Properties

Label 8023.2.a.e.1.37
Level $8023$
Weight $2$
Character 8023.1
Self dual yes
Analytic conductor $64.064$
Analytic rank $0$
Dimension $172$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8023,2,Mod(1,8023)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8023, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8023.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8023 = 71 \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8023.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.0639775417\)
Analytic rank: \(0\)
Dimension: \(172\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.37
Character \(\chi\) \(=\) 8023.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.57473 q^{2} -2.20195 q^{3} +0.479767 q^{4} +3.05179 q^{5} +3.46748 q^{6} -0.157888 q^{7} +2.39395 q^{8} +1.84860 q^{9} +O(q^{10})\) \(q-1.57473 q^{2} -2.20195 q^{3} +0.479767 q^{4} +3.05179 q^{5} +3.46748 q^{6} -0.157888 q^{7} +2.39395 q^{8} +1.84860 q^{9} -4.80574 q^{10} +4.18716 q^{11} -1.05643 q^{12} -4.86143 q^{13} +0.248631 q^{14} -6.71990 q^{15} -4.72936 q^{16} -2.33826 q^{17} -2.91105 q^{18} +3.05363 q^{19} +1.46415 q^{20} +0.347663 q^{21} -6.59363 q^{22} +4.14936 q^{23} -5.27137 q^{24} +4.31343 q^{25} +7.65542 q^{26} +2.53533 q^{27} -0.0757497 q^{28} -6.70178 q^{29} +10.5820 q^{30} -4.39542 q^{31} +2.65954 q^{32} -9.21992 q^{33} +3.68212 q^{34} -0.481843 q^{35} +0.886898 q^{36} -1.56554 q^{37} -4.80863 q^{38} +10.7046 q^{39} +7.30584 q^{40} -0.0693174 q^{41} -0.547475 q^{42} -6.65278 q^{43} +2.00886 q^{44} +5.64155 q^{45} -6.53411 q^{46} -1.65291 q^{47} +10.4138 q^{48} -6.97507 q^{49} -6.79248 q^{50} +5.14874 q^{51} -2.33235 q^{52} +0.129710 q^{53} -3.99245 q^{54} +12.7783 q^{55} -0.377978 q^{56} -6.72394 q^{57} +10.5535 q^{58} -2.75208 q^{59} -3.22399 q^{60} -7.95287 q^{61} +6.92159 q^{62} -0.291873 q^{63} +5.27066 q^{64} -14.8361 q^{65} +14.5189 q^{66} +8.84706 q^{67} -1.12182 q^{68} -9.13670 q^{69} +0.758771 q^{70} -1.00000 q^{71} +4.42547 q^{72} +5.71510 q^{73} +2.46529 q^{74} -9.49797 q^{75} +1.46503 q^{76} -0.661104 q^{77} -16.8569 q^{78} +8.02025 q^{79} -14.4330 q^{80} -11.1285 q^{81} +0.109156 q^{82} +1.09000 q^{83} +0.166797 q^{84} -7.13588 q^{85} +10.4763 q^{86} +14.7570 q^{87} +10.0239 q^{88} +6.86944 q^{89} -8.88390 q^{90} +0.767563 q^{91} +1.99073 q^{92} +9.67852 q^{93} +2.60288 q^{94} +9.31903 q^{95} -5.85620 q^{96} +13.8811 q^{97} +10.9838 q^{98} +7.74038 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 172 q + 24 q^{2} + 18 q^{3} + 180 q^{4} + 28 q^{5} + 16 q^{6} + 4 q^{7} + 72 q^{8} + 198 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 172 q + 24 q^{2} + 18 q^{3} + 180 q^{4} + 28 q^{5} + 16 q^{6} + 4 q^{7} + 72 q^{8} + 198 q^{9} + 14 q^{10} + 20 q^{11} + 54 q^{12} + 36 q^{13} + 26 q^{14} + 32 q^{15} + 196 q^{16} + 123 q^{17} + 74 q^{18} + 20 q^{19} + 70 q^{20} + 37 q^{21} + 11 q^{22} + 22 q^{23} + 62 q^{24} + 210 q^{25} + 50 q^{26} + 69 q^{27} + 42 q^{28} + 58 q^{29} + 36 q^{30} + 10 q^{31} + 168 q^{32} + 124 q^{33} + 5 q^{34} + 59 q^{35} + 192 q^{36} + 40 q^{37} + 58 q^{38} + 15 q^{39} + 7 q^{40} + 155 q^{41} - 6 q^{42} + 19 q^{43} + 22 q^{44} + 76 q^{45} + q^{46} + 71 q^{47} + 144 q^{48} + 206 q^{49} + 126 q^{50} + 33 q^{51} + 71 q^{52} + 101 q^{53} + 92 q^{54} - 2 q^{55} + 57 q^{56} + 114 q^{57} + 4 q^{58} + 71 q^{59} + 38 q^{60} + 50 q^{61} + 86 q^{62} + 14 q^{63} + 240 q^{64} + 143 q^{65} + 21 q^{66} + 8 q^{67} + 192 q^{68} + 41 q^{69} - 12 q^{70} - 172 q^{71} + 156 q^{72} + 128 q^{73} + 30 q^{74} + 72 q^{75} + 74 q^{76} + 127 q^{77} + 107 q^{78} + 2 q^{79} + 50 q^{80} + 236 q^{81} + 42 q^{82} + 140 q^{83} + 71 q^{84} + 55 q^{85} + 46 q^{86} + 100 q^{87} - 31 q^{88} + 215 q^{89} - 7 q^{90} + 22 q^{91} - 15 q^{92} + 60 q^{93} + 5 q^{94} + 74 q^{95} + 182 q^{96} + 120 q^{97} + 164 q^{98} + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.57473 −1.11350 −0.556750 0.830680i \(-0.687952\pi\)
−0.556750 + 0.830680i \(0.687952\pi\)
\(3\) −2.20195 −1.27130 −0.635649 0.771978i \(-0.719268\pi\)
−0.635649 + 0.771978i \(0.719268\pi\)
\(4\) 0.479767 0.239884
\(5\) 3.05179 1.36480 0.682401 0.730978i \(-0.260936\pi\)
0.682401 + 0.730978i \(0.260936\pi\)
\(6\) 3.46748 1.41559
\(7\) −0.157888 −0.0596762 −0.0298381 0.999555i \(-0.509499\pi\)
−0.0298381 + 0.999555i \(0.509499\pi\)
\(8\) 2.39395 0.846390
\(9\) 1.84860 0.616201
\(10\) −4.80574 −1.51971
\(11\) 4.18716 1.26247 0.631237 0.775590i \(-0.282547\pi\)
0.631237 + 0.775590i \(0.282547\pi\)
\(12\) −1.05643 −0.304964
\(13\) −4.86143 −1.34832 −0.674158 0.738587i \(-0.735493\pi\)
−0.674158 + 0.738587i \(0.735493\pi\)
\(14\) 0.248631 0.0664495
\(15\) −6.71990 −1.73507
\(16\) −4.72936 −1.18234
\(17\) −2.33826 −0.567111 −0.283556 0.958956i \(-0.591514\pi\)
−0.283556 + 0.958956i \(0.591514\pi\)
\(18\) −2.91105 −0.686140
\(19\) 3.05363 0.700550 0.350275 0.936647i \(-0.386088\pi\)
0.350275 + 0.936647i \(0.386088\pi\)
\(20\) 1.46415 0.327394
\(21\) 0.347663 0.0758663
\(22\) −6.59363 −1.40577
\(23\) 4.14936 0.865201 0.432601 0.901586i \(-0.357596\pi\)
0.432601 + 0.901586i \(0.357596\pi\)
\(24\) −5.27137 −1.07601
\(25\) 4.31343 0.862686
\(26\) 7.65542 1.50135
\(27\) 2.53533 0.487924
\(28\) −0.0757497 −0.0143153
\(29\) −6.70178 −1.24449 −0.622245 0.782823i \(-0.713779\pi\)
−0.622245 + 0.782823i \(0.713779\pi\)
