Properties

Label 800.2.be.a.209.5
Level $800$
Weight $2$
Character 800.209
Analytic conductor $6.388$
Analytic rank $0$
Dimension $112$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [800,2,Mod(209,800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("800.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(800, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.be (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(28\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 209.5
Character \(\chi\) \(=\) 800.209
Dual form 800.2.be.a.689.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.732250 - 2.25363i) q^{3} +(-2.17427 + 0.522052i) q^{5} +3.97385i q^{7} +(-2.11562 + 1.53709i) q^{9} +(-0.0901459 + 0.124075i) q^{11} +(3.44230 - 2.50098i) q^{13} +(2.76862 + 4.51774i) q^{15} +(0.405955 + 0.131903i) q^{17} +(3.05129 + 0.991424i) q^{19} +(8.95560 - 2.90985i) q^{21} +(4.00689 - 5.51501i) q^{23} +(4.45492 - 2.27017i) q^{25} +(-0.737967 - 0.536164i) q^{27} +(3.12579 - 1.01563i) q^{29} +(-2.29653 + 7.06798i) q^{31} +(0.345629 + 0.112302i) q^{33} +(-2.07456 - 8.64023i) q^{35} +(-7.19328 + 5.22623i) q^{37} +(-8.15691 - 5.92634i) q^{39} +(7.02219 - 5.10192i) q^{41} +7.17438 q^{43} +(3.79750 - 4.44652i) q^{45} +(6.23420 - 2.02562i) q^{47} -8.79147 q^{49} -1.01146i q^{51} +(-2.46974 - 7.60109i) q^{53} +(0.131228 - 0.316834i) q^{55} -7.60246i q^{57} +(6.95639 + 9.57464i) q^{59} +(2.24292 - 3.08711i) q^{61} +(-6.10816 - 8.40716i) q^{63} +(-6.17886 + 7.23487i) q^{65} +(1.80462 - 5.55404i) q^{67} +(-15.3628 - 4.99169i) q^{69} +(-1.49867 - 4.61242i) q^{71} +(-0.112318 + 0.154592i) q^{73} +(-8.37824 - 8.37743i) q^{75} +(-0.493056 - 0.358226i) q^{77} +(2.30104 + 7.08187i) q^{79} +(-3.09223 + 9.51690i) q^{81} +(1.97729 - 6.08548i) q^{83} +(-0.951517 - 0.0748629i) q^{85} +(-4.57771 - 6.30068i) q^{87} +(5.37406 + 3.90448i) q^{89} +(9.93851 + 13.6792i) q^{91} +17.6103 q^{93} +(-7.15191 - 0.562694i) q^{95} +(11.2199 - 3.64557i) q^{97} -0.401058i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q - 30 q^{9} + 2 q^{15} - 10 q^{17} + 10 q^{23} - 6 q^{25} + 18 q^{31} - 10 q^{33} + 10 q^{39} - 10 q^{41} + 10 q^{47} - 80 q^{49} + 34 q^{55} - 60 q^{63} + 40 q^{65} - 22 q^{71} - 10 q^{73} - 14 q^{79}+ \cdots - 50 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.732250 2.25363i −0.422765 1.30114i −0.905119 0.425159i \(-0.860218\pi\)
0.482354 0.875976i \(-0.339782\pi\)
\(4\) 0 0
\(5\) −2.17427 + 0.522052i −0.972364 + 0.233469i
\(6\) 0 0
\(7\) 3.97385i 1.50197i 0.660317 + 0.750987i \(0.270422\pi\)
−0.660317 + 0.750987i \(0.729578\pi\)
\(8\) 0 0
\(9\) −2.11562 + 1.53709i −0.705207 + 0.512363i
\(10\) 0 0
\(11\) −0.0901459 + 0.124075i −0.0271800 + 0.0374101i −0.822391 0.568923i \(-0.807360\pi\)
0.795211 + 0.606333i \(0.207360\pi\)
\(12\) 0 0
\(13\) 3.44230 2.50098i 0.954723 0.693647i 0.00280360 0.999996i \(-0.499108\pi\)
0.951919 + 0.306349i \(0.0991076\pi\)
\(14\) 0 0
\(15\) 2.76862 + 4.51774i 0.714856 + 1.16648i
\(16\) 0 0
\(17\) 0.405955 + 0.131903i 0.0984586 + 0.0319911i 0.357832 0.933786i \(-0.383516\pi\)
−0.259373 + 0.965777i \(0.583516\pi\)
\(18\) 0 0
\(19\) 3.05129 + 0.991424i 0.700014 + 0.227448i 0.637337 0.770586i \(-0.280036\pi\)
0.0626774 + 0.998034i \(0.480036\pi\)
\(20\) 0 0
\(21\) 8.95560 2.90985i 1.95427 0.634981i
\(22\) 0 0
\(23\) 4.00689 5.51501i 0.835494 1.14996i −0.151382 0.988475i \(-0.548372\pi\)
0.986876 0.161483i \(-0.0516277\pi\)
\(24\) 0 0
\(25\) 4.45492 2.27017i 0.890985 0.454034i
\(26\) 0 0
\(27\) −0.737967 0.536164i −0.142022 0.103185i
\(28\) 0 0
\(29\) 3.12579 1.01563i 0.580444 0.188598i −0.00405557 0.999992i \(-0.501291\pi\)
0.584499 + 0.811394i \(0.301291\pi\)
\(30\) 0 0
\(31\) −2.29653 + 7.06798i −0.412468 + 1.26945i 0.502028 + 0.864852i \(0.332588\pi\)
−0.914496 + 0.404595i \(0.867412\pi\)
\(32\) 0 0
\(33\) 0.345629 + 0.112302i 0.0601663 + 0.0195492i
\(34\) 0 0
\(35\) −2.07456 8.64023i −0.350664 1.46047i
\(36\) 0 0
\(37\) −7.19328 + 5.22623i −1.18257 + 0.859186i −0.992459 0.122577i \(-0.960884\pi\)
−0.190109 + 0.981763i \(0.560884\pi\)
\(38\) 0 0
\(39\) −8.15691 5.92634i −1.30615 0.948975i
\(40\) 0 0
\(41\) 7.02219 5.10192i 1.09668 0.796786i 0.116166 0.993230i \(-0.462939\pi\)
0.980515 + 0.196444i \(0.0629395\pi\)
\(42\) 0 0
\(43\) 7.17438 1.09408 0.547042 0.837105i \(-0.315754\pi\)
0.547042 + 0.837105i \(0.315754\pi\)
\(44\) 0 0
\(45\) 3.79750 4.44652i 0.566097 0.662847i
\(46\) 0 0
\(47\) 6.23420 2.02562i 0.909352 0.295466i 0.183260 0.983064i \(-0.441335\pi\)
0.726092 + 0.687598i \(0.241335\pi\)
\(48\) 0 0
\(49\) −8.79147 −1.25592
\(50\) 0 0
\(51\) 1.01146i 0.141633i
\(52\) 0 0
\(53\) −2.46974 7.60109i −0.339245 1.04409i −0.964593 0.263743i \(-0.915043\pi\)
0.625348 0.780346i \(-0.284957\pi\)
\(54\) 0 0
\(55\) 0.131228 0.316834i 0.0176948 0.0427219i
\(56\) 0 0
\(57\) 7.60246i 1.00697i
\(58\) 0 0
\(59\) 6.95639 + 9.57464i 0.905644 + 1.24651i 0.968632 + 0.248498i \(0.0799370\pi\)
−0.0629880 + 0.998014i \(0.520063\pi\)
\(60\) 0 0
\(61\) 2.24292 3.08711i 0.287176 0.395264i −0.640918 0.767609i \(-0.721446\pi\)
0.928094 + 0.372345i \(0.121446\pi\)
\(62\) 0 0
\(63\) −6.10816 8.40716i −0.769556 1.05920i
\(64\) 0 0
\(65\) −6.17886 + 7.23487i −0.766393 + 0.897375i
\(66\) 0 0
\(67\) 1.80462 5.55404i 0.220469 0.678533i −0.778251 0.627953i \(-0.783893\pi\)
0.998720 0.0505802i \(-0.0161071\pi\)
