
\(265\) 7.04719 0.432905
\(266\) 0.0199530 + 0.175314i 0.00122339 + 0.0107492i
\(267\) 9.99659 0.611782
\(268\) −16.0653 3.14717i −0.981347 0.192244i
\(269\) 23.2052 1.41485 0.707424 0.706789i \(-0.249857\pi\)
0.707424 + 0.706789i \(0.249857\pi\)
\(270\) −0.151460 1.33078i −0.00921754 0.0809889i
\(271\) −30.7842 −1.87000 −0.935002 0.354642i \(-0.884603\pi\)
−0.935002 + 0.354642i \(0.884603\pi\)
\(272\) 7.49787 3.65245i 0.454625 0.221462i
\(273\) 0.147977i 0.00895599i
\(274\) −3.12530 27.4600i −0.188806 1.65892i
\(275\) 7.30055 0.440240
\(276\) −1.82387 7.90882i −0.109784 0.476055i
\(277\) 16.3644 0.983244 0.491622 0.870809i \(-0.336404\pi\)
0.491622 + 0.870809i \(0.336404\pi\)
\(278\) 4.47976 0.509852i 0.268678 0.0305789i
\(279\) −3.69465 −0.221193
\(280\) 0.0224355 + 0.0634295i 0.00134078 + 0.00379064i
\(281\) 4.90280i 0.292477i −0.989249 0.146238i \(-0.953283\pi\)
0.989249 0.146238i \(-0.0467166\pi\)
\(282\) 1.82959 + 16.0755i 0.108951 + 0.957283i
\(283\) 4.94961i 0.294223i −0.989120 0.147112i \(-0.953002\pi\)
0.989120 0.147112i \(-0.0469977\pi\)
\(284\) 0.820295 + 3.55704i 0.0486756 + 0.211071i
\(285\) 4.70465 0.278679
\(286\) −1.67648 14.7302i −0.0991323 0.871014i
\(287\) 0.165895i 0.00979246i
\(288\) 4.77279 3.03653i 0.281239 0.178929i
\(289\) −12.6526 −0.744270
\(290\) 0.888663 + 7.80813i 0.0521841 + 0.458509i
\(291\) 3.04196i 0.178323i
\(292\) −17.7006 + 4.08197i −1.03585 + 0.238879i
\(293\) 11.7129 0.684274 0.342137 0.939650i \(-0.388849\pi\)
0.342137 + 0.939650i \(0.388849\pi\)
\(294\) 9.83511 1.11936i 0.573595 0.0652823i
\(295\) 2.39917 0.139685
\(296\) 15.5348 5.49479i 0.902943 0.319378i
\(297\) −1.77930 −0.103246
\(298\) −4.47303 + 0.509087i −0.259116 + 0.0294906i
\(299\) 23.9096 1.38273
\(300\) −7.99620 + 1.84402i −0.461661 + 0.106465i
\(301\) −0.0567048 −0.00326841
\(302\) 1.53265 + 13.4665i 0.0881941 + 0.774907i
\(303\) 12.2472i 0.703584i
\(304\) 8.70180 + 17.8634i 0.499083 + 1.02454i
\(305\) −2.29709 −0.131531
\(306\) 2.92978 0.333446i 0.167485 0.0190618i
\(307\) 11.7010i 0.667813i −0.942606 0.333907i \(-0.891633\pi\)
0.942606 0.333907i \(-0.108367\pi\)
\(308\) 0.0870933 0.0200848i 0.00496260 0.00114444i
\(309\) 5.90791i 0.336089i
\(310\) −0.559590 4.91677i −0.0317826 0.279254i
\(311\) −9.01428 −0.511153 −0.255577 0.966789i \(-0.582265\pi\)
−0.255577 + 0.966789i \(0.582265\pi\)
\(312\) 5.55688 + 15.7103i 0.314596 + 0.889423i
\(313\) 14.3607i 0.811717i 0.913936 + 0.405859i \(0.133027\pi\)
−0.913936 + 0.405859i \(0.866973\pi\)
\(314\) −0.695821 + 0.0791931i −0.0392674 + 0.00446912i
\(315\) 0.0237872i 0.00134026i
\(316\) −25.1449 + 5.79871i −1.41451 + 0.326203i
\(317\) 28.4682 1.59893 0.799465 0.600712i \(-0.205116\pi\)
0.799465 + 0.600712i \(0.205116\pi\)
\(318\) 1.18998 + 10.4556i 0.0667307 + 0.586321i
\(319\) 10.4397 0.584513
\(320\) 4.76384 + 5.89163i 0.266307 + 0.329352i
\(321\) 3.36968i 0.188077i
\(322\) 0.0163005 + 0.143222i 0.000908390 + 0.00798146i
\(323\) 10.3575i 0.576308i
\(324\) 1.94885 0.449428i 0.108269 0.0249682i
\(325\) 24.1737i 1.34092i
\(326\) −2.92566 25.7060i −0.162038 1.42372i
\(327\) 10.9353i 0.604725i
\(328\) 6.22973 + 17.6126i 0.343979 + 0.972494i