\(30\) 10.5820 1.93200
\(31\) −4.39542 −0.789441 −0.394721 0.918801i \(-0.629159\pi\)
−0.394721 + 0.918801i \(0.629159\pi\)
\(32\) 2.65954 0.470145
\(33\) −9.21992 −1.60498
\(34\) 3.68212 0.631479
\(35\) −0.481843 −0.0814463
\(36\) 0.886898 0.147816
\(37\) −1.56554 −0.257372 −0.128686 0.991685i \(-0.541076\pi\)
−0.128686 + 0.991685i \(0.541076\pi\)
\(38\) −4.80863 −0.780063
\(39\) 10.7046 1.71411
\(40\) 7.30584 1.15516
\(41\) −0.0693174 −0.0108256 −0.00541278 0.999985i \(-0.501723\pi\)
−0.00541278 + 0.999985i \(0.501723\pi\)
\(42\) −0.547475 −0.0844772
\(43\) −6.65278 −1.01454 −0.507269 0.861788i \(-0.669345\pi\)
−0.507269 + 0.861788i \(0.669345\pi\)
\(44\) 2.00886 0.302847
\(45\) 5.64155 0.840992
\(46\) −6.53411 −0.963402
\(47\) −1.65291 −0.241101 −0.120550 0.992707i \(-0.538466\pi\)
−0.120550 + 0.992707i \(0.538466\pi\)
\(48\) 10.4138 1.50311
\(49\) −6.97507 −0.996439
\(50\) −6.79248 −0.960601
\(51\) 5.14874 0.720968
\(52\) −2.33235 −0.323439
\(53\) 0.129710 0.0178170 0.00890849 0.999960i \(-0.497164\pi\)
0.00890849 + 0.999960i \(0.497164\pi\)
\(54\) −3.99245 −0.543303
\(55\) 12.7783 1.72303
\(56\) −0.377978 −0.0505094
\(57\) −6.72394 −0.890608
\(58\) 10.5535 1.38574
\(59\) −2.75208 −0.358290 −0.179145 0.983823i \(-0.557333\pi\)
−0.179145 + 0.983823i \(0.557333\pi\)
\(60\) −3.22399 −0.416215
\(61\) −7.95287 −1.01826 −0.509130 0.860689i \(-0.670033\pi\)
−0.509130 + 0.860689i \(0.670033\pi\)
\(62\) 6.92159 0.879043
\(63\) −0.291873 −0.0367725
\(64\) 5.27066 0.658832
\(65\) −14.8361 −1.84019
\(66\) 14.5189 1.78715
\(67\) 8.84706 1.08084 0.540420 0.841395i \(-0.318265\pi\)
0.540420 + 0.841395i \(0.318265\pi\)
\(68\) −1.12182 −0.136041
\(69\) −9.13670 −1.09993
\(70\) 0.758771 0.0906905
\(71\) −1.00000 −0.118678
\(72\) 4.42547 0.521546
\(73\) 5.71510 0.668902 0.334451 0.942413i \(-0.391449\pi\)
0.334451 + 0.942413i \(0.391449\pi\)
\(74\) 2.46529 0.286584
\(75\) −9.49797 −1.09673
\(76\) 1.46503 0.168050
\(77\) −0.661104 −0.0753397
\(78\) −16.8569 −1.90867
\(79\) 8.02025 0.902349 0.451174 0.892436i \(-0.351005\pi\)
0.451174 + 0.892436i \(0.351005\pi\)
\(80\) −14.4330 −1.61366
\(81\) −11.1285 −1.23650
\(82\) 0.109156 0.0120543
\(83\) 1.09000 0.119643 0.0598213 0.998209i \(-0.480947\pi\)
0.0598213 + 0.998209i \(0.480947\pi\)
\(84\) 0.166797 0.0181991
\(85\) −7.13588 −0.773995
\(86\) 10.4763 1.12969
\(87\) 14.7570 1.58212
\(88\) 10.0239 1.06855
\(89\) 6.86944 0.728159 0.364080 0.931368i \(-0.381384\pi\)
0.364080 + 0.931368i \(0.381384\pi\)
\(90\) −8.88390 −0.936445
\(91\) 0.767563 0.0804625
\(92\) 1.99073 0.207548
\(93\) 9.67852 1.00362
\(94\) 2.60288 0.268466
\(95\) 9.31903 0.956112
\(96\) −5.85620 −0.597695
\(97\) 13.8811 1.40941 0.704705 0.709501i \(-0.251079\pi\)
0.704705 + 0.709501i \(0.251079\pi\)
\(98\) 10.9838 1.10954
\(99\) 7.74038 0.777938
\(100\) 2.06944 0.206944
\(101\) 15.0106 1.49361 0.746804 0.665045i \(-0.231588\pi\)
0.746804 + 0.665045i \(0.231588\pi\)
\(102\) −8.10786 −0.802798
\(103\) 10.5553 1.04004 0.520022 0.854153i \(-0.325924\pi\)
0.520022 + 0.854153i \(0.325924\pi\)
\(104\) −11.6380 −1.14120
\(105\) 1.06100 0.103543
\(106\) −0.204257 −0.0198392
\(107\) 3.07844 0.297604 0.148802 0.988867i \(-0.452458\pi\)
0.148802 + 0.988867i \(0.452458\pi\)
\(108\) 1.21637 0.117045
\(109\) 10.2359 0.980419 0.490210 0.871605i \(-0.336920\pi\)
0.490210 + 0.871605i \(0.336920\pi\)
\(110\) −20.1224 −1.91859
\(111\) 3.44724 0.327197
\(112\) 0.746711 0.0705576
\(113\) 1.00000 0.0940721
\(114\) 10.5884 0.991693
\(115\) 12.6630 1.18083
\(116\) −3.21529 −0.298532
\(117\) −8.98684 −0.830834
\(118\) 4.33378 0.398956
\(119\) 0.369184 0.0338431
\(120\) −16.0871 −1.46855
\(121\) 6.53227 0.593843
\(122\) 12.5236 1.13383
\(123\) 0.152634 0.0137625
\(124\) −2.10878 −0.189374
\(125\) −2.09527 −0.187407
\(126\) 0.459621 0.0409462
\(127\) −4.82671 −0.428301 −0.214151 0.976801i \(-0.568698\pi\)
−0.214151 + 0.976801i \(0.568698\pi\)
\(128\) −13.6189 −1.20376
\(129\) 14.6491 1.28978
\(130\) 23.3627 2.04905
\(131\) −12.1610 −1.06251 −0.531257 0.847211i \(-0.678280\pi\)
−0.531257 + 0.847211i \(0.678280\pi\)
\(132\) −4.42342 −0.385009
\(133\) −0.482132 −0.0418062
\(134\) −13.9317 −1.20352
\(135\) 7.73728 0.665919
\(136\) −5.59768 −0.479997
\(137\) 11.9285 1.01912 0.509562 0.860434i \(-0.329807\pi\)
0.509562 + 0.860434i \(0.329807\pi\)
\(138\) 14.3878 1.22477
\(139\) 17.9238 1.52028 0.760138 0.649762i \(-0.225131\pi\)
0.760138 + 0.649762i \(0.225131\pi\)
\(140\) −0.231172 −0.0195376
\(141\) 3.63962 0.306511
\(142\) 1.57473 0.132148
\(143\) −20.3555 −1.70222
\(144\) −8.74270 −0.728558
\(145\) −20.4524 −1.69848
\(146\) −8.99973 −0.744823
\(147\) 15.3588 1.26677
\(148\) −0.751092 −0.0617394
\(149\) −20.7936 −1.70347 −0.851737 0.523969i \(-0.824451\pi\)
−0.851737 + 0.523969i \(0.824451\pi\)
\(150\) 14.9567 1.22121
\(151\) 13.0980 1.06590 0.532951 0.846146i \(-0.321083\pi\)
0.532951 + 0.846146i \(0.321083\pi\)
\(152\) 7.31024 0.592939
\(153\) −4.32251 −0.349454
\(154\) 1.04106 0.0838909
\(155\) −13.4139 −1.07743
\(156\) 5.13573 0.411188
\(157\) 0.852711 0.0680537 0.0340269 0.999421i \(-0.489167\pi\)
0.0340269 + 0.999421i \(0.489167\pi\)
\(158\) −12.6297 −1.00477
\(159\) −0.285615 −0.0226507
\(160\) 8.11637 0.641656
\(161\) −0.655136 −0.0516320
\(162\) 17.5243 1.37684
\(163\) 0.265237 0.0207749 0.0103875 0.999946i \(-0.496694\pi\)