\(68\) 0 0
\(69\) −15.3628 4.99169i −1.84947 0.600929i
\(70\) 0 0
\(71\) −1.49867 4.61242i −0.177859 0.547394i 0.821894 0.569641i \(-0.192918\pi\)
−0.999752 + 0.0222475i \(0.992918\pi\)
\(72\) 0 0
\(73\) −0.112318 + 0.154592i −0.0131458 + 0.0180936i −0.815539 0.578702i \(-0.803560\pi\)
0.802394 + 0.596795i \(0.203560\pi\)
\(74\) 0 0
\(75\) −8.37824 8.37743i −0.967436 0.967342i
\(76\) 0 0
\(77\) −0.493056 0.358226i −0.0561890 0.0408237i
\(78\) 0 0
\(79\) 2.30104 + 7.08187i 0.258887 + 0.796773i 0.993039 + 0.117787i \(0.0375802\pi\)
−0.734152 + 0.678986i \(0.762420\pi\)
\(80\) 0 0
\(81\) −3.09223 + 9.51690i −0.343581 + 1.05743i
\(82\) 0 0
\(83\) 1.97729 6.08548i 0.217036 0.667968i −0.781967 0.623320i \(-0.785783\pi\)
0.999003 0.0446478i \(-0.0142166\pi\)
\(84\) 0 0
\(85\) −0.951517 0.0748629i −0.103207 0.00812002i
\(86\) 0 0
\(87\) −4.57771 6.30068i −0.490782 0.675504i
\(88\) 0 0
\(89\) 5.37406 + 3.90448i 0.569649 + 0.413874i 0.834978 0.550284i \(-0.185480\pi\)
−0.265329 + 0.964158i \(0.585480\pi\)
\(90\) 0 0
\(91\) 9.93851 + 13.6792i 1.04184 + 1.43397i
\(92\) 0 0
\(93\) 17.6103 1.82610
\(94\) 0 0
\(95\) −7.15191 0.562694i −0.733771 0.0577311i
\(96\) 0 0
\(97\) 11.2199 3.64557i 1.13921 0.370151i 0.322140 0.946692i \(-0.395598\pi\)
0.817068 + 0.576541i \(0.195598\pi\)
\(98\) 0 0
\(99\) 0.401058i 0.0403079i
\(100\) 0 0
\(101\) 11.2177i 1.11620i 0.829774 + 0.558100i \(0.188470\pi\)
−0.829774 + 0.558100i \(0.811530\pi\)
\(102\) 0 0
\(103\) 2.59950 0.844629i 0.256136 0.0832238i −0.178134 0.984006i \(-0.557006\pi\)
0.434271 + 0.900782i \(0.357006\pi\)
\(104\) 0 0
\(105\) −17.9528 + 11.0021i −1.75202 + 1.07369i
\(106\) 0 0
\(107\) 0.836926 0.0809087 0.0404544 0.999181i \(-0.487119\pi\)
0.0404544 + 0.999181i \(0.487119\pi\)
\(108\) 0 0
\(109\) 7.22454 + 9.94372i 0.691985 + 0.952436i 0.999999 + 0.00105409i \(0.000335528\pi\)
−0.308014 + 0.951382i \(0.599664\pi\)
\(110\) 0 0
\(111\) 17.0453 + 12.3841i 1.61787 + 1.17545i
\(112\) 0 0
\(113\) −0.733589 1.00970i −0.0690103 0.0949845i 0.773117 0.634264i \(-0.218697\pi\)
−0.842127 + 0.539279i \(0.818697\pi\)
\(114\) 0 0
\(115\) −5.83294 + 14.0829i −0.543925 + 1.31324i
\(116\) 0 0
\(117\) −3.43838 + 10.5822i −0.317878 + 0.978329i
\(118\) 0 0
\(119\) −0.524162 + 1.61320i −0.0480498 + 0.147882i
\(120\) 0 0
\(121\) 3.39192 + 10.4393i 0.308356 + 0.949023i
\(122\) 0 0
\(123\) −16.6398 12.0896i −1.50036 1.09008i
\(124\) 0 0
\(125\) −8.50107 + 7.26167i −0.760359 + 0.649503i
\(126\) 0 0
\(127\) 12.4049 17.0738i 1.10075 1.51506i 0.266370 0.963871i \(-0.414176\pi\)
0.834383 0.551185i \(-0.185824\pi\)
\(128\) 0 0
\(129\) −5.25344 16.1684i −0.462540 1.42355i
\(130\) 0 0
\(131\) −6.85047 2.22585i −0.598528 0.194474i −0.00594432 0.999982i \(-0.501892\pi\)
−0.592584 + 0.805509i \(0.701892\pi\)
\(132\) 0 0
\(133\) −3.93977 + 12.1254i −0.341621 + 1.05140i
\(134\) 0 0
\(135\) 1.88445 + 0.780510i 0.162187 + 0.0671756i
\(136\) 0 0
\(137\) 6.72690 + 9.25878i 0.574718 + 0.791031i 0.993104 0.117238i \(-0.0374041\pi\)
−0.418386 + 0.908269i \(0.637404\pi\)
\(138\) 0 0
\(139\) −2.93724 + 4.04276i −0.249133 + 0.342903i −0.915208 0.402983i \(-0.867973\pi\)
0.666074 + 0.745886i \(0.267973\pi\)
\(140\) 0 0
\(141\) −9.12999 12.5663i −0.768884 1.05828i
\(142\) 0 0
\(143\) 0.652557i 0.0545696i
\(144\) 0 0
\(145\) −6.26610 + 3.84008i −0.520371 + 0.318901i
\(146\) 0 0
\(147\) 6.43755 + 19.8128i 0.530961 + 1.63413i
\(148\) 0 0
\(149\) 6.44210i 0.527758i −0.964556 0.263879i \(-0.914998\pi\)
0.964556 0.263879i \(-0.0850019\pi\)
\(150\) 0 0
\(151\) −4.73935 −0.385683 −0.192842 0.981230i \(-0.561770\pi\)
−0.192842 + 0.981230i \(0.561770\pi\)
\(152\) 0 0
\(153\) −1.06159 + 0.344933i −0.0858248 + 0.0278862i
\(154\) 0 0
\(155\) 1.30342 16.5666i 0.104693 1.33066i
\(156\) 0 0
\(157\) −6.30768 −0.503408 −0.251704 0.967804i \(-0.580991\pi\)
−0.251704 + 0.967804i \(0.580991\pi\)
\(158\) 0 0
\(159\) −15.3216 + 11.1318i −1.21508 + 0.882808i
\(160\) 0 0
\(161\) 21.9158 + 15.9228i 1.72721 + 1.25489i
\(162\) 0 0
\(163\) −15.8677 + 11.5286i −1.24286 + 0.902988i −0.997785 0.0665173i \(-0.978811\pi\)
−0.245071 + 0.969505i \(0.578811\pi\)
\(164\) 0 0
\(165\) −0.810120 0.0637381i −0.0630677 0.00496200i
\(166\) 0 0
\(167\) −1.38399 0.449686i −0.107096 0.0347978i 0.254979 0.966947i \(-0.417932\pi\)
−0.362075 + 0.932149i \(0.617932\pi\)
\(168\) 0 0
\(169\) 1.57733 4.85451i 0.121333 0.373424i
\(170\) 0 0
\(171\) −7.97928 + 2.59263i −0.610191 + 0.198263i
\(172\) 0 0
\(173\) 3.50839 + 2.54899i 0.266738 + 0.193796i 0.713112 0.701050i \(-0.247285\pi\)
−0.446374 + 0.894846i \(0.647285\pi\)
\(174\) 0 0
\(175\) 9.02130 + 17.7032i 0.681947 + 1.33824i
\(176\) 0 0
\(177\) 16.4839 22.6882i 1.23901 1.70535i
\(178\) 0 0
\(179\) −1.61587 + 0.525029i −0.120776 + 0.0392425i −0.368781 0.929516i \(-0.620225\pi\)
0.248005 + 0.968759i \(0.420225\pi\)
\(180\) 0 0
\(181\) −10.8590 3.52830i −0.807143 0.262257i −0.123756 0.992313i \(-0.539494\pi\)
−0.683387 + 0.730056i \(0.739494\pi\)
\(182\) 0 0
\(183\) −8.59960 2.79418i −0.635701 0.206552i
\(184\) 0 0
\(185\) 12.9118 15.1185i 0.949294 1.11154i
\(186\) 0 0
\(187\) −0.0529611 + 0.0384785i −0.00387290 + 0.00281382i
\(188\) 0 0
\(189\) 2.13064 2.93257i 0.154981 0.213313i
\(190\) 0 0
\(191\) 12.7176 9.23991i 0.920216 0.668576i −0.0233618 0.999727i \(-0.507437\pi\)
0.943578 + 0.331151i \(0.107437\pi\)