\(329\) 0.287343i 0.0158417i
\(330\) −0.269493 2.36786i −0.0148351 0.130347i
\(331\) −12.1555 −0.668126 −0.334063 0.942551i \(-0.608420\pi\)
−0.334063 + 0.942551i \(0.608420\pi\)
\(332\) 6.58457 + 28.5526i 0.361375 + 1.56703i
\(333\) 5.82584 0.319254
\(334\) −1.56699 13.7682i −0.0857420 0.753362i
\(335\) 3.16173 7.07813i 0.172744 0.386719i
\(336\) −0.0903191 + 0.0439972i −0.00492731 + 0.00240025i
\(337\) 24.8528i 1.35382i 0.736066 + 0.676910i \(0.236681\pi\)
−0.736066 + 0.676910i \(0.763319\pi\)
\(338\) −30.5081 + 3.47220i −1.65942 + 0.188863i
\(339\) 12.5428i 0.681234i
\(340\) 0.887488 + 3.84840i 0.0481308 + 0.208709i
\(341\) −6.57390 −0.355997
\(342\) 0.794421 + 6.98009i 0.0429574 + 0.377440i
\(343\) −0.351613 −0.0189853
\(344\) −6.02020 + 2.12939i −0.324587 + 0.114809i
\(345\) 3.84344 0.206924
\(346\) 5.79379 0.659406i 0.311476 0.0354499i
\(347\) −1.31925 −0.0708212 −0.0354106 0.999373i \(-0.511274\pi\)
−0.0354106 + 0.999373i \(0.511274\pi\)
\(348\) −11.4345 + 2.63694i −0.612955 + 0.141355i
\(349\) 8.84302 0.473356 0.236678 0.971588i \(-0.423941\pi\)
0.236678 + 0.971588i \(0.423941\pi\)
\(350\) 0.144805 0.0164806i 0.00774013 0.000880924i
\(351\) 5.89167i 0.314474i
\(352\) 8.49224 5.40290i 0.452638 0.287975i
\(353\) 8.19013i 0.435917i −0.975958 0.217958i \(-0.930060\pi\)
0.975958 0.217958i \(-0.0699397\pi\)
\(354\) 0.405120 + 3.55954i 0.0215319 + 0.189188i
\(355\) −1.72861 −0.0917450
\(356\) −19.4819 + 4.49275i −1.03254 + 0.238115i
\(357\) −0.0523687 −0.00277164
\(358\) 4.81674 0.548205i 0.254573 0.0289735i
\(359\) 23.4837i 1.23942i −0.784829 0.619712i \(-0.787249\pi\)
0.784829 0.619712i \(-0.212751\pi\)
\(360\) 0.893263 + 2.52542i 0.0470791 + 0.133102i
\(361\) −5.67637 −0.298756
\(362\) −27.6135 + 3.14276i −1.45133 + 0.165180i
\(363\) 7.83408 0.411183
\(364\) −0.0665051 0.288385i −0.00348582 0.0151155i
\(365\) 8.60193i 0.450246i
\(366\) −0.387884 3.40810i −0.0202750 0.178144i
\(367\) 6.29768 0.328736 0.164368 0.986399i \(-0.447442\pi\)
0.164368 + 0.986399i \(0.447442\pi\)
\(368\) 7.10889 + 14.5934i 0.370577 + 0.760734i
\(369\) 6.60505i 0.343845i
\(370\) 0.882379 + 7.75292i 0.0458727 + 0.403055i
\(371\) 0.186890i 0.00970283i
\(372\) 7.20032 1.66048i 0.373319 0.0860919i
\(373\) 16.1029i 0.833779i −0.908957 0.416890i \(-0.863120\pi\)
0.908957 0.416890i \(-0.136880\pi\)
\(374\) 5.21297 0.593301i 0.269556 0.0306789i
\(375\) 8.62131i 0.445202i
\(376\) −10.7904 30.5065i −0.556472 1.57325i
\(377\) 34.5683i 1.78036i
\(378\) −0.0352920 + 0.00401668i −0.00181523 + 0.000206595i
\(379\) 29.5997 1.52044 0.760218 0.649668i \(-0.225092\pi\)
0.760218 + 0.649668i \(0.225092\pi\)
\(380\) −9.16866 + 2.11440i −0.470342 + 0.108467i
\(381\) 18.3109i 0.938094i
\(382\) 3.55296 0.404371i 0.181785 0.0206894i
\(383\) −29.7912 −1.52226 −0.761129 0.648601i \(-0.775355\pi\)
−0.761129 + 0.648601i \(0.775355\pi\)
\(384\) −7.93675 + 8.06276i −0.405020 + 0.411451i
\(385\) 0.0423246i 0.00215706i
\(386\) −14.7006 + 1.67312i −0.748243 + 0.0851594i
\(387\) −2.25768 −0.114765
\(388\) −1.36714 5.92831i −0.0694061 0.300965i
\(389\) 7.47432 0.378963 0.189481 0.981884i \(-0.439319\pi\)
0.189481 + 0.981884i \(0.439319\pi\)