0.0103875 + 0.999946i \(0.496694\pi\)
\(164\) −0.0332562 −0.00259687
\(165\) −28.1373 −2.19048
\(166\) −1.71645 −0.133222
\(167\) 2.23547 0.172986 0.0864930 0.996252i \(-0.472434\pi\)
0.0864930 + 0.996252i \(0.472434\pi\)
\(168\) 0.832289 0.0642125
\(169\) 10.6335 0.817958
\(170\) 11.2371 0.861844
\(171\) 5.64494 0.431679
\(172\) −3.19178 −0.243371
\(173\) 6.79386 0.516527 0.258264 0.966074i \(-0.416850\pi\)
0.258264 + 0.966074i \(0.416850\pi\)
\(174\) −23.2383 −1.76169
\(175\) −0.681041 −0.0514818
\(176\) −19.8026 −1.49267
\(177\) 6.05995 0.455494
\(178\) −10.8175 −0.810806
\(179\) −6.96918 −0.520901 −0.260450 0.965487i \(-0.583871\pi\)
−0.260450 + 0.965487i \(0.583871\pi\)
\(180\) 2.70663 0.201740
\(181\) −5.15764 −0.383364 −0.191682 0.981457i \(-0.561394\pi\)
−0.191682 + 0.981457i \(0.561394\pi\)
\(182\) −1.20870 −0.0895950
\(183\) 17.5119 1.29451
\(184\) 9.93337 0.732298
\(185\) −4.77769 −0.351263
\(186\) −15.2410 −1.11753
\(187\) −9.79066 −0.715964
\(188\) −0.793009 −0.0578362
\(189\) −0.400299 −0.0291174
\(190\) −14.6749 −1.06463
\(191\) −13.6331 −0.986454 −0.493227 0.869901i \(-0.664183\pi\)
−0.493227 + 0.869901i \(0.664183\pi\)
\(192\) −11.6057 −0.837573
\(193\) 9.72473 0.700001 0.350001 0.936749i \(-0.386181\pi\)
0.350001 + 0.936749i \(0.386181\pi\)
\(194\) −21.8589 −1.56938
\(195\) 32.6683 2.33943
\(196\) −3.34641 −0.239029
\(197\) 10.9899 0.783001 0.391501 0.920178i \(-0.371956\pi\)
0.391501 + 0.920178i \(0.371956\pi\)
\(198\) −12.1890 −0.866234
\(199\) −7.98766 −0.566231 −0.283115 0.959086i \(-0.591368\pi\)
−0.283115 + 0.959086i \(0.591368\pi\)
\(200\) 10.3261 0.730169
\(201\) −19.4808 −1.37407
\(202\) −23.6376 −1.66313
\(203\) 1.05813 0.0742664
\(204\) 2.47020 0.172948
\(205\) −0.211542 −0.0147747
\(206\) −16.6217 −1.15809
\(207\) 7.67051 0.533138
\(208\) 22.9914 1.59417
\(209\) 12.7860 0.884427
\(210\) −1.67078 −0.115295
\(211\) −10.0726 −0.693424 −0.346712 0.937972i \(-0.612702\pi\)
−0.346712 + 0.937972i \(0.612702\pi\)
\(212\) 0.0622304 0.00427400
\(213\) 2.20195 0.150875
\(214\) −4.84770 −0.331382
\(215\) −20.3029 −1.38464
\(216\) 6.06945 0.412974
\(217\) 0.693987 0.0471109
\(218\) −16.1187 −1.09170
\(219\) −12.5844 −0.850375
\(220\) 6.13062 0.413326
\(221\) 11.3673 0.764646
\(222\) −5.42846 −0.364334
\(223\) 1.44699 0.0968973 0.0484487 0.998826i \(-0.484572\pi\)
0.0484487 + 0.998826i \(0.484572\pi\)
\(224\) −0.419911 −0.0280565
\(225\) 7.97382 0.531588
\(226\) −1.57473 −0.104749
\(227\) −1.69247 −0.112333 −0.0561665 0.998421i \(-0.517888\pi\)
−0.0561665 + 0.998421i \(0.517888\pi\)
\(228\) −3.22593 −0.213642
\(229\) −0.828447 −0.0547453 −0.0273727 0.999625i \(-0.508714\pi\)
−0.0273727 + 0.999625i \(0.508714\pi\)
\(230\) −19.9407 −1.31485
\(231\) 1.45572 0.0957793
\(232\) −16.0437 −1.05332
\(233\) 20.6618 1.35360 0.676800 0.736167i \(-0.263366\pi\)
0.676800 + 0.736167i \(0.263366\pi\)
\(234\) 14.1518 0.925134
\(235\) −5.04432 −0.329055
\(236\) −1.32036 −0.0859479
\(237\) −17.6602 −1.14716
\(238\) −0.581365 −0.0376843
\(239\) −14.5634 −0.942027 −0.471014 0.882126i \(-0.656112\pi\)
−0.471014 + 0.882126i \(0.656112\pi\)
\(240\) 31.7808 2.05144
\(241\) 8.06514 0.519522 0.259761 0.965673i \(-0.416356\pi\)
0.259761 + 0.965673i \(0.416356\pi\)
\(242\) −10.2865 −0.661244
\(243\) 16.8984 1.08403
\(244\) −3.81552 −0.244264
\(245\) −21.2865 −1.35994
\(246\) −0.240357 −0.0153246
\(247\) −14.8450 −0.944563
\(248\) −10.5224 −0.668175
\(249\) −2.40012 −0.152101
\(250\) 3.29948 0.208677
\(251\) 2.01339 0.127084 0.0635421 0.997979i \(-0.479760\pi\)
0.0635421 + 0.997979i \(0.479760\pi\)
\(252\) −0.140031 −0.00882113
\(253\) 17.3740 1.09229
\(254\) 7.60075 0.476914
\(255\) 15.7129 0.983979
\(256\) 10.9048 0.681550
\(257\) −13.9196 −0.868280 −0.434140 0.900845i \(-0.642948\pi\)
−0.434140 + 0.900845i \(0.642948\pi\)
\(258\) −23.0684 −1.43617
\(259\) 0.247180 0.0153590
\(260\) −7.11785 −0.441430
\(261\) −12.3889 −0.766855
\(262\) 19.1503 1.18311
\(263\) −1.64075 −0.101173 −0.0505865 0.998720i \(-0.516109\pi\)
−0.0505865 + 0.998720i \(0.516109\pi\)
\(264\) −22.0721 −1.35844
\(265\) 0.395847 0.0243167
\(266\) 0.759227 0.0465512
\(267\) −15.1262 −0.925708
\(268\) 4.24453 0.259276
\(269\) 14.1061 0.860064 0.430032 0.902814i \(-0.358502\pi\)
0.430032 + 0.902814i \(0.358502\pi\)
\(270\) −12.1841 −0.741501
\(271\) −9.65968 −0.586784 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(272\) 11.0585 0.670518
\(273\) −1.69014 −0.102292
\(274\) −18.7842 −1.13480
\(275\) 18.0610 1.08912
\(276\) −4.38349 −0.263855
\(277\) 13.1214 0.788388 0.394194 0.919027i \(-0.371024\pi\)
0.394194 + 0.919027i \(0.371024\pi\)
\(278\) −28.2251 −1.69283
\(279\) −8.12539 −0.486454
\(280\) −1.15351 −0.0689353
\(281\) −19.8619 −1.18486 −0.592431 0.805621i \(-0.701832\pi\)
−0.592431 + 0.805621i \(0.701832\pi\)
\(282\) −5.73141 −0.341301
\(283\) −21.8417 −1.29835 −0.649177 0.760637i \(-0.724887\pi\)
−0.649177 + 0.760637i \(0.724887\pi\)
\(284\) −0.479767 −0.0284689
\(285\) −20.5201 −1.21550
\(286\) 32.0544 1.89542
\(287\) 0.0109444 0.000646029 0
\(288\) 4.91644 0.289704
\(289\) −11.5325 −0.678385
\(290\) 32.2070 1.89126
\(291\) −30.5655 −1.79178
\(292\) 2.74192 0.160459
\(293\) 1.57660 0.0921060 0.0460530 0.998939i \(-0.485336\pi\)
0.0460530 + 0.998939i \(0.485336\pi\)
\(294\) −24.1859 −1.41055