\(192\) 0 0
\(193\) 25.2391i 1.81675i −0.418153 0.908377i \(-0.637322\pi\)
0.418153 0.908377i \(-0.362678\pi\)
\(194\) 0 0
\(195\) 20.8292 + 8.62715i 1.49161 + 0.617803i
\(196\) 0 0
\(197\) −0.983987 3.02840i −0.0701062 0.215765i 0.909865 0.414905i \(-0.136185\pi\)
−0.979971 + 0.199140i \(0.936185\pi\)
\(198\) 0 0
\(199\) −2.67148 −0.189376 −0.0946880 0.995507i \(-0.530185\pi\)
−0.0946880 + 0.995507i \(0.530185\pi\)
\(200\) 0 0
\(201\) −13.8382 −0.976070
\(202\) 0 0
\(203\) 4.03596 + 12.4214i 0.283269 + 0.871811i
\(204\) 0 0
\(205\) −12.6047 + 14.7589i −0.880349 + 1.03081i
\(206\) 0 0
\(207\) 17.8266i 1.23903i
\(208\) 0 0
\(209\) −0.398073 + 0.289217i −0.0275353 + 0.0200055i
\(210\) 0 0
\(211\) −4.80758 + 6.61706i −0.330967 + 0.455537i −0.941776 0.336241i \(-0.890844\pi\)
0.610809 + 0.791778i \(0.290844\pi\)
\(212\) 0 0
\(213\) −9.29731 + 6.75489i −0.637041 + 0.462837i
\(214\) 0 0
\(215\) −15.5991 + 3.74540i −1.06385 + 0.255434i
\(216\) 0 0
\(217\) −28.0871 9.12605i −1.90668 0.619516i
\(218\) 0 0
\(219\) 0.430638 + 0.139923i 0.0290998 + 0.00945511i
\(220\) 0 0
\(221\) 1.72731 0.561236i 0.116191 0.0377528i
\(222\) 0 0
\(223\) −6.83294 + 9.40473i −0.457567 + 0.629788i −0.974002 0.226539i \(-0.927259\pi\)
0.516435 + 0.856327i \(0.327259\pi\)
\(224\) 0 0
\(225\) −5.93548 + 11.6504i −0.395699 + 0.776695i
\(226\) 0 0
\(227\) −2.98300 2.16728i −0.197989 0.143847i 0.484374 0.874861i \(-0.339047\pi\)
−0.682363 + 0.731014i \(0.739047\pi\)
\(228\) 0 0
\(229\) 7.32499 2.38003i 0.484049 0.157277i −0.0568191 0.998384i \(-0.518096\pi\)
0.540868 + 0.841107i \(0.318096\pi\)
\(230\) 0 0
\(231\) −0.446270 + 1.37348i −0.0293624 + 0.0903683i
\(232\) 0 0
\(233\) −24.6979 8.02485i −1.61802 0.525725i −0.646543 0.762877i \(-0.723786\pi\)
−0.971473 + 0.237152i \(0.923786\pi\)
\(234\) 0 0
\(235\) −12.4974 + 7.65882i −0.815239 + 0.499606i
\(236\) 0 0
\(237\) 14.2750 10.3714i 0.927262 0.673695i
\(238\) 0 0
\(239\) −14.1821 10.3039i −0.917362 0.666503i 0.0255037 0.999675i \(-0.491881\pi\)
−0.942866 + 0.333172i \(0.891881\pi\)
\(240\) 0 0
\(241\) −1.71555 + 1.24642i −0.110508 + 0.0802891i −0.641667 0.766983i \(-0.721757\pi\)
0.531159 + 0.847272i \(0.321757\pi\)
\(242\) 0 0
\(243\) 20.9753 1.34557
\(244\) 0 0
\(245\) 19.1151 4.58961i 1.22122 0.293219i
\(246\) 0 0
\(247\) 12.9830 4.21843i 0.826088 0.268412i
\(248\) 0 0
\(249\) −15.1623 −0.960872
\(250\) 0 0
\(251\) 11.9422i 0.753784i 0.926257 + 0.376892i \(0.123007\pi\)
−0.926257 + 0.376892i \(0.876993\pi\)
\(252\) 0 0
\(253\) 0.323071 + 0.994311i 0.0203113 + 0.0625118i
\(254\) 0 0
\(255\) 0.528035 + 2.19919i 0.0330668 + 0.137719i
\(256\) 0 0
\(257\) 28.6858i 1.78937i 0.446696 + 0.894686i \(0.352601\pi\)
−0.446696 + 0.894686i \(0.647399\pi\)
\(258\) 0 0
\(259\) −20.7682 28.5850i −1.29048 1.77619i
\(260\) 0 0
\(261\) −5.05187 + 6.95330i −0.312703 + 0.430398i
\(262\) 0 0
\(263\) −15.6987 21.6075i −0.968026 1.33237i −0.943038 0.332685i \(-0.892045\pi\)
−0.0249876 0.999688i \(-0.507955\pi\)
\(264\) 0 0
\(265\) 9.33806 + 15.2375i 0.573632 + 0.936032i
\(266\) 0 0
\(267\) 4.86412 14.9702i 0.297679 0.916162i
\(268\) 0 0
\(269\) −10.2389 3.32682i −0.624276 0.202840i −0.0202383 0.999795i \(-0.506442\pi\)
−0.604038 + 0.796956i \(0.706442\pi\)
\(270\) 0 0
\(271\) −0.686274 2.11214i −0.0416882 0.128303i 0.928046 0.372465i \(-0.121487\pi\)
−0.969735 + 0.244162i \(0.921487\pi\)
\(272\) 0 0
\(273\) 23.5504 32.4143i 1.42533 1.96180i
\(274\) 0 0
\(275\) −0.119922 + 0.757392i −0.00723154 + 0.0456724i
\(276\) 0 0
\(277\) 16.4822 + 11.9750i 0.990317 + 0.719507i 0.959990 0.280033i \(-0.0903454\pi\)
0.0303263 + 0.999540i \(0.490345\pi\)
\(278\) 0 0
\(279\) −6.00553 18.4831i −0.359542 1.10656i
\(280\) 0 0
\(281\) 6.01789 18.5212i 0.358997 1.10488i −0.594658 0.803979i \(-0.702712\pi\)
0.953655 0.300902i \(-0.0972876\pi\)
\(282\) 0 0
\(283\) −7.53527 + 23.1912i −0.447925 + 1.37857i 0.431318 + 0.902200i \(0.358049\pi\)
−0.879243 + 0.476373i \(0.841951\pi\)
\(284\) 0 0
\(285\) 3.96888 + 16.5298i 0.235096 + 0.979142i
\(286\) 0 0
\(287\) 20.2742 + 27.9051i 1.19675 + 1.64719i
\(288\) 0 0
\(289\) −13.6059 9.88526i −0.800346 0.581486i
\(290\) 0 0
\(291\) −16.4315 22.6161i −0.963234 1.32578i
\(292\) 0 0
\(293\) −6.35974 −0.371540 −0.185770 0.982593i \(-0.559478\pi\)
−0.185770 + 0.982593i \(0.559478\pi\)
\(294\) 0 0
\(295\) −20.1235 17.1863i −1.17164 1.00062i
\(296\) 0 0
\(297\) 0.133049 0.0432304i 0.00772031 0.00250848i
\(298\) 0 0
\(299\) 29.0055i 1.67743i
\(300\) 0 0
\(301\) 28.5099i 1.64328i
\(302\) 0 0
\(303\) 25.2805 8.21414i 1.45233 0.471890i
\(304\) 0 0
\(305\) −3.26508 + 7.88315i −0.186958 + 0.451388i
\(306\) 0 0
\(307\) 11.6407 0.664369 0.332184 0.943215i \(-0.392214\pi\)
0.332184 + 0.943215i \(0.392214\pi\)
\(308\) 0 0
\(309\) −3.80697 5.23984i −0.216571 0.298084i
\(310\) 0 0
\(311\) 3.35063 + 2.43438i 0.189997 + 0.138041i 0.678717 0.734400i \(-0.262536\pi\)
−0.488720 + 0.872440i \(0.662536\pi\)
\(312\) 0 0
\(313\) 11.9325 + 16.4236i 0.674463 + 0.928318i 0.999851 0.0172622i \(-0.00549501\pi\)
−0.325388 + 0.945580i \(0.605495\pi\)
\(314\) 0 0
\(315\) 17.6698 + 15.0907i 0.995579 + 0.850263i
\(316\) 0 0
\(317\) 7.88349 24.2629i 0.442781 1.36274i −0.442118 0.896957i \(-0.645773\pi\)
0.884899 0.465783i \(-0.154227\pi\)
\(318\) 0 0
\(319\) −0.155762 + 0.479387i −0.00872102 + 0.0268405i
\(320\) 0 0