\(390\) −7.84053 + 0.892350i −0.397021 + 0.0451859i
\(391\) 8.46152i 0.427918i
\(392\) −18.6641 + 6.60164i −0.942678 + 0.333433i
\(393\) 0.858472i 0.0433042i
\(394\) 3.50795 + 30.8222i 0.176728 + 1.55280i
\(395\) 12.2196i 0.614836i
\(396\) 3.46759 0.799669i 0.174253 0.0401849i
\(397\) 4.50959 0.226330 0.113165 0.993576i \(-0.463901\pi\)
0.113165 + 0.993576i \(0.463901\pi\)
\(398\) −2.82437 24.8160i −0.141573 1.24391i
\(399\) 0.124766i 0.00624613i
\(400\) 14.7546 7.18744i 0.737732 0.359372i
\(401\) 33.5008i 1.67295i 0.548004 + 0.836476i \(0.315388\pi\)
−0.548004 + 0.836476i \(0.684612\pi\)
\(402\) 11.0354 + 3.49572i 0.550395 + 0.174351i
\(403\) 21.7676i 1.08432i
\(404\) −5.50424 23.8680i −0.273846 1.18748i
\(405\) 0.947080i 0.0470608i
\(406\) 0.207070 0.0235671i 0.0102767 0.00116962i
\(407\) 10.3659 0.513820
\(408\) −5.55984 + 1.96656i −0.275253 + 0.0973594i
\(409\) 23.1180i 1.14311i 0.820564 + 0.571555i \(0.193659\pi\)
−0.820564 + 0.571555i \(0.806341\pi\)
\(410\) −8.78989 + 1.00040i −0.434102 + 0.0494062i
\(411\) 19.5425i 0.963962i
\(412\) 2.65518 + 11.5136i 0.130811 + 0.567236i
\(413\) 0.0636254i 0.00313080i
\(414\) 0.648998 + 5.70235i 0.0318965 + 0.280255i
\(415\) −13.8757 −0.681129
\(416\) −17.8902 28.1197i −0.877139 1.37868i
\(417\) −3.18812 −0.156123
\(418\) 1.41352 + 12.4197i 0.0691373 + 0.607467i
\(419\) 1.11408i 0.0544262i 0.999630 + 0.0272131i \(0.00866327\pi\)
−0.999630 + 0.0272131i \(0.991337\pi\)
\(420\) −0.0106906 0.0463577i −0.000521650 0.00226202i
\(421\) −8.22429 −0.400827 −0.200414 0.979711i \(-0.564229\pi\)
−0.200414 + 0.979711i \(0.564229\pi\)
\(422\) −2.13587 18.7666i −0.103973 0.913543i
\(423\) 11.4405i 0.556255i
\(424\) −7.01813 19.8416i −0.340831 0.963593i
\(425\) 8.55501 0.414979
\(426\) −0.291891 2.56466i −0.0141421 0.124258i
\(427\) 0.0609184i 0.00294805i
\(428\) 1.51443 + 6.56701i 0.0732028 + 0.317428i
\(429\) 10.4831i 0.506127i
\(430\) −0.341948 3.00449i −0.0164902 0.144889i
\(431\) 3.87687i 0.186742i 0.995631 + 0.0933712i \(0.0297643\pi\)
−0.995631 + 0.0933712i \(0.970236\pi\)
\(432\) −3.59603 + 1.75174i −0.173014 + 0.0842804i
\(433\) 19.7299i 0.948159i 0.880482 + 0.474080i \(0.157219\pi\)
−0.880482 + 0.474080i \(0.842781\pi\)
\(434\) −0.130392 + 0.0148402i −0.00625900 + 0.000712353i
\(435\) 5.55683i 0.266429i
\(436\) 4.91465 + 21.3113i 0.235369 + 1.02063i
\(437\) −20.1592 −0.964347
\(438\) 12.7623 1.45251i 0.609807 0.0694036i
\(439\) 22.7099i 1.08388i −0.840416 0.541941i \(-0.817690\pi\)
0.840416 0.541941i \(-0.182310\pi\)
\(440\) 1.58939 + 4.49349i 0.0757710 + 0.214219i
\(441\) −6.99937 −0.333303
\(442\) −1.96455 17.2613i −0.0934442 0.821037i
\(443\) −30.8156 −1.46409 −0.732046 0.681255i \(-0.761435\pi\)
−0.732046 + 0.681255i \(0.761435\pi\)
\(444\) −11.3537 + 2.61830i −0.538822 + 0.124259i
\(445\) 9.46758i 0.448806i
\(446\) −0.844486 7.41998i −0.0399876 0.351346i
\(447\) 3.18333 0.150566
\(448\) 0.156245 0.126336i 0.00738187 0.00596881i
\(449\) −30.8425 −1.45555 −0.727774 0.685817i \(-0.759445\pi\)
−0.727774 + 0.685817i \(0.759445\pi\)
\(450\) 5.76535 0.656169i 0.271781 0.0309321i
\(451\) 11.7524i 0.553398i
\(452\) 5.63711 + 24.4441i 0.265147 + 1.14975i