\(295\) −8.39877 −0.488995
\(296\) −3.74782 −0.217837
\(297\) 10.6158 0.615991
\(298\) 32.7442 1.89682
\(299\) −20.1718 −1.16657
\(300\) −4.55681 −0.263088
\(301\) 1.05040 0.0605439
\(302\) −20.6258 −1.18688
\(303\) −33.0526 −1.89882
\(304\) −14.4417 −0.828288
\(305\) −24.2705 −1.38972
\(306\) 6.80678 0.389118
\(307\) −7.59450 −0.433441 −0.216720 0.976234i \(-0.569536\pi\)
−0.216720 + 0.976234i \(0.569536\pi\)
\(308\) −0.317176 −0.0180728
\(309\) −23.2423 −1.32221
\(310\) 21.1233 1.19972
\(311\) 1.58270 0.0897469 0.0448735 0.998993i \(-0.485712\pi\)
0.0448735 + 0.998993i \(0.485712\pi\)
\(312\) 25.6264 1.45081
\(313\) 7.63017 0.431283 0.215641 0.976473i \(-0.430816\pi\)
0.215641 + 0.976473i \(0.430816\pi\)
\(314\) −1.34279 −0.0757779
\(315\) −0.890735 −0.0501873
\(316\) 3.84785 0.216459
\(317\) 9.67940 0.543649 0.271825 0.962347i \(-0.412373\pi\)
0.271825 + 0.962347i \(0.412373\pi\)
\(318\) 0.449765 0.0252216
\(319\) −28.0614 −1.57114
\(320\) 16.0849 0.899176
\(321\) −6.77857 −0.378343
\(322\) 1.03166 0.0574922
\(323\) −7.14017 −0.397290
\(324\) −5.33908 −0.296615
\(325\) −20.9694 −1.16317
\(326\) −0.417676 −0.0231329
\(327\) −22.5389 −1.24641
\(328\) −0.165943 −0.00916264
\(329\) 0.260975 0.0143880
\(330\) 44.3086 2.43911
\(331\) −18.8652 −1.03693 −0.518463 0.855100i \(-0.673496\pi\)
−0.518463 + 0.855100i \(0.673496\pi\)
\(332\) 0.522944 0.0287003
\(333\) −2.89405 −0.158593
\(334\) −3.52026 −0.192620
\(335\) 26.9994 1.47513
\(336\) −1.64422 −0.0896998
\(337\) 18.7768 1.02284 0.511420 0.859331i \(-0.329120\pi\)
0.511420 + 0.859331i \(0.329120\pi\)
\(338\) −16.7448 −0.910797
\(339\) −2.20195 −0.119594
\(340\) −3.42356 −0.185669
\(341\) −18.4043 −0.996649
\(342\) −8.88924 −0.480675
\(343\) 2.20650 0.119140
\(344\) −15.9264 −0.858696
\(345\) −27.8833 −1.50119
\(346\) −10.6985 −0.575154
\(347\) 14.5888 0.783166 0.391583 0.920143i \(-0.371928\pi\)
0.391583 + 0.920143i \(0.371928\pi\)
\(348\) 7.07993 0.379524
\(349\) 29.6403 1.58661 0.793304 0.608826i \(-0.208359\pi\)
0.793304 + 0.608826i \(0.208359\pi\)
\(350\) 1.07245 0.0573251
\(351\) −12.3253 −0.657875
\(352\) 11.1359 0.593547
\(353\) −21.3195 −1.13472 −0.567360 0.823470i \(-0.692035\pi\)
−0.567360 + 0.823470i \(0.692035\pi\)
\(354\) −9.54278 −0.507193
\(355\) −3.05179 −0.161972
\(356\) 3.29573 0.174673
\(357\) −0.812927 −0.0430247
\(358\) 10.9746 0.580023
\(359\) 21.8310 1.15220 0.576099 0.817380i \(-0.304574\pi\)
0.576099 + 0.817380i \(0.304574\pi\)
\(360\) 13.5056 0.711808
\(361\) −9.67537 −0.509230
\(362\) 8.12188 0.426876
\(363\) −14.3838 −0.754951
\(364\) 0.368251 0.0193016
\(365\) 17.4413 0.912920
\(366\) −27.5764 −1.44144
\(367\) 1.51732 0.0792033 0.0396017 0.999216i \(-0.487391\pi\)
0.0396017 + 0.999216i \(0.487391\pi\)
\(368\) −19.6238 −1.02296
\(369\) −0.128140 −0.00667072
\(370\) 7.52356 0.391131
\(371\) −0.0204797 −0.00106325
\(372\) 4.64343 0.240751
\(373\) 20.3209 1.05217 0.526087 0.850431i \(-0.323659\pi\)
0.526087 + 0.850431i \(0.323659\pi\)
\(374\) 15.4176 0.797226
\(375\) 4.61369 0.238250
\(376\) −3.95698 −0.204065
\(377\) 32.5802 1.67797
\(378\) 0.630361 0.0324223
\(379\) 13.5757 0.697338 0.348669 0.937246i \(-0.386634\pi\)
0.348669 + 0.937246i \(0.386634\pi\)
\(380\) 4.47096 0.229356
\(381\) 10.6282 0.544499
\(382\) 21.4684 1.09842
\(383\) 22.2757 1.13823 0.569117 0.822257i \(-0.307285\pi\)
0.569117 + 0.822257i \(0.307285\pi\)
\(384\) 29.9883 1.53033
\(385\) −2.01755 −0.102824
\(386\) −15.3138 −0.779452
\(387\) −12.2983 −0.625160
\(388\) 6.65968 0.338094
\(389\) 6.72426 0.340933 0.170467 0.985363i \(-0.445472\pi\)
0.170467 + 0.985363i \(0.445472\pi\)
\(390\) −51.4437 −2.60495
\(391\) −9.70228 −0.490665
\(392\) −16.6980 −0.843376
\(393\) 26.7780 1.35077
\(394\) −17.3062 −0.871873
\(395\) 24.4761 1.23153
\(396\) 3.71358 0.186614
\(397\) 28.7366 1.44225 0.721124 0.692806i \(-0.243626\pi\)
0.721124 + 0.692806i \(0.243626\pi\)
\(398\) 12.5784 0.630498
\(399\) 1.06163 0.0531482
\(400\) −20.3997 −1.01999
\(401\) 26.1038 1.30356 0.651780 0.758408i \(-0.274023\pi\)
0.651780 + 0.758408i \(0.274023\pi\)
\(402\) 30.6770 1.53003
\(403\) 21.3680 1.06442
\(404\) 7.20157 0.358292
\(405\) −33.9618 −1.68757
\(406\) −1.66627 −0.0826957
\(407\) −6.55514 −0.324926
\(408\) 12.3258 0.610220
\(409\) 20.6900 1.02306 0.511528 0.859267i \(-0.329080\pi\)
0.511528 + 0.859267i \(0.329080\pi\)
\(410\) 0.333121 0.0164517
\(411\) −26.2661 −1.29561
\(412\) 5.06408 0.249489
\(413\) 0.434522 0.0213814
\(414\) −12.0790 −0.593649
\(415\) 3.32644 0.163288
\(416\) −12.9292 −0.633905
\(417\) −39.4674 −1.93272
\(418\) −20.1345 −0.984810
\(419\) 4.75524 0.232309 0.116154 0.993231i \(-0.462943\pi\)
0.116154 + 0.993231i \(0.462943\pi\)
\(420\) 0.509031 0.0248382
\(421\) 22.5310 1.09810 0.549048 0.835791i \(-0.314990\pi\)
0.549048 + 0.835791i \(0.314990\pi\)
\(422\) 15.8616 0.772128
\(423\) −3.05556 −0.148567
\(424\) 0.310519 0.0150801
\(425\) −10.0859 −0.489239
\(426\) −3.46748 −0.168000
\(427\) 1.25567 0.0607660
\(428\) 1.47693 0.0713902
\(429\) 44.8220 2.16403
\(430\) 31.9715 1.54180
\(431\) 9.97725 0.480587 0.240294 0.970700i \(-0.422756\pi\)
0.240294 + 0.970700i \(0.422756\pi\)
\(432\) −11.9905 −0.576891
\(433\) 10.2907 0.494538 0.247269 0.968947i \(-0.420467\pi\)
0.247269 + 0.968947i \(0.420467\pi\)
\(434\) −1.09284 −0.0524580
\(435\) 45.0353 2.15928