\(321\) −0.612839 1.88613i −0.0342053 0.105273i
\(322\) 0 0
\(323\) 1.10792 + 0.804948i 0.0616461 + 0.0447885i
\(324\) 0 0
\(325\) 9.65755 18.9563i 0.535704 1.05150i
\(326\) 0 0
\(327\) 17.1193 23.5627i 0.946701 1.30302i
\(328\) 0 0
\(329\) 8.04949 + 24.7738i 0.443783 + 1.36582i
\(330\) 0 0
\(331\) −15.6015 5.06925i −0.857538 0.278631i −0.152938 0.988236i \(-0.548874\pi\)
−0.704600 + 0.709605i \(0.748874\pi\)
\(332\) 0 0
\(333\) 7.18509 22.1134i 0.393740 1.21181i
\(334\) 0 0
\(335\) −1.02423 + 13.0181i −0.0559596 + 0.711254i
\(336\) 0 0
\(337\) 4.30693 + 5.92798i 0.234613 + 0.322918i 0.910048 0.414502i \(-0.136044\pi\)
−0.675435 + 0.737419i \(0.736044\pi\)
\(338\) 0 0
\(339\) −1.73832 + 2.39259i −0.0944126 + 0.129948i
\(340\) 0 0
\(341\) −0.669939 0.922091i −0.0362792 0.0499340i
\(342\) 0 0
\(343\) 7.11905i 0.384392i
\(344\) 0 0
\(345\) 36.0089 + 2.83309i 1.93866 + 0.152528i
\(346\) 0 0
\(347\) −5.02633 15.4695i −0.269828 0.830444i −0.990542 0.137212i \(-0.956186\pi\)
0.720714 0.693232i \(-0.243814\pi\)
\(348\) 0 0
\(349\) 8.49794i 0.454884i 0.973792 + 0.227442i \(0.0730363\pi\)
−0.973792 + 0.227442i \(0.926964\pi\)
\(350\) 0 0
\(351\) −3.88124 −0.207165
\(352\) 0 0
\(353\) −26.5350 + 8.62175i −1.41232 + 0.458889i −0.913152 0.407618i \(-0.866359\pi\)
−0.499164 + 0.866508i \(0.666359\pi\)
\(354\) 0 0
\(355\) 5.66643 + 9.24628i 0.300743 + 0.490741i
\(356\) 0 0
\(357\) 4.01939 0.212729
\(358\) 0 0
\(359\) −3.88920 + 2.82567i −0.205264 + 0.149133i −0.685668 0.727914i \(-0.740490\pi\)
0.480404 + 0.877047i \(0.340490\pi\)
\(360\) 0 0
\(361\) −7.04387 5.11767i −0.370730 0.269351i
\(362\) 0 0
\(363\) 21.0425 15.2883i 1.10445 0.802427i
\(364\) 0 0
\(365\) 0.163504 0.394761i 0.00855820 0.0206627i
\(366\) 0 0
\(367\) −25.0194 8.12928i −1.30600 0.424345i −0.428335 0.903620i \(-0.640900\pi\)
−0.877665 + 0.479275i \(0.840900\pi\)
\(368\) 0 0
\(369\) −7.01419 + 21.5874i −0.365144 + 1.12380i
\(370\) 0 0
\(371\) 30.2056 9.81438i 1.56819 0.509537i
\(372\) 0 0
\(373\) 0.602132 + 0.437474i 0.0311772 + 0.0226516i 0.603265 0.797541i \(-0.293866\pi\)
−0.572088 + 0.820193i \(0.693866\pi\)
\(374\) 0 0
\(375\) 22.5900 + 13.8409i 1.16654 + 0.714743i
\(376\) 0 0
\(377\) 8.21983 11.3136i 0.423343 0.582681i
\(378\) 0 0
\(379\) 12.9975 4.22314i 0.667636 0.216928i 0.0444617 0.999011i \(-0.485843\pi\)
0.623174 + 0.782083i \(0.285843\pi\)
\(380\) 0 0
\(381\) −47.5616 15.4537i −2.43665 0.791716i
\(382\) 0 0
\(383\) 29.3793 + 9.54593i 1.50121 + 0.487774i 0.940372 0.340148i \(-0.110477\pi\)
0.560843 + 0.827922i \(0.310477\pi\)
\(384\) 0 0
\(385\) 1.25905 + 0.521480i 0.0641672 + 0.0265771i
\(386\) 0 0
\(387\) −15.1783 + 11.0277i −0.771555 + 0.560568i
\(388\) 0 0
\(389\) 11.9671 16.4713i 0.606757 0.835129i −0.389549 0.921006i \(-0.627369\pi\)
0.996306 + 0.0858769i \(0.0273692\pi\)
\(390\) 0 0
\(391\) 2.35406 1.71033i 0.119050 0.0864949i
\(392\) 0 0
\(393\) 17.0683i 0.860983i
\(394\) 0 0
\(395\) −8.70020 14.1967i −0.437754 0.714312i
\(396\) 0 0
\(397\) −2.98890 9.19889i −0.150009 0.461679i 0.847612 0.530616i \(-0.178039\pi\)
−0.997621 + 0.0689367i \(0.978039\pi\)
\(398\) 0 0
\(399\) 30.2110 1.51244
\(400\) 0 0
\(401\) 2.73446 0.136553 0.0682763 0.997666i \(-0.478250\pi\)
0.0682763 + 0.997666i \(0.478250\pi\)
\(402\) 0 0
\(403\) 9.77153 + 30.0737i 0.486755 + 1.49808i
\(404\) 0 0
\(405\) 1.75503 22.3066i 0.0872080 1.10843i
\(406\) 0 0
\(407\) 1.36363i 0.0675927i
\(408\) 0 0
\(409\) 4.63848 3.37005i 0.229358 0.166638i −0.467171 0.884167i \(-0.654727\pi\)
0.696529 + 0.717529i \(0.254727\pi\)
\(410\) 0 0
\(411\) 15.9401 21.9397i 0.786268 1.08221i
\(412\) 0 0
\(413\) −38.0482 + 27.6436i −1.87223 + 1.36025i
\(414\) 0 0
\(415\) −1.12223 + 14.2637i −0.0550882 + 0.700179i
\(416\) 0 0
\(417\) 11.2617 + 3.65915i 0.551488 + 0.179189i
\(418\) 0 0
\(419\) 12.1575 + 3.95021i 0.593932 + 0.192980i 0.590532 0.807014i \(-0.298918\pi\)
0.00339993 + 0.999994i \(0.498918\pi\)
\(420\) 0 0
\(421\) 31.0541 10.0901i 1.51348 0.491761i 0.569568 0.821945i \(-0.307111\pi\)
0.943917 + 0.330184i \(0.107111\pi\)
\(422\) 0 0
\(423\) −10.0757 + 13.8680i −0.489895 + 0.674283i
\(424\) 0 0
\(425\) 2.10794 0.333969i 0.102250 0.0161999i
\(426\) 0 0
\(427\) 12.2677 + 8.91302i 0.593677 + 0.431331i
\(428\) 0 0
\(429\) 1.47062 0.477835i 0.0710024 0.0230701i
\(430\) 0 0
\(431\) −6.17275 + 18.9978i −0.297331 + 0.915090i 0.685098 + 0.728451i \(0.259759\pi\)
−0.982429 + 0.186639i \(0.940241\pi\)
\(432\) 0 0
\(433\) 17.8084 + 5.78629i 0.855815 + 0.278071i 0.703880 0.710319i \(-0.251449\pi\)
0.151936 + 0.988390i \(0.451449\pi\)
\(434\) 0 0
\(435\) 13.2425 + 11.3096i 0.634928 + 0.542253i
\(436\) 0 0
\(437\) 17.6939 12.8554i 0.846413 0.614955i
\(438\) 0 0
\(439\) 3.05596 + 2.22028i 0.145853 + 0.105968i 0.658319 0.752739i \(-0.271268\pi\)
−0.512466 + 0.858708i \(0.671268\pi\)
\(440\) 0 0
\(441\) 18.5994 13.5133i 0.885687 0.643489i
\(442\) 0 0
\(443\) −18.1857 −0.864027 −0.432014 0.901867i \(-0.642197\pi\)
−0.432014 + 0.901867i \(0.642197\pi\)
\(444\) 0 0
\(445\) −13.7230 5.68387i −0.650533 0.269441i
\(446\) 0 0
\(447\) −14.5181 + 4.71723i −0.686684 + 0.223117i
\(448\) 0 0
\(449\) −14.3619 −0.677782 −0.338891 0.940826i \(-0.610052\pi\)
−0.338891 + 0.940826i \(0.610052\pi\)
\(450\) 0 0
\(451\) 1.33120i 0.0626836i
\(452\) 0 0
\(453\) 3.47039 + 10.6808i 0.163053 + 0.501826i
\(454\) 0 0
\(455\) −28.7503 24.5539i −1.34783 1.15110i