\(453\) 9.58369i 0.450281i
\(454\) −0.480476 4.22164i −0.0225498 0.198132i
\(455\) 0.140146 0.00657016
\(456\) −4.68526 13.2461i −0.219407 0.620306i
\(457\) 13.6098 0.636641 0.318321 0.947983i \(-0.396881\pi\)
0.318321 + 0.947983i \(0.396881\pi\)
\(458\) 2.68095 + 23.5559i 0.125273 + 1.10069i
\(459\) −2.08504 −0.0973215
\(460\) −7.49029 + 1.72735i −0.349236 + 0.0805382i
\(461\) 16.1508 0.752219 0.376110 0.926575i \(-0.377262\pi\)
0.376110 + 0.926575i \(0.377262\pi\)
\(462\) −0.0627952 + 0.00714688i −0.00292150 + 0.000332503i
\(463\) 25.4577 1.18312 0.591560 0.806261i \(-0.298512\pi\)
0.591560 + 0.806261i \(0.298512\pi\)
\(464\) 21.0991 10.2780i 0.979499 0.477144i
\(465\) 3.49913i 0.162268i
\(466\) −2.37560 20.8730i −0.110048 0.966922i
\(467\) 19.5912i 0.906574i 0.891365 + 0.453287i \(0.149749\pi\)
−0.891365 + 0.453287i \(0.850251\pi\)
\(468\) −2.64788 11.4820i −0.122398 0.530754i
\(469\) −0.187710 0.0838484i −0.00866765 0.00387176i
\(470\) 15.2248 1.73277i 0.702268 0.0799268i
\(471\) 0.495196 0.0228174
\(472\) −2.38928 6.75494i −0.109975 0.310921i
\(473\) −4.01710 −0.184707
\(474\) 18.1297 2.06339i 0.832726 0.0947746i
\(475\) 20.3820i 0.935189i
\(476\) 0.102059 0.0235360i 0.00467785 0.00107877i
\(477\) 7.44096i 0.340698i
\(478\) 35.4978 4.04010i 1.62363 0.184790i
\(479\) 11.1131i 0.507772i 0.967234 + 0.253886i \(0.0817088\pi\)
−0.967234 + 0.253886i \(0.918291\pi\)
\(480\) −2.87583 4.52021i −0.131263 0.206319i
\(481\) 34.3239i 1.56503i
\(482\) −29.9443 + 3.40804i −1.36393 + 0.155232i
\(483\) 0.101927i 0.00463785i
\(484\) −15.2674 + 3.52086i −0.693975 + 0.160039i
\(485\) 2.88098 0.130818
\(486\) −1.40514 + 0.159923i −0.0637385 + 0.00725424i
\(487\) 2.88454 0.130711 0.0653556 0.997862i \(-0.479182\pi\)
0.0653556 + 0.997862i \(0.479182\pi\)
\(488\) 2.28762 + 6.46754i 0.103556 + 0.292772i
\(489\) 18.2942i 0.827294i
\(490\) −1.06012 9.31464i −0.0478914 0.420792i
\(491\) 16.4591i 0.742788i −0.928475 0.371394i \(-0.878880\pi\)
0.928475 0.371394i \(-0.121120\pi\)
\(492\) −2.96850 12.8723i −0.133830 0.580326i
\(493\) 12.2336 0.550975
\(494\) 41.1244 4.68046i 1.85027 0.210584i
\(495\) 1.68514i 0.0757415i
\(496\) −13.2861 + 6.47205i −0.596562 + 0.290604i
\(497\) 0.0458423i 0.00205631i
\(498\) −2.34302 20.5867i −0.104993 0.922513i
\(499\) 20.7269 0.927864 0.463932 0.885871i \(-0.346438\pi\)
0.463932 + 0.885871i \(0.346438\pi\)
\(500\) 3.87466 + 16.8016i 0.173280 + 0.751392i
\(501\) 9.79844i 0.437762i
\(502\) 5.84840 0.665621i 0.261027 0.0297081i
\(503\) 27.2712 1.21596 0.607982 0.793951i \(-0.291979\pi\)
0.607982 + 0.793951i \(0.291979\pi\)
\(504\) 0.0669737 0.0236891i 0.00298324 0.00105520i
\(505\) 11.5991 0.516153
\(506\) 1.15476 + 10.1462i 0.0513355 + 0.451054i
\(507\) 21.7117 0.964253
\(508\) 8.22942 + 35.6851i 0.365121 + 1.58327i
\(509\) −27.3306 −1.21141 −0.605704 0.795690i \(-0.707108\pi\)
−0.605704 + 0.795690i \(0.707108\pi\)
\(510\) −0.315800 2.77474i −0.0139839 0.122868i
\(511\) −0.228121 −0.0100915
\(512\) 11.8439 19.2801i 0.523431 0.852068i
\(513\) 4.96753i 0.219322i
\(514\) 7.11652 0.809948i 0.313896 0.0357253i
\(515\) −5.59527 −0.246557
\(516\) 4.39989 1.01467i 0.193694 0.0446682i