\(436\) 4.91084 0.235186
\(437\) 12.6706 0.606117
\(438\) 19.8170 0.946893
\(439\) 3.60012 0.171824 0.0859122 0.996303i \(-0.472620\pi\)
0.0859122 + 0.996303i \(0.472620\pi\)
\(440\) 30.5907 1.45835
\(441\) −12.8941 −0.614006
\(442\) −17.9004 −0.851433
\(443\) −18.1720 −0.863377 −0.431688 0.902023i \(-0.642082\pi\)
−0.431688 + 0.902023i \(0.642082\pi\)
\(444\) 1.65387 0.0784892
\(445\) 20.9641 0.993794
\(446\) −2.27861 −0.107895
\(447\) 45.7865 2.16563
\(448\) −0.832176 −0.0393166
\(449\) 19.0599 0.899495 0.449747 0.893156i \(-0.351514\pi\)
0.449747 + 0.893156i \(0.351514\pi\)
\(450\) −12.5566 −0.591923
\(451\) −0.290243 −0.0136670
\(452\) 0.479767 0.0225663
\(453\) −28.8413 −1.35508
\(454\) 2.66517 0.125083
\(455\) 2.34244 0.109815
\(456\) −16.0968 −0.753802
\(457\) 13.5343 0.633108 0.316554 0.948575i \(-0.397474\pi\)
0.316554 + 0.948575i \(0.397474\pi\)
\(458\) 1.30458 0.0609589
\(459\) −5.92825 −0.276707
\(460\) 6.07528 0.283261
\(461\) −12.8404 −0.598039 −0.299020 0.954247i \(-0.596660\pi\)
−0.299020 + 0.954247i \(0.596660\pi\)
\(462\) −2.29236 −0.106650
\(463\) 8.36047 0.388544 0.194272 0.980948i \(-0.437766\pi\)
0.194272 + 0.980948i \(0.437766\pi\)
\(464\) 31.6951 1.47141
\(465\) 29.5368 1.36974
\(466\) −32.5367 −1.50723
\(467\) −3.18224 −0.147257 −0.0736283 0.997286i \(-0.523458\pi\)
−0.0736283 + 0.997286i \(0.523458\pi\)
\(468\) −4.31159 −0.199303
\(469\) −1.39685 −0.0645005
\(470\) 7.94343 0.366403
\(471\) −1.87763 −0.0865166
\(472\) −6.58835 −0.303253
\(473\) −27.8562 −1.28083
\(474\) 27.8101 1.27736
\(475\) 13.1716 0.604354
\(476\) 0.177122 0.00811840
\(477\) 0.239782 0.0109788
\(478\) 22.9334 1.04895
\(479\) −17.8726 −0.816618 −0.408309 0.912844i \(-0.633881\pi\)
−0.408309 + 0.912844i \(0.633881\pi\)
\(480\) −17.8719 −0.815736
\(481\) 7.61073 0.347020
\(482\) −12.7004 −0.578488
\(483\) 1.44258 0.0656396
\(484\) 3.13397 0.142453
\(485\) 42.3621 1.92357
\(486\) −26.6104 −1.20707
\(487\) −15.8914 −0.720106 −0.360053 0.932932i \(-0.617241\pi\)
−0.360053 + 0.932932i \(0.617241\pi\)
\(488\) −19.0388 −0.861846
\(489\) −0.584039 −0.0264112
\(490\) 33.5204 1.51430
\(491\) −23.6946 −1.06932 −0.534661 0.845067i \(-0.679561\pi\)
−0.534661 + 0.845067i \(0.679561\pi\)
\(492\) 0.0732286 0.00330140
\(493\) 15.6705 0.705764
\(494\) 23.3768 1.05177
\(495\) 23.6220 1.06173
\(496\) 20.7875 0.933387
\(497\) 0.157888 0.00708227
\(498\) 3.77954 0.169365
\(499\) −0.735730 −0.0329358 −0.0164679 0.999864i \(-0.505242\pi\)
−0.0164679 + 0.999864i \(0.505242\pi\)
\(500\) −1.00524 −0.0449558
\(501\) −4.92241 −0.219917
\(502\) −3.17055 −0.141508
\(503\) 33.7908 1.50666 0.753328 0.657644i \(-0.228447\pi\)
0.753328 + 0.657644i \(0.228447\pi\)
\(504\) −0.698730 −0.0311239
\(505\) 45.8091 2.03848
\(506\) −27.3593 −1.21627
\(507\) −23.4144 −1.03987
\(508\) −2.31570 −0.102742
\(509\) 15.3866 0.681997 0.340999 0.940064i \(-0.389235\pi\)
0.340999 + 0.940064i \(0.389235\pi\)
\(510\) −24.7435 −1.09566
\(511\) −0.902349 −0.0399176
\(512\) 10.0658 0.444849
\(513\) 7.74193 0.341815
\(514\) 21.9196 0.966831
\(515\) 32.2125 1.41945
\(516\) 7.02816 0.309397
\(517\) −6.92097 −0.304384
\(518\) −0.389241 −0.0171023
\(519\) −14.9598 −0.656661
\(520\) −35.5168 −1.55752
\(521\) −27.6649 −1.21202 −0.606010 0.795457i \(-0.707231\pi\)
−0.606010 + 0.795457i \(0.707231\pi\)
\(522\) 19.5092 0.853894
\(523\) −33.1318 −1.44875 −0.724377 0.689404i \(-0.757872\pi\)
−0.724377 + 0.689404i \(0.757872\pi\)
\(524\) −5.83446 −0.254880
\(525\) 1.49962 0.0654488
\(526\) 2.58373 0.112656
\(527\) 10.2776 0.447701
\(528\) 43.6043 1.89763
\(529\) −5.78282 −0.251427
\(530\) −0.623351 −0.0270766
\(531\) −5.08750 −0.220779
\(532\) −0.231311 −0.0100286
\(533\) 0.336981 0.0145963
\(534\) 23.8196 1.03078
\(535\) 9.39474 0.406170
\(536\) 21.1794 0.914812
\(537\) 15.3458 0.662220
\(538\) −22.2133 −0.957682
\(539\) −29.2057 −1.25798
\(540\) 3.71209 0.159743
\(541\) 28.1958 1.21223 0.606116 0.795376i \(-0.292727\pi\)
0.606116 + 0.795376i \(0.292727\pi\)
\(542\) 15.2114 0.653384
\(543\) 11.3569 0.487371
\(544\) −6.21871 −0.266625
\(545\) 31.2378 1.33808
\(546\) 2.66151 0.113902
\(547\) −5.05855 −0.216288 −0.108144 0.994135i \(-0.534491\pi\)
−0.108144 + 0.994135i \(0.534491\pi\)
\(548\) 5.72292 0.244471
\(549\) −14.7017 −0.627453
\(550\) −28.4412 −1.21273
\(551\) −20.4647 −0.871827
\(552\) −21.8728 −0.930969
\(553\) −1.26631 −0.0538488
\(554\) −20.6626 −0.877870
\(555\) 10.5202 0.446560
\(556\) 8.59924 0.364689
\(557\) −34.8775 −1.47781 −0.738904 0.673810i \(-0.764656\pi\)
−0.738904 + 0.673810i \(0.764656\pi\)
\(558\) 12.7953 0.541667
\(559\) 32.3420 1.36792
\(560\) 2.27881 0.0962971
\(561\) 21.5586 0.910204
\(562\) 31.2771 1.31934
\(563\) −3.74495 −0.157831 −0.0789153 0.996881i \(-0.525146\pi\)
−0.0789153 + 0.996881i \(0.525146\pi\)
\(564\) 1.74617 0.0735270
\(565\) 3.05179 0.128390
\(566\) 34.3947 1.44572
\(567\) 1.75706 0.0737895
\(568\) −2.39395 −0.100448
\(569\) 12.8440 0.538450 0.269225 0.963077i \(-0.413233\pi\)
0.269225 + 0.963077i \(0.413233\pi\)
\(570\) 32.3135 1.35346
\(571\) 9.90870 0.414666 0.207333 0.978270i \(-0.433522\pi\)
0.207333 + 0.978270i \(0.433522\pi\)
\(572\) −9.76592 −0.408334
\(573\) 30.0194 1.25408
\(574\) −0.0172345 −0.000719353 0
\(575\) 17.8980 0.746397
\(576\) 9.74335 0.405973
\(577\) −5.62945 −0.234357 −0.117179 0.993111i \(-0.537385\pi\)