\(456\) 0 0
\(457\) 6.53654i 0.305767i 0.988244 + 0.152883i \(0.0488558\pi\)
−0.988244 + 0.152883i \(0.951144\pi\)
\(458\) 0 0
\(459\) −0.228860 0.314999i −0.0106823 0.0147029i
\(460\) 0 0
\(461\) 7.47611 10.2900i 0.348197 0.479252i −0.598616 0.801036i \(-0.704282\pi\)
0.946813 + 0.321784i \(0.104282\pi\)
\(462\) 0 0
\(463\) −9.95183 13.6975i −0.462501 0.636578i 0.512524 0.858673i \(-0.328710\pi\)
−0.975025 + 0.222095i \(0.928710\pi\)
\(464\) 0 0
\(465\) −38.2895 + 9.19348i −1.77563 + 0.426337i
\(466\) 0 0
\(467\) −9.20560 + 28.3319i −0.425985 + 1.31105i 0.476064 + 0.879411i \(0.342063\pi\)
−0.902048 + 0.431635i \(0.857937\pi\)
\(468\) 0 0
\(469\) 22.0709 + 7.17127i 1.01914 + 0.331138i
\(470\) 0 0
\(471\) 4.61880 + 14.2152i 0.212823 + 0.655002i
\(472\) 0 0
\(473\) −0.646741 + 0.890163i −0.0297372 + 0.0409297i
\(474\) 0 0
\(475\) 15.8440 2.51022i 0.726971 0.115177i
\(476\) 0 0
\(477\) 16.9086 + 12.2848i 0.774191 + 0.562483i
\(478\) 0 0
\(479\) 3.43557 + 10.5736i 0.156975 + 0.483120i 0.998356 0.0573232i \(-0.0182566\pi\)
−0.841380 + 0.540443i \(0.818257\pi\)
\(480\) 0 0
\(481\) −11.6908 + 35.9805i −0.533053 + 1.64057i
\(482\) 0 0
\(483\) 19.8362 61.0496i 0.902579 2.77785i
\(484\) 0 0
\(485\) −22.4920 + 13.7838i −1.02131 + 0.625892i
\(486\) 0 0
\(487\) −7.50918 10.3355i −0.340273 0.468346i 0.604248 0.796796i \(-0.293474\pi\)
−0.944521 + 0.328450i \(0.893474\pi\)
\(488\) 0 0
\(489\) 37.6003 + 27.3182i 1.70035 + 1.23537i
\(490\) 0 0
\(491\) 2.31718 + 3.18932i 0.104573 + 0.143932i 0.858096 0.513489i \(-0.171647\pi\)
−0.753523 + 0.657421i \(0.771647\pi\)
\(492\) 0 0
\(493\) 1.40289 0.0631831
\(494\) 0 0
\(495\) 0.209373 + 0.872010i 0.00941064 + 0.0391939i
\(496\) 0 0
\(497\) 18.3291 5.95547i 0.822171 0.267139i
\(498\) 0 0
\(499\) 11.9283i 0.533984i 0.963699 + 0.266992i \(0.0860297\pi\)
−0.963699 + 0.266992i \(0.913970\pi\)
\(500\) 0 0
\(501\) 3.44829i 0.154058i
\(502\) 0 0
\(503\) −3.90940 + 1.27024i −0.174312 + 0.0566373i −0.394873 0.918736i \(-0.629211\pi\)
0.220561 + 0.975373i \(0.429211\pi\)
\(504\) 0 0
\(505\) −5.85621 24.3903i −0.260598 1.08535i
\(506\) 0 0
\(507\) −12.0953 −0.537170
\(508\) 0 0
\(509\) −3.33050 4.58404i −0.147622 0.203184i 0.728802 0.684724i \(-0.240077\pi\)
−0.876424 + 0.481541i \(0.840077\pi\)
\(510\) 0 0
\(511\) −0.614325 0.446334i −0.0271762 0.0197446i
\(512\) 0 0
\(513\) −1.72019 2.36763i −0.0759480 0.104533i
\(514\) 0 0
\(515\) −5.21108 + 3.19353i −0.229628 + 0.140724i
\(516\) 0 0
\(517\) −0.310659 + 0.956111i −0.0136628 + 0.0420497i
\(518\) 0 0
\(519\) 3.17548 9.77312i 0.139388 0.428992i
\(520\) 0 0
\(521\) −12.0623 37.1240i −0.528460 1.62643i −0.757371 0.652985i \(-0.773516\pi\)
0.228911 0.973447i \(-0.426484\pi\)
\(522\) 0 0
\(523\) −8.43650 6.12948i −0.368903 0.268023i 0.387853 0.921721i \(-0.373217\pi\)
−0.756756 + 0.653698i \(0.773217\pi\)
\(524\) 0 0
\(525\) 33.2906 33.2939i 1.45292 1.45306i
\(526\) 0 0
\(527\) −1.86457 + 2.56636i −0.0812221 + 0.111793i
\(528\) 0 0
\(529\) −7.25276 22.3217i −0.315337 0.970509i
\(530\) 0 0
\(531\) −29.4342 9.56374i −1.27733 0.415031i
\(532\) 0 0
\(533\) 11.4127 35.1247i 0.494339 1.52142i
\(534\) 0 0
\(535\) −1.81971 + 0.436919i −0.0786728 + 0.0188897i
\(536\) 0 0
\(537\) 2.36644 + 3.25713i 0.102120 + 0.140556i
\(538\) 0 0
\(539\) 0.792515 1.09080i 0.0341361 0.0469843i
\(540\) 0 0
\(541\) 26.5512 + 36.5445i 1.14152 + 1.57117i 0.764056 + 0.645150i \(0.223205\pi\)
0.377468 + 0.926023i \(0.376795\pi\)
\(542\) 0 0
\(543\) 27.0558i 1.16108i
\(544\) 0 0
\(545\) −20.8993 17.8488i −0.895226 0.764558i
\(546\) 0 0
\(547\) −7.26120 22.3477i −0.310467 0.955518i −0.977580 0.210562i \(-0.932471\pi\)
0.667114 0.744956i \(-0.267529\pi\)
\(548\) 0 0
\(549\) 9.97873i 0.425882i
\(550\) 0 0
\(551\) 10.5446 0.449215
\(552\) 0 0
\(553\) −28.1423 + 9.14399i −1.19673 + 0.388842i
\(554\) 0 0
\(555\) −43.5262 18.0279i −1.84759 0.765243i
\(556\) 0 0
\(557\) −13.2964 −0.563387 −0.281693 0.959504i \(-0.590896\pi\)
−0.281693 + 0.959504i \(0.590896\pi\)
\(558\) 0 0
\(559\) 24.6964 17.9430i 1.04455 0.758907i
\(560\) 0 0
\(561\) 0.125497 + 0.0911790i 0.00529849 + 0.00384958i
\(562\) 0 0
\(563\) 18.8220 13.6750i 0.793254 0.576332i −0.115674 0.993287i \(-0.536903\pi\)
0.908927 + 0.416955i \(0.136903\pi\)
\(564\) 0 0
\(565\) 2.12214 + 1.81239i 0.0892790 + 0.0762478i
\(566\) 0 0
\(567\) −37.8187 12.2880i −1.58824 0.516049i
\(568\) 0 0
\(569\) 5.82276 17.9206i 0.244103 0.751272i −0.751680 0.659528i \(-0.770756\pi\)
0.995783 0.0917433i \(-0.0292439\pi\)
\(570\) 0 0
\(571\) 21.2548 6.90610i 0.889485 0.289011i 0.171595 0.985168i \(-0.445108\pi\)
0.717890 + 0.696156i \(0.245108\pi\)
\(572\) 0 0
\(573\) −30.1358 21.8950i −1.25894 0.914676i
\(574\) 0 0
\(575\) 5.33038 33.6652i 0.222292 1.40394i
\(576\) 0 0
\(577\) −1.18138 + 1.62603i −0.0491816 + 0.0676927i −0.832899 0.553424i \(-0.813321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(578\) 0 0
\(579\) −56.8798 + 18.4814i −2.36384 + 0.768059i
\(580\) 0 0
\(581\) 24.1828 + 7.85746i 1.00327 + 0.325982i
\(582\) 0 0
\(583\) 1.16574 + 0.378773i 0.0482802 + 0.0156872i
\(584\) 0 0
\(585\) 1.95149 24.8037i 0.0806842 1.02551i
\(586\) 0 0
\(587\) 6.11054 4.43957i 0.252209 0.183241i −0.454496 0.890749i \(-0.650181\pi\)
0.706705 + 0.707508i \(0.250181\pi\)
\(588\) 0 0
\(589\) −14.0147 + 19.2896i −0.577467 + 0.794815i