\(517\) 20.3561i 0.895259i
\(518\) 0.205606 0.0234005i 0.00903380 0.00102816i
\(519\) −4.12328 −0.180992
\(520\) 14.8790 5.26281i 0.652486 0.230790i
\(521\) 37.7366i 1.65327i 0.562737 + 0.826636i \(0.309748\pi\)
−0.562737 + 0.826636i \(0.690252\pi\)
\(522\) 8.24442 0.938318i 0.360849 0.0410691i
\(523\) 0.772841i 0.0337940i 0.999857 + 0.0168970i \(0.00537873\pi\)
−0.999857 + 0.0168970i \(0.994621\pi\)
\(524\) 0.385822 + 1.67303i 0.0168547 + 0.0730868i
\(525\) −0.103053 −0.00449762
\(526\) 3.70977 + 32.5954i 0.161754 + 1.42123i
\(527\) −7.70350 −0.335570
\(528\) −6.39842 + 3.11687i −0.278456 + 0.135644i
\(529\) 6.53102 0.283957
\(530\) 9.90230 1.12701i 0.430128 0.0489540i
\(531\) 2.53323i 0.109933i
\(532\) 0.0560735 + 0.243151i 0.00243109 + 0.0105419i
\(533\) 38.9148 1.68559
\(534\) 14.0466 1.59868i 0.607857 0.0691817i
\(535\) −3.19136 −0.137975
\(536\) −23.0774 1.85302i −0.996792 0.0800381i
\(537\) −3.42794 −0.147926
\(538\) 32.6067 3.71104i 1.40577 0.159994i
\(539\) −12.4540 −0.536432
\(540\) −0.425645 1.84572i −0.0183168 0.0794270i
\(541\) 37.0313i 1.59210i −0.605230 0.796051i \(-0.706919\pi\)
0.605230 0.796051i \(-0.293081\pi\)
\(542\) −43.2561 + 4.92309i −1.85801 + 0.211465i
\(543\) 19.6517 0.843337
\(544\) 9.95147 6.33129i 0.426666 0.271452i
\(545\) −10.3566 −0.443630
\(546\) 0.0236649 + 0.207929i 0.00101276 + 0.00889854i
\(547\) 36.4076 1.55667 0.778337 0.627846i \(-0.216063\pi\)
0.778337 + 0.627846i \(0.216063\pi\)
\(548\) −8.78297 38.0855i −0.375190 1.62693i
\(549\) 2.42545i 0.103516i
\(550\) 10.2583 1.16752i 0.437416 0.0497834i
\(551\) 29.1461i 1.24167i
\(552\) −3.82760 10.8213i −0.162913 0.460587i
\(553\) −0.324061 −0.0137805
\(554\) 22.9944 2.61704i 0.976937 0.111188i
\(555\) 5.51754i 0.234206i
\(556\) 6.21316 1.43283i 0.263497 0.0607655i
\(557\) −16.4941 −0.698875 −0.349438 0.936960i \(-0.613627\pi\)
−0.349438 + 0.936960i \(0.613627\pi\)
\(558\) −5.19151 + 0.590858i −0.219774 + 0.0250130i
\(559\) 13.3015i 0.562594i
\(560\) 0.0416689 + 0.0855395i 0.00176083 + 0.00361470i
\(561\) −3.70992 −0.156633
\(562\) −0.784069 6.88913i −0.0330740 0.290601i
\(563\) −18.8664 −0.795123 −0.397561 0.917576i \(-0.630143\pi\)
−0.397561 + 0.917576i \(0.630143\pi\)
\(564\) 5.14168 + 22.2958i 0.216504 + 0.938822i
\(565\) −11.8791 −0.499757
\(566\) −0.791554 6.95490i −0.0332715 0.292336i
\(567\) 0.0251164 0.00105479
\(568\) 1.72148 + 4.86696i 0.0722318 + 0.204213i
\(569\) 30.7310 1.28831 0.644156 0.764894i \(-0.277209\pi\)
0.644156 + 0.764894i \(0.277209\pi\)
\(570\) 6.61070 0.752381i 0.276892 0.0315138i
\(571\) 40.3913i 1.69032i −0.534512 0.845161i \(-0.679505\pi\)
0.534512 0.845161i \(-0.320495\pi\)
\(572\) −4.71138 20.4299i −0.196993 0.854217i
\(573\) −2.52854 −0.105631
\(574\) 0.0265303 + 0.233106i 0.00110736 + 0.00972965i
\(575\) 16.6509i 0.694393i
\(576\) 6.22084 5.03003i 0.259202 0.209584i
\(577\) 27.5479i 1.14683i 0.819264 + 0.573416i \(0.194382\pi\)
−0.819264 + 0.573416i \(0.805618\pi\)
\(578\) −17.7787 + 2.02344i −0.739496 + 0.0841639i
\(579\) 10.4620 0.434787
\(580\) 2.49740 + 10.8294i 0.103699 + 0.449667i
\(581\) 0.367979i 0.0152664i
\(582\) 0.486478 + 4.27438i 0.0201652 + 0.177179i