−0.117179 + 0.993111i \(0.537385\pi\)
\(578\) 18.1606 0.755382
\(579\) −21.4134 −0.889911
\(580\) −9.81240 −0.407438
\(581\) −0.172098 −0.00713982
\(582\) 48.1323 1.99515
\(583\) 0.543114 0.0224935
\(584\) 13.6817 0.566152
\(585\) −27.4260 −1.13392
\(586\) −2.48272 −0.102560
\(587\) −11.3443 −0.468231 −0.234115 0.972209i \(-0.575219\pi\)
−0.234115 + 0.972209i \(0.575219\pi\)
\(588\) 7.36864 0.303878
\(589\) −13.4220 −0.553043
\(590\) 13.2258 0.544497
\(591\) −24.1994 −0.995429
\(592\) 7.40398 0.304302
\(593\) 43.7886 1.79818 0.899091 0.437761i \(-0.144228\pi\)
0.899091 + 0.437761i \(0.144228\pi\)
\(594\) −16.7170 −0.685907
\(595\) 1.12667 0.0461891
\(596\) −9.97606 −0.408636
\(597\) 17.5885 0.719848
\(598\) 31.7651 1.29897
\(599\) −7.38540 −0.301759 −0.150880 0.988552i \(-0.548211\pi\)
−0.150880 + 0.988552i \(0.548211\pi\)
\(600\) −22.7377 −0.928263
\(601\) −19.8407 −0.809320 −0.404660 0.914467i \(-0.632610\pi\)
−0.404660 + 0.914467i \(0.632610\pi\)
\(602\) −1.65409 −0.0674156
\(603\) 16.3547 0.666014
\(604\) 6.28400 0.255693
\(605\) 19.9351 0.810478
\(606\) 52.0488 2.11434
\(607\) 9.82816 0.398913 0.199456 0.979907i \(-0.436082\pi\)
0.199456 + 0.979907i \(0.436082\pi\)
\(608\) 8.12125 0.329360
\(609\) −2.32996 −0.0944148
\(610\) 38.2194 1.54746
\(611\) 8.03547 0.325080
\(612\) −2.07380 −0.0838284
\(613\) 32.0827 1.29581 0.647904 0.761722i \(-0.275646\pi\)
0.647904 + 0.761722i \(0.275646\pi\)
\(614\) 11.9593 0.482637
\(615\) 0.465806 0.0187831
\(616\) −1.58265 −0.0637668
\(617\) −5.64491 −0.227256 −0.113628 0.993523i \(-0.536247\pi\)
−0.113628 + 0.993523i \(0.536247\pi\)
\(618\) 36.6002 1.47228
\(619\) −0.0198462 −0.000797687 0 −0.000398844 1.00000i \(-0.500127\pi\)
−0.000398844 1.00000i \(0.500127\pi\)
\(620\) −6.43555 −0.258458
\(621\) 10.5200 0.422152
\(622\) −2.49233 −0.0999333
\(623\) −1.08461 −0.0434538
\(624\) −50.6260 −2.02666
\(625\) −27.9615 −1.11846
\(626\) −12.0154 −0.480234
\(627\) −28.1542 −1.12437
\(628\) 0.409103 0.0163250
\(629\) 3.66063 0.145959
\(630\) 1.40267 0.0558835
\(631\) 18.8293 0.749583 0.374792 0.927109i \(-0.377714\pi\)
0.374792 + 0.927109i \(0.377714\pi\)
\(632\) 19.2001 0.763739
\(633\) 22.1793 0.881549
\(634\) −15.2424 −0.605354
\(635\) −14.7301 −0.584547
\(636\) −0.137029 −0.00543353
\(637\) 33.9088 1.34352
\(638\) 44.1890 1.74946
\(639\) −1.84860 −0.0731296
\(640\) −41.5622 −1.64289
\(641\) −21.9447 −0.866765 −0.433383 0.901210i \(-0.642680\pi\)
−0.433383 + 0.901210i \(0.642680\pi\)
\(642\) 10.6744 0.421285
\(643\) 20.3937 0.804251 0.402125 0.915585i \(-0.368272\pi\)
0.402125 + 0.915585i \(0.368272\pi\)
\(644\) −0.314313 −0.0123857
\(645\) 44.7060 1.76030
\(646\) 11.2438 0.442382
\(647\) 46.1437 1.81410 0.907048 0.421028i \(-0.138331\pi\)
0.907048 + 0.421028i \(0.138331\pi\)
\(648\) −26.6410 −1.04656
\(649\) −11.5234 −0.452332
\(650\) 33.0211 1.29519
\(651\) −1.52813 −0.0598920
\(652\) 0.127252 0.00498357
\(653\) −16.0427 −0.627799 −0.313900 0.949456i \(-0.601636\pi\)
−0.313900 + 0.949456i \(0.601636\pi\)
\(654\) 35.4927 1.38787
\(655\) −37.1129 −1.45012
\(656\) 0.327827 0.0127995
\(657\) 10.5650 0.412178
\(658\) −0.410964 −0.0160210
\(659\) 15.2510 0.594097 0.297048 0.954862i \(-0.403998\pi\)
0.297048 + 0.954862i \(0.403998\pi\)
\(660\) −13.4993 −0.525461
\(661\) 4.98662 0.193957 0.0969785 0.995286i \(-0.469082\pi\)
0.0969785 + 0.995286i \(0.469082\pi\)
\(662\) 29.7076 1.15462
\(663\) −25.0302 −0.972093
\(664\) 2.60940 0.101264
\(665\) −1.47137 −0.0570572
\(666\) 4.55734 0.176593
\(667\) −27.8081 −1.07673
\(668\) 1.07251 0.0414965
\(669\) −3.18620 −0.123185
\(670\) −42.5166 −1.64256
\(671\) −33.2999 −1.28553
\(672\) 0.924626 0.0356682
\(673\) 38.4466 1.48201 0.741003 0.671502i \(-0.234350\pi\)
0.741003 + 0.671502i \(0.234350\pi\)
\(674\) −29.5684 −1.13893
\(675\) 10.9359 0.420925
\(676\) 5.10158 0.196215
\(677\) 0.740451 0.0284578 0.0142289 0.999899i \(-0.495471\pi\)
0.0142289 + 0.999899i \(0.495471\pi\)
\(678\) 3.46748 0.133168
\(679\) −2.19166 −0.0841083
\(680\) −17.0830 −0.655102
\(681\) 3.72673 0.142809
\(682\) 28.9818 1.10977
\(683\) 1.89031 0.0723309 0.0361654 0.999346i \(-0.488486\pi\)
0.0361654 + 0.999346i \(0.488486\pi\)
\(684\) 2.70826 0.103553
\(685\) 36.4034 1.39090
\(686\) −3.47464 −0.132662
\(687\) 1.82420 0.0695976
\(688\) 31.4634 1.19953
\(689\) −0.630574 −0.0240229
\(690\) 43.9086 1.67157
\(691\) −13.0519 −0.496516 −0.248258 0.968694i \(-0.579858\pi\)
−0.248258 + 0.968694i \(0.579858\pi\)
\(692\) 3.25947 0.123906
\(693\) −1.22212 −0.0464244
\(694\) −22.9733 −0.872056
\(695\) 54.6997 2.07488
\(696\) 35.3276 1.33909
\(697\) 0.162082 0.00613930
\(698\) −46.6754 −1.76669
\(699\) −45.4963 −1.72083
\(700\) −0.326741 −0.0123496
\(701\) 25.3052 0.955763 0.477882 0.878424i \(-0.341405\pi\)
0.477882 + 0.878424i \(0.341405\pi\)
\(702\) 19.4090 0.732545
\(703\) −4.78056 −0.180302
\(704\) 22.0691 0.831759
\(705\) 11.1074 0.418328
\(706\) 33.5723 1.26351
\(707\) −2.37000 −0.0891329
\(708\) 2.90737 0.109266
\(709\) −30.9393 −1.16195 −0.580976 0.813921i \(-0.697329\pi\)
−0.580976 + 0.813921i \(0.697329\pi\)
\(710\) 4.80574 0.180356
\(711\) 14.8263 0.556028
\(712\) 16.4451 0.616307
\(713\) −18.2382 −0.683025
\(714\) 1.28014 0.0479080
\(715\) −62.1209 −2.32319
\(716\) −3.34358 −0.124955
\(717\) 32.0679 1.19760
\(718\) −34.3779 −1.28297