\(590\) 0 0
\(591\) −6.10438 + 4.43509i −0.251101 + 0.182435i
\(592\) 0 0
\(593\) 3.98822i 0.163777i 0.996642 + 0.0818883i \(0.0260951\pi\)
−0.996642 + 0.0818883i \(0.973905\pi\)
\(594\) 0 0
\(595\) 0.297494 3.78119i 0.0121961 0.155014i
\(596\) 0 0
\(597\) 1.95619 + 6.02053i 0.0800614 + 0.246404i
\(598\) 0 0
\(599\) −5.40034 −0.220652 −0.110326 0.993895i \(-0.535190\pi\)
−0.110326 + 0.993895i \(0.535190\pi\)
\(600\) 0 0
\(601\) −22.5630 −0.920364 −0.460182 0.887825i \(-0.652216\pi\)
−0.460182 + 0.887825i \(0.652216\pi\)
\(602\) 0 0
\(603\) 4.71916 + 14.5241i 0.192179 + 0.591467i
\(604\) 0 0
\(605\) −12.8248 20.9270i −0.521402 0.850804i
\(606\) 0 0
\(607\) 9.99712i 0.405771i −0.979202 0.202885i \(-0.934968\pi\)
0.979202 0.202885i \(-0.0650319\pi\)
\(608\) 0 0
\(609\) 25.0379 18.1911i 1.01459 0.737142i
\(610\) 0 0
\(611\) 16.3940 22.5644i 0.663230 0.912857i
\(612\) 0 0
\(613\) 6.04756 4.39381i 0.244259 0.177464i −0.458920 0.888478i \(-0.651763\pi\)
0.703178 + 0.711013i \(0.251763\pi\)
\(614\) 0 0
\(615\) 42.4909 + 17.5991i 1.71340 + 0.709665i
\(616\) 0 0
\(617\) −38.2178 12.4177i −1.53859 0.499919i −0.587605 0.809148i \(-0.699929\pi\)
−0.950988 + 0.309229i \(0.899929\pi\)
\(618\) 0 0
\(619\) 31.9264 + 10.3735i 1.28323 + 0.416946i 0.869716 0.493552i \(-0.164302\pi\)
0.413513 + 0.910498i \(0.364302\pi\)
\(620\) 0 0
\(621\) −5.91390 + 1.92154i −0.237317 + 0.0771089i
\(622\) 0 0
\(623\) −15.5158 + 21.3557i −0.621628 + 0.855598i
\(624\) 0 0
\(625\) 14.6927 20.2268i 0.587707 0.809074i
\(626\) 0 0
\(627\) 0.943277 + 0.685331i 0.0376708 + 0.0273695i
\(628\) 0 0
\(629\) −3.60950 + 1.17280i −0.143920 + 0.0467626i
\(630\) 0 0
\(631\) 7.98445 24.5736i 0.317856 0.978260i −0.656707 0.754146i \(-0.728051\pi\)
0.974563 0.224114i \(-0.0719489\pi\)
\(632\) 0 0
\(633\) 18.4328 + 5.98917i 0.732637 + 0.238048i
\(634\) 0 0
\(635\) −18.0581 + 43.5991i −0.716614 + 1.73018i
\(636\) 0 0
\(637\) −30.2629 + 21.9873i −1.19906 + 0.871168i
\(638\) 0 0
\(639\) 10.2603 + 7.45455i 0.405892 + 0.294898i
\(640\) 0 0
\(641\) 0.412927 0.300009i 0.0163096 0.0118496i −0.579601 0.814901i \(-0.696791\pi\)
0.595910 + 0.803051i \(0.296791\pi\)
\(642\) 0 0
\(643\) 10.5308 0.415295 0.207648 0.978204i \(-0.433419\pi\)
0.207648 + 0.978204i \(0.433419\pi\)
\(644\) 0 0
\(645\) 19.8632 + 32.4120i 0.782112 + 1.27622i
\(646\) 0 0
\(647\) −3.99881 + 1.29929i −0.157209 + 0.0510804i −0.386564 0.922262i \(-0.626338\pi\)
0.229355 + 0.973343i \(0.426338\pi\)
\(648\) 0 0
\(649\) −1.81507 −0.0712476
\(650\) 0 0
\(651\) 69.9805i 2.74275i
\(652\) 0 0
\(653\) 11.3948 + 35.0696i 0.445913 + 1.37238i 0.881479 + 0.472223i \(0.156548\pi\)
−0.435566 + 0.900157i \(0.643452\pi\)
\(654\) 0 0
\(655\) 16.0568 + 1.26331i 0.627391 + 0.0493615i
\(656\) 0 0
\(657\) 0.499700i 0.0194952i
\(658\) 0 0
\(659\) −3.74222 5.15073i −0.145776 0.200644i 0.729885 0.683570i \(-0.239574\pi\)
−0.875661 + 0.482927i \(0.839574\pi\)
\(660\) 0 0
\(661\) −11.2489 + 15.4828i −0.437533 + 0.602213i −0.969662 0.244451i \(-0.921392\pi\)
0.532128 + 0.846664i \(0.321392\pi\)
\(662\) 0 0
\(663\) −2.52964 3.48175i −0.0982430 0.135220i
\(664\) 0 0
\(665\) 2.23606 28.4206i 0.0867107 1.10210i
\(666\) 0 0
\(667\) 6.92347 21.3082i 0.268078 0.825058i
\(668\) 0 0
\(669\) 26.1982 + 8.51232i 1.01288 + 0.329105i
\(670\) 0 0
\(671\) 0.180844 + 0.556581i 0.00698142 + 0.0214866i
\(672\) 0 0
\(673\) 6.67094 9.18177i 0.257146 0.353931i −0.660852 0.750516i \(-0.729805\pi\)
0.917998 + 0.396585i \(0.129805\pi\)
\(674\) 0 0
\(675\) −4.50477 0.713262i −0.173389 0.0274535i
\(676\) 0 0
\(677\) −36.4526 26.4844i −1.40099 1.01788i −0.994557 0.104197i \(-0.966773\pi\)
−0.406432 0.913681i \(-0.633227\pi\)
\(678\) 0 0
\(679\) 14.4869 + 44.5862i 0.555957 + 1.71106i
\(680\) 0 0
\(681\) −2.69995 + 8.30958i −0.103462 + 0.318424i
\(682\) 0 0
\(683\) −1.81402 + 5.58297i −0.0694114 + 0.213626i −0.979745 0.200249i \(-0.935825\pi\)
0.910334 + 0.413875i \(0.135825\pi\)
\(684\) 0 0
\(685\) −19.4597 16.6193i −0.743516 0.634992i
\(686\) 0 0
\(687\) −10.7274 14.7651i −0.409278 0.563322i
\(688\) 0 0
\(689\) −27.5118 19.9885i −1.04811 0.761500i
\(690\) 0 0
\(691\) −15.1834 20.8982i −0.577604 0.795004i 0.415826 0.909444i \(-0.363493\pi\)
−0.993430 + 0.114440i \(0.963493\pi\)
\(692\) 0 0
\(693\) 1.59375 0.0605414
\(694\) 0 0
\(695\) 4.27583 10.3235i 0.162191 0.391591i
\(696\) 0 0
\(697\) 3.52365 1.14490i 0.133468 0.0433663i
\(698\) 0 0
\(699\) 61.5363i 2.32752i
\(700\) 0 0
\(701\) 1.13715i 0.0429497i 0.999769 + 0.0214749i \(0.00683619\pi\)
−0.999769 + 0.0214749i \(0.993164\pi\)
\(702\) 0 0
\(703\) −27.1302 + 8.81514i −1.02323 + 0.332469i
\(704\) 0 0
\(705\) 26.4114 + 22.5563i 0.994710 + 0.849521i
\(706\) 0 0
\(707\) −44.5773 −1.67650
\(708\) 0 0
\(709\) 10.2367 + 14.0896i 0.384447 + 0.529147i 0.956756 0.290892i \(-0.0939520\pi\)
−0.572308 + 0.820038i \(0.693952\pi\)
\(710\) 0 0
\(711\) −15.7536 11.4457i −0.590806 0.429246i
\(712\) 0 0
\(713\) 29.7780 + 40.9859i 1.11520 + 1.53494i
\(714\) 0 0
\(715\) −0.340669 1.41884i −0.0127403 0.0530615i
\(716\) 0 0
\(717\) −12.8363 + 39.5062i −0.479382 + 1.47539i
\(718\) 0 0
\(719\) 5.78813 17.8140i 0.215861 0.664351i −0.783231 0.621731i \(-0.786430\pi\)
0.999091 0.0426199i \(-0.0135704\pi\)
\(720\) 0 0
\(721\) 3.35643 + 10.3300i 0.125000 + 0.384710i
\(722\) 0 0
\(723\) 4.06519 + 2.95353i 0.151186 + 0.109843i
\(724\) 0 0