\(583\) 13.2397i 0.548333i
\(584\) −24.2190 + 8.56647i −1.00219 + 0.354483i
\(585\) 5.57988 0.230700
\(586\) 16.4583 1.87316i 0.679885 0.0773794i
\(587\) 0.747463 0.0308511 0.0154255 0.999881i \(-0.495090\pi\)
0.0154255 + 0.999881i \(0.495090\pi\)
\(588\) 13.6407 3.14571i 0.562534 0.129727i
\(589\) 18.3533i 0.756234i
\(590\) 3.37117 0.383682i 0.138789 0.0157959i
\(591\) 21.9353i 0.902297i
\(592\) 20.9499 10.2053i 0.861035 0.419436i
\(593\) 0.417184i 0.0171317i −0.999963 0.00856585i \(-0.997273\pi\)
0.999963 0.00856585i \(-0.00272663\pi\)
\(594\) −2.50017 + 0.284551i −0.102583 + 0.0116753i
\(595\) 0.0495974i 0.00203329i
\(596\) −6.20383 + 1.43068i −0.254119 + 0.0586029i
\(597\) 17.6608i 0.722809i
\(598\) 33.5963 3.82368i 1.37386 0.156362i
\(599\) 32.1017 1.31164 0.655820 0.754917i \(-0.272323\pi\)
0.655820 + 0.754917i \(0.272323\pi\)
\(600\) −10.9409 + 3.86989i −0.446661 + 0.157988i
\(601\) −15.4178 −0.628904 −0.314452 0.949273i \(-0.601821\pi\)
−0.314452 + 0.949273i \(0.601821\pi\)
\(602\) −0.0796783 + 0.00906838i −0.00324744 + 0.000369600i
\(603\) −7.47363 3.33840i −0.304350 0.135950i
\(604\) 4.30718 + 18.6772i 0.175257 + 0.759964i
\(605\) 7.41951i 0.301646i
\(606\) 1.95861 + 17.2091i 0.0795630 + 0.699071i
\(607\) 20.1129i 0.816359i −0.912902 0.408179i \(-0.866164\pi\)
0.912902 0.408179i \(-0.133836\pi\)
\(608\) 15.0840 + 23.7090i 0.611738 + 0.961526i
\(609\) −0.147366 −0.00597156
\(610\) −3.22774 + 0.367357i −0.130687 + 0.0148739i
\(611\) −67.4035 −2.72686
\(612\) 4.06344 0.937077i 0.164255 0.0378791i
\(613\) 24.5352 0.990969 0.495485 0.868617i \(-0.334991\pi\)
0.495485 + 0.868617i \(0.334991\pi\)
\(614\) −1.87126 16.4416i −0.0755180 0.663530i
\(615\) 6.25551 0.252247
\(616\) 0.119166 0.0421501i 0.00480135 0.00169828i
\(617\) −33.2831 −1.33993 −0.669963 0.742394i \(-0.733690\pi\)
−0.669963 + 0.742394i \(0.733690\pi\)
\(618\) −0.944809 8.30146i −0.0380058 0.333934i
\(619\) 39.5688i 1.59040i −0.606346 0.795201i \(-0.707365\pi\)
0.606346 0.795201i \(-0.292635\pi\)
\(620\) −1.57261 6.81928i −0.0631575 0.273869i
\(621\) 4.05820i 0.162850i
\(622\) −12.6663 + 1.44159i −0.507874 + 0.0578024i
\(623\) −0.251078 −0.0100592
\(624\) 10.3206 + 21.1866i 0.413157 + 0.848143i
\(625\) 12.3501 0.494005
\(626\) 2.29661 + 20.1789i 0.0917909 + 0.806510i
\(627\) 8.83874i 0.352985i
\(628\) −0.965062 + 0.222555i −0.0385102 + 0.00888091i
\(629\) 12.1471 0.484338
\(630\) 0.00380411 + 0.0334244i 0.000151560 + 0.00133166i
\(631\) −28.0832 −1.11797 −0.558987 0.829176i \(-0.688810\pi\)
−0.558987 + 0.829176i \(0.688810\pi\)
\(632\) −34.4048 + 12.1692i −1.36855 + 0.484066i
\(633\) 13.3556i 0.530839i
\(634\) 40.0018 4.55270i 1.58867 0.180811i
\(635\) −17.3419 −0.688191
\(636\) 3.34418 + 14.5013i 0.132605 + 0.575014i
\(637\) 41.2380i 1.63391i
\(638\) 14.6693 1.66955i 0.580764 0.0660982i
\(639\) 1.82520i 0.0722037i
\(640\) 7.63608 + 7.51674i 0.301843 + 0.297125i
\(641\) 20.4561i 0.807969i 0.914766 + 0.403985i \(0.132375\pi\)
−0.914766 + 0.403985i \(0.867625\pi\)
\(642\) −0.538889 4.73488i −0.0212682 0.186871i
\(643\) 1.91129i 0.0753740i 0.999290 + 0.0376870i \(0.0119990\pi\)
−0.999290 + 0.0376870i \(0.988001\pi\)