\(719\) −41.5161 −1.54829 −0.774145 0.633008i \(-0.781820\pi\)
−0.774145 + 0.633008i \(0.781820\pi\)
\(720\) −26.6809 −0.994338
\(721\) −1.66656 −0.0620659
\(722\) 15.2361 0.567028
\(723\) −17.7591 −0.660467
\(724\) −2.47446 −0.0919628
\(725\) −28.9077 −1.07360
\(726\) 22.6505 0.840639
\(727\) −26.3604 −0.977653 −0.488827 0.872381i \(-0.662575\pi\)
−0.488827 + 0.872381i \(0.662575\pi\)
\(728\) 1.83751 0.0681026
\(729\) −3.82412 −0.141634
\(730\) −27.4653 −1.01654
\(731\) 15.5559 0.575356
\(732\) 8.40161 0.310532
\(733\) 3.90893 0.144380 0.0721898 0.997391i \(-0.477001\pi\)
0.0721898 + 0.997391i \(0.477001\pi\)
\(734\) −2.38936 −0.0881929
\(735\) 46.8718 1.72889
\(736\) 11.0354 0.406770
\(737\) 37.0440 1.36453
\(738\) 0.201786 0.00742785
\(739\) −21.4772 −0.790053 −0.395026 0.918670i \(-0.629265\pi\)
−0.395026 + 0.918670i \(0.629265\pi\)
\(740\) −2.29218 −0.0842621
\(741\) 32.6880 1.20082
\(742\) 0.0322499 0.00118393
\(743\) 7.82324 0.287007 0.143503 0.989650i \(-0.454163\pi\)
0.143503 + 0.989650i \(0.454163\pi\)
\(744\) 23.1699 0.849450
\(745\) −63.4576 −2.32491
\(746\) −31.9998 −1.17160
\(747\) 2.01497 0.0737238
\(748\) −4.69723 −0.171748
\(749\) −0.486050 −0.0177599
\(750\) −7.26530 −0.265291
\(751\) −15.3838 −0.561364 −0.280682 0.959801i \(-0.590561\pi\)
−0.280682 + 0.959801i \(0.590561\pi\)
\(752\) 7.81718 0.285063
\(753\) −4.43340 −0.161562
\(754\) −51.3049 −1.86842
\(755\) 39.9725 1.45475
\(756\) −0.192050 −0.00698479
\(757\) −48.0617 −1.74683 −0.873416 0.486974i \(-0.838100\pi\)
−0.873416 + 0.486974i \(0.838100\pi\)
\(758\) −21.3781 −0.776486
\(759\) −38.2568 −1.38863
\(760\) 22.3093 0.809244
\(761\) −18.1016 −0.656183 −0.328091 0.944646i \(-0.606405\pi\)
−0.328091 + 0.944646i \(0.606405\pi\)
\(762\) −16.7365 −0.606300
\(763\) −1.61613 −0.0585077
\(764\) −6.54070 −0.236634
\(765\) −13.1914 −0.476936
\(766\) −35.0781 −1.26742
\(767\) 13.3790 0.483089
\(768\) −24.0119 −0.866454
\(769\) −15.0271 −0.541891 −0.270946 0.962595i \(-0.587336\pi\)
−0.270946 + 0.962595i \(0.587336\pi\)
\(770\) 3.17709 0.114494
\(771\) 30.6503 1.10384
\(772\) 4.66561 0.167919
\(773\) −3.85837 −0.138776 −0.0693880 0.997590i \(-0.522105\pi\)
−0.0693880 + 0.997590i \(0.522105\pi\)
\(774\) 19.3665 0.696115
\(775\) −18.9593 −0.681040
\(776\) 33.2306 1.19291
\(777\) −0.544279 −0.0195259
\(778\) −10.5889 −0.379630
\(779\) −0.211669 −0.00758384
\(780\) 15.6732 0.561190
\(781\) −4.18716 −0.149828
\(782\) 15.2784 0.546356
\(783\) −16.9912 −0.607216
\(784\) 32.9876 1.17813
\(785\) 2.60230 0.0928799
\(786\) −42.1681 −1.50409
\(787\) 1.58610 0.0565383 0.0282691 0.999600i \(-0.491000\pi\)
0.0282691 + 0.999600i \(0.491000\pi\)
\(788\) 5.27262 0.187829
\(789\) 3.61285 0.128621
\(790\) −38.5433 −1.37131
\(791\) −0.157888 −0.00561387
\(792\) 18.5301 0.658439
\(793\) 38.6623 1.37294
\(794\) −45.2523 −1.60594
\(795\) −0.871636 −0.0309138
\(796\) −3.83222 −0.135829
\(797\) 17.2392 0.610645 0.305323 0.952249i \(-0.401236\pi\)
0.305323 + 0.952249i \(0.401236\pi\)
\(798\) −1.67178 −0.0591805
\(799\) 3.86492 0.136731
\(800\) 11.4718 0.405588
\(801\) 12.6989 0.448692
\(802\) −41.1063 −1.45152
\(803\) 23.9300 0.844472
\(804\) −9.34625 −0.329617
\(805\) −1.99934 −0.0704674
\(806\) −33.6488 −1.18523
\(807\) −31.0610 −1.09340
\(808\) 35.9346 1.26417
\(809\) 35.6355 1.25288 0.626439 0.779471i \(-0.284512\pi\)
0.626439 + 0.779471i \(0.284512\pi\)
\(810\) 53.4806 1.87912
\(811\) 38.2914 1.34459 0.672296 0.740282i \(-0.265308\pi\)
0.672296 + 0.740282i \(0.265308\pi\)
\(812\) 0.507658 0.0178153
\(813\) 21.2702 0.745977
\(814\) 10.3226 0.361806
\(815\) 0.809447 0.0283537
\(816\) −24.3502 −0.852429
\(817\) −20.3151 −0.710735
\(818\) −32.5811 −1.13917
\(819\) 1.41892 0.0495810
\(820\) −0.101491 −0.00354422
\(821\) −20.9487 −0.731114 −0.365557 0.930789i \(-0.619121\pi\)
−0.365557 + 0.930789i \(0.619121\pi\)
\(822\) 41.3620 1.44266
\(823\) −48.1690 −1.67907 −0.839533 0.543309i \(-0.817171\pi\)
−0.839533 + 0.543309i \(0.817171\pi\)
\(824\) 25.2689 0.880282
\(825\) −39.7695 −1.38460
\(826\) −0.684253 −0.0238082
\(827\) 54.1538 1.88311 0.941556 0.336856i \(-0.109363\pi\)
0.941556 + 0.336856i \(0.109363\pi\)
\(828\) 3.68006 0.127891
\(829\) 30.4667 1.05815 0.529075 0.848575i \(-0.322539\pi\)
0.529075 + 0.848575i \(0.322539\pi\)
\(830\) −5.23824 −0.181822
\(831\) −28.8927 −1.00228
\(832\) −25.6229 −0.888314
\(833\) 16.3095 0.565092
\(834\) 62.1503 2.15209
\(835\) 6.82220 0.236092
\(836\) 6.13430 0.212159
\(837\) −11.1438 −0.385187
\(838\) −7.48821 −0.258676
\(839\) −6.12394 −0.211422 −0.105711 0.994397i \(-0.533712\pi\)
−0.105711 + 0.994397i \(0.533712\pi\)
\(840\) 2.53997 0.0876374
\(841\) 15.9138 0.548753
\(842\) −35.4803 −1.22273
\(843\) 43.7350 1.50631
\(844\) −4.83249 −0.166341
\(845\) 32.4511 1.11635
\(846\) 4.81168 0.165429
\(847\) −1.03137 −0.0354383
\(848\) −0.613443 −0.0210657
\(849\) 48.0944 1.65060
\(850\) 15.8826 0.544768
\(851\) −6.49597 −0.222679
\(852\) 1.05643 0.0361925
\(853\) 31.1108 1.06521 0.532606 0.846363i \(-0.321213\pi\)
0.532606 + 0.846363i \(0.321213\pi\)
\(854\) −1.97733 −0.0676629
\(855\) 17.2272 0.589157
\(856\) 7.36963 0.251889
\(857\) 47.6218 1.62673 0.813365 0.581754i \(-0.197633\pi\)
0.813365 + 0.581754i \(0.197633\pi\)
\(858\) −70.5824 −2.40964
\(859\) 51.6147 1.76107 0.880535 0.473981i \(-0.157183\pi\)