\(725\) 11.6195 11.6206i 0.431537 0.431579i
\(726\) 0 0
\(727\) −26.4822 + 36.4497i −0.982172 + 1.35184i −0.0465209 + 0.998917i \(0.514813\pi\)
−0.935651 + 0.352926i \(0.885187\pi\)
\(728\) 0 0
\(729\) −6.08251 18.7200i −0.225278 0.693335i
\(730\) 0 0
\(731\) 2.91248 + 0.946322i 0.107722 + 0.0350010i
\(732\) 0 0
\(733\) 9.67831 29.7868i 0.357476 1.10020i −0.597083 0.802179i \(-0.703674\pi\)
0.954560 0.298020i \(-0.0963262\pi\)
\(734\) 0 0
\(735\) −24.3403 39.7176i −0.897805 1.46501i
\(736\) 0 0
\(737\) 0.526439 + 0.724582i 0.0193916 + 0.0266903i
\(738\) 0 0
\(739\) 3.68173 5.06746i 0.135435 0.186410i −0.735913 0.677076i \(-0.763247\pi\)
0.871347 + 0.490667i \(0.163247\pi\)
\(740\) 0 0
\(741\) −19.0136 26.1700i −0.698482 0.961377i
\(742\) 0 0
\(743\) 38.8347i 1.42471i 0.701820 + 0.712354i \(0.252371\pi\)
−0.701820 + 0.712354i \(0.747629\pi\)
\(744\) 0 0
\(745\) 3.36312 + 14.0069i 0.123215 + 0.513173i
\(746\) 0 0
\(747\) 5.17072 + 15.9138i 0.189187 + 0.582257i
\(748\) 0 0
\(749\) 3.32582i 0.121523i
\(750\) 0 0
\(751\) −51.9829 −1.89688 −0.948441 0.316953i \(-0.897340\pi\)
−0.948441 + 0.316953i \(0.897340\pi\)
\(752\) 0 0
\(753\) 26.9133 8.74466i 0.980775 0.318673i
\(754\) 0 0
\(755\) 10.3046 2.47419i 0.375025 0.0900450i
\(756\) 0 0
\(757\) −8.96987 −0.326015 −0.163008 0.986625i \(-0.552120\pi\)
−0.163008 + 0.986625i \(0.552120\pi\)
\(758\) 0 0
\(759\) 2.00424 1.45617i 0.0727494 0.0528555i
\(760\) 0 0
\(761\) 2.35324 + 1.70973i 0.0853050 + 0.0619777i 0.629620 0.776903i \(-0.283210\pi\)
−0.544315 + 0.838881i \(0.683210\pi\)
\(762\) 0 0
\(763\) −39.5148 + 28.7092i −1.43053 + 1.03934i
\(764\) 0 0
\(765\) 2.12812 1.30419i 0.0769424 0.0471529i
\(766\) 0 0
\(767\) 47.8920 + 15.5610i 1.72928 + 0.561877i
\(768\) 0 0
\(769\) −13.6554 + 42.0269i −0.492425 + 1.51553i 0.328507 + 0.944502i \(0.393455\pi\)
−0.820932 + 0.571026i \(0.806545\pi\)
\(770\) 0 0
\(771\) 64.6473 21.0052i 2.32822 0.756483i
\(772\) 0 0
\(773\) 6.38549 + 4.63933i 0.229670 + 0.166865i 0.696669 0.717393i \(-0.254665\pi\)
−0.466999 + 0.884258i \(0.654665\pi\)
\(774\) 0 0
\(775\) 5.81466 + 36.7008i 0.208869 + 1.31833i
\(776\) 0 0
\(777\) −49.2126 + 67.7354i −1.76549 + 2.42999i
\(778\) 0 0
\(779\) 26.4849 8.60546i 0.948920 0.308323i
\(780\) 0 0
\(781\) 0.707386 + 0.229844i 0.0253122 + 0.00822445i
\(782\) 0 0
\(783\) −2.85127 0.926434i −0.101896 0.0331081i
\(784\) 0 0
\(785\) 13.7146 3.29294i 0.489496 0.117530i
\(786\) 0 0
\(787\) −22.0945 + 16.0526i −0.787585 + 0.572214i −0.907246 0.420601i \(-0.861819\pi\)
0.119661 + 0.992815i \(0.461819\pi\)
\(788\) 0 0
\(789\) −37.1999 + 51.2012i −1.32435 + 1.82281i
\(790\) 0 0
\(791\) 4.01239 2.91517i 0.142664 0.103652i
\(792\) 0 0
\(793\) 16.2363i 0.576567i
\(794\) 0 0
\(795\) 27.5019 32.2022i 0.975393 1.14209i
\(796\) 0 0
\(797\) 13.7936 + 42.4524i 0.488596 + 1.50374i 0.826705 + 0.562636i \(0.190213\pi\)
−0.338109 + 0.941107i \(0.609787\pi\)
\(798\) 0 0
\(799\) 2.79799 0.0989858
\(800\) 0 0
\(801\) −17.3710 −0.613775
\(802\) 0 0
\(803\) −0.00905606 0.0278717i −0.000319581 0.000983570i
\(804\) 0 0
\(805\) −55.9634 23.1792i −1.97245 0.816960i
\(806\) 0 0
\(807\) 25.5108i 0.898022i
\(808\) 0 0
\(809\) −21.7506 + 15.8027i −0.764710 + 0.555594i −0.900351 0.435164i \(-0.856690\pi\)
0.135641 + 0.990758i \(0.456690\pi\)
\(810\) 0 0
\(811\) −16.2026 + 22.3010i −0.568951 + 0.783095i −0.992430 0.122812i \(-0.960809\pi\)
0.423479 + 0.905906i \(0.360809\pi\)
\(812\) 0 0
\(813\) −4.25745 + 3.09322i −0.149315 + 0.108484i
\(814\) 0 0
\(815\) 28.4822 33.3501i 0.997689 1.16820i
\(816\) 0 0
\(817\) 21.8911 + 7.11286i 0.765874 + 0.248847i
\(818\) 0 0
\(819\) −42.0522 13.6636i −1.46942 0.477445i
\(820\) 0 0
\(821\) −3.95039 + 1.28356i −0.137869 + 0.0447965i −0.377139 0.926157i \(-0.623092\pi\)
0.239269 + 0.970953i \(0.423092\pi\)
\(822\) 0 0
\(823\) 15.2147 20.9412i 0.530350 0.729964i −0.456834 0.889552i \(-0.651017\pi\)
0.987184 + 0.159588i \(0.0510166\pi\)
\(824\) 0 0
\(825\) 1.79470 0.284341i 0.0624833 0.00989948i
\(826\) 0 0
\(827\) −23.9203 17.3791i −0.831790 0.604330i 0.0882755 0.996096i \(-0.471864\pi\)
−0.920065 + 0.391766i \(0.871864\pi\)
\(828\) 0 0
\(829\) −6.49796 + 2.11131i −0.225683 + 0.0733290i −0.419676 0.907674i \(-0.637856\pi\)
0.193993 + 0.981003i \(0.437856\pi\)
\(830\) 0 0
\(831\) 14.9182 45.9134i 0.517506 1.59272i
\(832\) 0 0
\(833\) −3.56894 1.15962i −0.123657 0.0401785i
\(834\) 0 0
\(835\) 3.24393 + 0.255224i 0.112261 + 0.00883240i
\(836\) 0 0
\(837\) 5.48436 3.98462i 0.189567 0.137729i
\(838\) 0 0
\(839\) −17.3783 12.6261i −0.599964 0.435900i 0.245902 0.969295i \(-0.420916\pi\)
−0.845866 + 0.533395i \(0.820916\pi\)
\(840\) 0 0
\(841\) −14.7225 + 10.6965i −0.507671 + 0.368845i
\(842\) 0 0
\(843\) −46.1465 −1.58937
\(844\) 0 0
\(845\) −0.895229 + 11.3785i −0.0307968 + 0.391432i
\(846\) 0 0
\(847\) −41.4840 + 13.4790i −1.42541 + 0.463143i
\(848\) 0 0
\(849\) 57.7821 1.98308
\(850\) 0 0
\(851\) 60.6119i 2.07775i
\(852\) 0 0
\(853\) 1.18714 + 3.65365i 0.0406469 + 0.125098i 0.969321 0.245799i \(-0.0790502\pi\)
−0.928674 + 0.370897i \(0.879050\pi\)
\(854\) 0 0
\(855\) 15.9956 9.80268i 0.547040 0.335244i
\(856\) 0 0
\(857\) 0.293028i 0.0100096i 0.999987 + 0.00500482i \(0.00159309\pi\)
−0.999987 + 0.00500482i \(0.998407\pi\)
\(858\) 0 0
\(859\) 3.58283 + 4.93135i 0.122245 + 0.168255i 0.865753 0.500471i \(-0.166840\pi\)