\(644\) 0.0458090 + 0.198641i 0.00180513 + 0.00782754i
\(645\) 2.13821i 0.0841919i
\(646\) 1.65640 + 14.5538i 0.0651703 + 0.572611i
\(647\) 12.7036 0.499429 0.249714 0.968320i \(-0.419663\pi\)
0.249714 + 0.968320i \(0.419663\pi\)
\(648\) 2.66654 0.943176i 0.104751 0.0370515i
\(649\) 4.50738i 0.176930i
\(650\) −3.86593 33.9675i −0.151634 1.33232i
\(651\) 0.0927961 0.00363697
\(652\) −8.22195 35.6527i −0.321996 1.39627i
\(653\) 42.9720i 1.68162i −0.541327 0.840812i \(-0.682078\pi\)
0.541327 0.840812i \(-0.317922\pi\)
\(654\) −1.74881 15.3657i −0.0683838 0.600846i
\(655\) −0.813042 −0.0317682
\(656\) 11.5703 + 23.7520i 0.451745 + 0.927358i
\(657\) −9.08258 −0.354345
\(658\) −0.0459527 0.403758i −0.00179142 0.0157401i
\(659\) 13.7403i 0.535245i 0.963524 + 0.267623i \(0.0862381\pi\)
−0.963524 + 0.267623i \(0.913762\pi\)
\(660\) −0.757351 3.28409i −0.0294798 0.127833i
\(661\) 13.7809i 0.536015i 0.963417 + 0.268008i \(0.0863653\pi\)
−0.963417 + 0.268008i \(0.913635\pi\)
\(662\) −17.0802 + 1.94394i −0.663841 + 0.0755533i
\(663\) 12.2844i 0.477086i
\(664\) 13.8185 + 39.0674i 0.536260 + 1.51611i
\(665\) −0.118164 −0.00458219
\(666\) 8.18613 0.931684i 0.317206 0.0361020i
\(667\) 23.8108i 0.921957i
\(668\) −4.40370 19.0957i −0.170384 0.738834i
\(669\) 5.28059i 0.204159i
\(670\) 3.31073 10.4514i 0.127905 0.403773i
\(671\) 4.31560i 0.166602i
\(672\) −0.119875 + 0.0762664i −0.00462428 + 0.00294204i
\(673\) 12.7527i 0.491581i −0.969323 0.245791i \(-0.920952\pi\)
0.969323 0.245791i \(-0.0790476\pi\)
\(674\) 3.97453 + 34.9217i 0.153093 + 1.34514i
\(675\) −4.10304 −0.157926
\(676\) −42.3129 + 9.75787i −1.62742 + 0.375303i
\(677\) 4.49207i 0.172644i 0.996267 + 0.0863220i \(0.0275114\pi\)
−0.996267 + 0.0863220i \(0.972489\pi\)
\(678\) −2.00589 17.6245i −0.0770356 0.676864i
\(679\) 0.0764028i 0.00293207i
\(680\) 1.86249 + 5.26562i 0.0714233 + 0.201927i
\(681\) 3.00443i 0.115130i
\(682\) −9.23726 + 1.05132i −0.353713 + 0.0402570i
\(683\) −12.7534 −0.487996 −0.243998 0.969776i \(-0.578459\pi\)
−0.243998 + 0.969776i \(0.578459\pi\)
\(684\) 2.23255 + 9.68097i 0.0853636 + 0.370161i
\(685\) 18.5084 0.707168
\(686\) −0.494066 + 0.0562309i −0.0188635 + 0.00214691i
\(687\) 16.7641i 0.639589i
\(688\) −8.11869 + 3.95487i −0.309522 + 0.150778i
\(689\) −43.8397 −1.67016
\(690\) 5.40058 0.614653i 0.205597 0.0233995i
\(691\) 14.3784i 0.546982i 0.961875 + 0.273491i \(0.0881784\pi\)
−0.961875 + 0.273491i \(0.911822\pi\)
\(692\) 8.03565 1.85312i 0.305470 0.0704450i
\(693\) 0.0446896 0.00169762
\(694\) −1.85374 + 0.210978i −0.0703669 + 0.00800863i
\(695\) 3.01940i 0.114533i
\(696\) −15.6454 + 5.53392i −0.593039 + 0.209763i
\(697\) 13.7718i 0.521645i
\(698\) 12.4257 1.41420i 0.470320 0.0535283i
\(699\) 14.8547i 0.561857i
\(700\) 0.200836 0.0463151i 0.00759087 0.00175055i
\(701\) 18.2445i 0.689084i 0.938771 + 0.344542i \(0.111966\pi\)
−0.938771 + 0.344542i \(0.888034\pi\)
\(702\) 0.942211 + 8.27863i 0.0355615 + 0.312457i
\(703\) 28.9400i 1.09149i
\(704\) 11.0688 8.94994i 0.417169 0.337314i
\(705\) −10.8351 −0.408072
\(706\) −1.30979 11.5083i −0.0492945 0.433120i
\(707\) 0.307605i 0.0115687i
\(708\) 1.13850 + 4.93688i 0.0427876 + 0.185539i