0.880535 + 0.473981i \(0.157183\pi\)
\(860\) −9.74065 −0.332154
\(861\) −0.0240991 −0.000821295 0
\(862\) −15.7114 −0.535134
\(863\) 30.4315 1.03590 0.517950 0.855411i \(-0.326695\pi\)
0.517950 + 0.855411i \(0.326695\pi\)
\(864\) 6.74281 0.229395
\(865\) 20.7334 0.704958
\(866\) −16.2050 −0.550669
\(867\) 25.3941 0.862430
\(868\) 0.332952 0.0113011
\(869\) 33.5820 1.13919
\(870\) −70.9184 −2.40436
\(871\) −43.0093 −1.45731
\(872\) 24.5042 0.829817
\(873\) 25.6606 0.868479
\(874\) −19.9527 −0.674911
\(875\) 0.330819 0.0111837
\(876\) −6.03758 −0.203991
\(877\) −15.9796 −0.539592 −0.269796 0.962918i \(-0.586956\pi\)
−0.269796 + 0.962918i \(0.586956\pi\)
\(878\) −5.66921 −0.191327
\(879\) −3.47160 −0.117094
\(880\) −60.4333 −2.03720
\(881\) 33.4910 1.12834 0.564170 0.825658i \(-0.309196\pi\)
0.564170 + 0.825658i \(0.309196\pi\)
\(882\) 20.3047 0.683696
\(883\) 0.683363 0.0229970 0.0114985 0.999934i \(-0.496340\pi\)
0.0114985 + 0.999934i \(0.496340\pi\)
\(884\) 5.45364 0.183426
\(885\) 18.4937 0.621659
\(886\) 28.6159 0.961370
\(887\) −0.434295 −0.0145822 −0.00729110 0.999973i \(-0.502321\pi\)
−0.00729110 + 0.999973i \(0.502321\pi\)
\(888\) 8.25252 0.276937
\(889\) 0.762082 0.0255594
\(890\) −33.0128 −1.10659
\(891\) −46.5967 −1.56105
\(892\) 0.694216 0.0232441
\(893\) −5.04735 −0.168903
\(894\) −72.1012 −2.41143
\(895\) −21.2685 −0.710926
\(896\) 2.15027 0.0718356
\(897\) 44.4174 1.48305
\(898\) −30.0142 −1.00159
\(899\) 29.4571 0.982451
\(900\) 3.82557 0.127519
\(901\) −0.303295 −0.0101042
\(902\) 0.457053 0.0152182
\(903\) −2.31293 −0.0769693
\(904\) 2.39395 0.0796217
\(905\) −15.7400 −0.523216
\(906\) 45.4171 1.50888
\(907\) 22.3164 0.741005 0.370502 0.928832i \(-0.379186\pi\)
0.370502 + 0.928832i \(0.379186\pi\)
\(908\) −0.811990 −0.0269468
\(909\) 27.7486 0.920362
\(910\) −3.68871 −0.122279
\(911\) 1.44392 0.0478391 0.0239195 0.999714i \(-0.492385\pi\)
0.0239195 + 0.999714i \(0.492385\pi\)
\(912\) 31.7999 1.05300
\(913\) 4.56398 0.151046
\(914\) −21.3128 −0.704966
\(915\) 53.4425 1.76676
\(916\) −0.397461 −0.0131325
\(917\) 1.92009 0.0634068
\(918\) 9.33538 0.308113
\(919\) 33.2345 1.09631 0.548153 0.836378i \(-0.315331\pi\)
0.548153 + 0.836378i \(0.315331\pi\)
\(920\) 30.3146 0.999442
\(921\) 16.7227 0.551033
\(922\) 20.2202 0.665917
\(923\) 4.86143 0.160016
\(924\) 0.698406 0.0229759
\(925\) −6.75283 −0.222032
\(926\) −13.1655 −0.432644
\(927\) 19.5125 0.640876
\(928\) −17.8237 −0.585091
\(929\) 25.8957 0.849609 0.424805 0.905285i \(-0.360343\pi\)
0.424805 + 0.905285i \(0.360343\pi\)
\(930\) −46.5124 −1.52520
\(931\) −21.2993 −0.698055
\(932\) 9.91285 0.324706
\(933\) −3.48504 −0.114095
\(934\) 5.01117 0.163970
\(935\) −29.8790 −0.977149
\(936\) −21.5141 −0.703210
\(937\) −26.1675 −0.854854 −0.427427 0.904050i \(-0.640580\pi\)
−0.427427 + 0.904050i \(0.640580\pi\)
\(938\) 2.19966 0.0718213
\(939\) −16.8013 −0.548289
\(940\) −2.42010 −0.0789349
\(941\) 18.8416 0.614219 0.307110 0.951674i \(-0.400638\pi\)
0.307110 + 0.951674i \(0.400638\pi\)
\(942\) 2.95676 0.0963363
\(943\) −0.287623 −0.00936629
\(944\) 13.0156 0.423621
\(945\) −1.22163 −0.0397396
\(946\) 43.8659 1.42620
\(947\) 34.6801 1.12695 0.563476 0.826133i \(-0.309464\pi\)
0.563476 + 0.826133i \(0.309464\pi\)
\(948\) −8.47280 −0.275184
\(949\) −27.7836 −0.901892
\(950\) −20.7417 −0.672949
\(951\) −21.3136 −0.691141
\(952\) 0.883810 0.0286444
\(953\) −25.0260 −0.810671 −0.405335 0.914168i \(-0.632845\pi\)
−0.405335 + 0.914168i \(0.632845\pi\)
\(954\) −0.377591 −0.0122249
\(955\) −41.6053 −1.34631
\(956\) −6.98703 −0.225977
\(957\) 61.7899 1.99738
\(958\) 28.1444 0.909304
\(959\) −1.88338 −0.0608175
\(960\) −35.4183 −1.14312
\(961\) −11.6803 −0.376783
\(962\) −11.9848 −0.386406
\(963\) 5.69080 0.183384
\(964\) 3.86939 0.124625
\(965\) 29.6778 0.955364
\(966\) −2.27167 −0.0730898
\(967\) 38.1106 1.22556 0.612778 0.790255i \(-0.290052\pi\)
0.612778 + 0.790255i \(0.290052\pi\)
\(968\) 15.6379 0.502623
\(969\) 15.7223 0.505074
\(970\) −66.7088 −2.14189
\(971\) 30.5246 0.979580 0.489790 0.871840i \(-0.337073\pi\)
0.489790 + 0.871840i \(0.337073\pi\)
\(972\) 8.10731 0.260042
\(973\) −2.82996 −0.0907243
\(974\) 25.0246 0.801839
\(975\) 46.1737 1.47874
\(976\) 37.6120 1.20393
\(977\) −42.2934 −1.35309 −0.676544 0.736403i \(-0.736523\pi\)
−0.676544 + 0.736403i \(0.736523\pi\)
\(978\) 0.919702 0.0294088
\(979\) 28.7634 0.919283
\(980\) −10.2125 −0.326228
\(981\) 18.9221 0.604135
\(982\) 37.3125 1.19069
\(983\) −20.5712 −0.656121 −0.328060 0.944657i \(-0.606395\pi\)
−0.328060 + 0.944657i \(0.606395\pi\)
\(984\) 0.365398 0.0116485
\(985\) 33.5390 1.06864
\(986\) −24.6768 −0.785869
\(987\) −0.574654 −0.0182914
\(988\) −7.12213 −0.226585
\(989\) −27.6048 −0.877780
\(990\) −37.1983 −1.18224
\(991\) 56.4876 1.79439 0.897194 0.441637i \(-0.145602\pi\)
0.897194 + 0.441637i \(0.145602\pi\)
\(992\) −11.6898 −0.371152
\(993\) 41.5403 1.31824
\(994\) −0.248631 −0.00788611
\(995\) −24.3767 −0.772793
\(996\) −1.15150 −0.0364866
\(997\) −19.0127 −0.602139 −0.301070 0.953602i \(-0.597344\pi\)
−0.301070 + 0.953602i \(0.597344\pi\)
\(998\) 1.15857 0.0366740
\(999\) −3.96914 −0.125578
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8023.2.a.e.1.37 172
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8023.2.a.e.1.37 172 1.1 even 1 trivial