\(709\) 9.58820 0.360092 0.180046 0.983658i \(-0.442375\pi\)
0.180046 + 0.983658i \(0.442375\pi\)
\(710\) −2.42894 + 0.276444i −0.0911565 + 0.0103748i
\(711\) −12.9024 −0.483878
\(712\) −26.6563 + 9.42855i −0.998987 + 0.353350i
\(713\) 14.9936i 0.561516i
\(714\) −0.0735855 + 0.00837494i −0.00275387 + 0.000313424i
\(715\) 9.92830 0.371297
\(716\) 6.68054 1.54061i 0.249663 0.0575754i
\(717\) −25.2628 −0.943457
\(718\) −3.75558 32.9980i −0.140157 1.23147i
\(719\) 25.6628i 0.957063i −0.878070 0.478531i \(-0.841169\pi\)
0.878070 0.478531i \(-0.158831\pi\)
\(720\) 1.65903 + 3.40573i 0.0618286 + 0.126924i
\(721\) 0.148385i 0.00552615i
\(722\) −7.97610 + 0.907780i −0.296840 + 0.0337841i
\(723\) 21.3105 0.792547
\(724\) −38.2983 + 8.83205i −1.42334 + 0.328240i
\(725\) 24.0739 0.894081
\(726\) 11.0080 1.25285i 0.408545 0.0464975i
\(727\) 2.96124 0.109826 0.0549131 0.998491i \(-0.482512\pi\)
0.0549131 + 0.998491i \(0.482512\pi\)
\(728\) −0.139569 0.394587i −0.00517275 0.0146244i
\(729\) 1.00000 0.0370370
\(730\) −1.37564 12.0869i −0.0509149 0.447358i
\(731\) −4.70737 −0.174108
\(732\) −1.09006 4.72683i −0.0402899 0.174709i
\(733\) 12.9440i 0.478097i 0.971008 + 0.239049i \(0.0768355\pi\)
−0.971008 + 0.239049i \(0.923164\pi\)
\(734\) 8.84913 1.00714i 0.326627 0.0371743i
\(735\) 6.62897i 0.244513i
\(736\) 12.3228 + 19.3689i 0.454225 + 0.713948i
\(737\) −13.2978 5.94002i −0.489832 0.218803i
\(738\) 1.05630 + 9.28104i 0.0388829 + 0.341640i
\(739\) −29.5210 −1.08595 −0.542974 0.839749i \(-0.682702\pi\)
−0.542974 + 0.839749i \(0.682702\pi\)
\(740\) 2.47974 + 10.7528i 0.0911569 + 0.395283i
\(741\) −29.2670 −1.07515
\(742\) −0.0298879 0.262607i −0.00109722 0.00964060i
\(743\) 43.6088i 1.59985i −0.600099 0.799926i \(-0.704872\pi\)
0.600099 0.799926i \(-0.295128\pi\)
\(744\) 9.85192 3.48470i 0.361189 0.127755i
\(745\) 3.01487i 0.110456i
\(746\) −2.57523 22.6269i −0.0942858 0.828431i
\(747\) 14.6510i 0.536051i
\(748\) 7.23008 1.66734i 0.264358 0.0609641i
\(749\) 0.0846342i 0.00309246i
\(750\) −1.37874 12.1142i −0.0503446 0.442347i
\(751\) 47.3689i 1.72852i 0.503049 + 0.864258i \(0.332212\pi\)
−0.503049 + 0.864258i \(0.667788\pi\)
\(752\) −20.0407 41.1403i −0.730810 1.50023i
\(753\) −4.16214 −0.151677
\(754\) −5.52826 48.5734i −0.201327 1.76894i
\(755\) −9.07653 −0.330329
\(756\) −0.0489480 + 0.0112880i −0.00178022 + 0.000410541i
\(757\) 12.6050i 0.458135i −0.973411 0.229067i \(-0.926432\pi\)
0.973411 0.229067i \(-0.0735676\pi\)
\(758\) 41.5918 4.73367i 1.51068 0.171935i
\(759\) 7.22076i 0.262097i
\(760\) −12.5451 + 4.43731i −0.455060 + 0.160958i
\(761\) −37.0014 −1.34130 −0.670649 0.741774i \(-0.733984\pi\)
−0.670649 + 0.741774i \(0.733984\pi\)
\(762\) −2.92832 25.7294i −0.106082 0.932076i
\(763\) 0.274656i 0.00994320i
\(764\) 4.92774 1.13640i 0.178279 0.0411134i
\(765\) 1.97470i 0.0713956i
\(766\) −41.8608 + 4.76428i −1.51249 + 0.172141i
\(767\) −14.9249 −0.538908
\(768\) −9.86284 + 12.5986i −0.355895 + 0.454612i
\(769\) 43.1762i 1.55697i −0.627660 0.778487i \(-0.715987\pi\)
0.627660 0.778487i \(-0.284013\pi\)
\(770\) 0.00676867 + 0.0594721i 0.000243926 + 0.00214323i
\(771\) −5.06462 −0.182398