−0.743509 + 0.668726i \(0.766840\pi\)
\(860\) 0 0
\(861\) 48.0421 66.1242i 1.63727 2.25351i
\(862\) 0 0
\(863\) 29.9343 + 41.2010i 1.01897 + 1.40250i 0.912921 + 0.408137i \(0.133821\pi\)
0.106053 + 0.994360i \(0.466179\pi\)
\(864\) 0 0
\(865\) −8.95890 3.71065i −0.304612 0.126166i
\(866\) 0 0
\(867\) −12.3148 + 37.9012i −0.418234 + 1.28719i
\(868\) 0 0
\(869\) −1.08611 0.352900i −0.0368439 0.0119713i
\(870\) 0 0
\(871\) −7.67849 23.6320i −0.260176 0.800739i
\(872\) 0 0
\(873\) −18.1335 + 24.9586i −0.613726 + 0.844722i
\(874\) 0 0
\(875\) −28.8568 33.7820i −0.975537 1.14204i
\(876\) 0 0
\(877\) −31.6298 22.9804i −1.06806 0.775993i −0.0924999 0.995713i \(-0.529486\pi\)
−0.975563 + 0.219720i \(0.929486\pi\)
\(878\) 0 0
\(879\) 4.65692 + 14.3325i 0.157074 + 0.483424i
\(880\) 0 0
\(881\) 14.7146 45.2868i 0.495746 1.52575i −0.320045 0.947402i \(-0.603698\pi\)
0.815791 0.578347i \(-0.196302\pi\)
\(882\) 0 0
\(883\) 9.74973 30.0066i 0.328104 1.00980i −0.641915 0.766775i \(-0.721860\pi\)
0.970020 0.243026i \(-0.0781400\pi\)
\(884\) 0 0
\(885\) −23.9961 + 57.9357i −0.806621 + 1.94749i
\(886\) 0 0
\(887\) −2.02393 2.78570i −0.0679570 0.0935348i 0.773686 0.633570i \(-0.218411\pi\)
−0.841643 + 0.540035i \(0.818411\pi\)
\(888\) 0 0
\(889\) 67.8488 + 49.2950i 2.27557 + 1.65330i
\(890\) 0 0
\(891\) −0.902059 1.24158i −0.0302201 0.0415944i
\(892\) 0 0
\(893\) 21.0306 0.703762
\(894\) 0 0
\(895\) 3.23925 1.98512i 0.108276 0.0663554i
\(896\) 0 0
\(897\) −65.3676 + 21.2392i −2.18256 + 0.709157i
\(898\) 0 0
\(899\) 24.4254i 0.814633i
\(900\) 0 0
\(901\) 3.41147i 0.113652i
\(902\) 0 0
\(903\) 64.2509 20.8764i 2.13814 0.694722i
\(904\) 0 0
\(905\) 25.4524 + 2.00253i 0.846066 + 0.0665662i
\(906\) 0 0
\(907\) 52.1263 1.73082 0.865412 0.501061i \(-0.167057\pi\)
0.865412 + 0.501061i \(0.167057\pi\)
\(908\) 0 0
\(909\) −17.2426 23.7323i −0.571900 0.787152i
\(910\) 0 0
\(911\) −6.68942 4.86015i −0.221630 0.161024i 0.471430 0.881904i \(-0.343738\pi\)
−0.693060 + 0.720880i \(0.743738\pi\)
\(912\) 0 0
\(913\) 0.576812 + 0.793914i 0.0190897 + 0.0262747i
\(914\) 0 0
\(915\) 20.1566 + 1.58587i 0.666356 + 0.0524271i
\(916\) 0 0
\(917\) 8.84520 27.2227i 0.292094 0.898974i
\(918\) 0 0
\(919\) 4.18616 12.8837i 0.138089 0.424993i −0.857969 0.513702i \(-0.828274\pi\)
0.996058 + 0.0887082i \(0.0282739\pi\)
\(920\) 0 0
\(921\) −8.52388 26.2338i −0.280871 0.864434i
\(922\) 0 0
\(923\) −16.6944 12.1292i −0.549504 0.399238i
\(924\) 0 0
\(925\) −20.1811 + 39.6124i −0.663551 + 1.30245i
\(926\) 0 0
\(927\) −4.20129 + 5.78258i −0.137988 + 0.189925i
\(928\) 0 0
\(929\) −4.82136 14.8386i −0.158184 0.486839i 0.840286 0.542144i \(-0.182387\pi\)
−0.998470 + 0.0553044i \(0.982387\pi\)
\(930\) 0 0
\(931\) −26.8253 8.71608i −0.879165 0.285658i
\(932\) 0 0
\(933\) 3.03269 9.33367i 0.0992859 0.305571i
\(934\) 0 0
\(935\) 0.0950640 0.111311i 0.00310893 0.00364026i
\(936\) 0 0
\(937\) −34.3932 47.3382i −1.12358 1.54647i −0.799728 0.600363i \(-0.795023\pi\)
−0.323849 0.946109i \(-0.604977\pi\)
\(938\) 0 0
\(939\) 28.2753 38.9176i 0.922729 1.27003i
\(940\) 0 0
\(941\) 14.6909 + 20.2203i 0.478909 + 0.659162i 0.978295 0.207218i \(-0.0664410\pi\)
−0.499386 + 0.866380i \(0.666441\pi\)
\(942\) 0 0
\(943\) 59.1702i 1.92685i
\(944\) 0 0
\(945\) −3.10163 + 7.48851i −0.100896 + 0.243601i
\(946\) 0 0
\(947\) 5.61268 + 17.2740i 0.182388 + 0.561331i 0.999894 0.0145890i \(-0.00464397\pi\)
−0.817506 + 0.575920i \(0.804644\pi\)
\(948\) 0 0
\(949\) 0.813057i 0.0263929i
\(950\) 0 0
\(951\) −60.4524 −1.96030
\(952\) 0 0
\(953\) −28.0280 + 9.10684i −0.907915 + 0.295000i −0.725500 0.688222i \(-0.758391\pi\)
−0.182415 + 0.983222i \(0.558391\pi\)
\(954\) 0 0
\(955\) −22.8279 + 26.7293i −0.738693 + 0.864941i
\(956\) 0 0
\(957\) 1.19442 0.0386101
\(958\) 0 0
\(959\) −36.7930 + 26.7317i −1.18811 + 0.863211i
\(960\) 0 0
\(961\) −19.6028 14.2422i −0.632348 0.459427i
\(962\) 0 0
\(963\) −1.77062 + 1.28643i −0.0570574 + 0.0414546i
\(964\) 0 0
\(965\) 13.1762 + 54.8768i 0.424155 + 1.76655i
\(966\) 0 0
\(967\) 45.7969 + 14.8803i 1.47273 + 0.478518i 0.931931 0.362635i \(-0.118123\pi\)
0.540797 + 0.841153i \(0.318123\pi\)
\(968\) 0 0
\(969\) 1.00279 3.08626i 0.0322141 0.0991449i
\(970\) 0 0
\(971\) 6.19282 2.01217i 0.198737 0.0645736i −0.207957 0.978138i \(-0.566681\pi\)
0.406694 + 0.913564i \(0.366681\pi\)
\(972\) 0 0
\(973\) −16.0653 11.6721i −0.515031 0.374192i
\(974\) 0 0
\(975\) −49.7922 7.88384i −1.59463 0.252485i
\(976\) 0 0
\(977\) 12.3885 17.0513i 0.396342 0.545518i −0.563479 0.826130i \(-0.690538\pi\)
0.959821 + 0.280612i \(0.0905375\pi\)
\(978\) 0 0
\(979\) −0.968899 + 0.314814i −0.0309662 + 0.0100615i
\(980\) 0 0
\(981\) −30.5688 9.93239i −0.975986 0.317117i
\(982\) 0 0
\(983\) −2.23619 0.726581i −0.0713232 0.0231743i 0.273138 0.961975i \(-0.411938\pi\)
−0.344461 + 0.938801i \(0.611938\pi\)
\(984\) 0 0
\(985\) 3.72044 + 6.07088i 0.118543 + 0.193434i
\(986\) 0 0
\(987\) 49.9368 36.2812i 1.58950 1.15484i
\(988\) 0 0
\(989\) 28.7469 39.5668i 0.914100 1.25815i
\(990\) 0 0
\(991\) 6.59439 4.79110i 0.209478 0.152194i −0.478100 0.878306i \(-0.658674\pi\)
0.687577 + 0.726111i \(0.258674\pi\)
\(992\) 0 0
\(993\) 38.8721i 1.23357i
\(994\) 0 0
\(995\) 5.80852 1.39465i 0.184142 0.0442134i
\(996\) 0 0
\(997\) −7.07471 21.7737i −0.224058 0.689580i −0.998386 0.0567955i \(-0.981912\pi\)
0.774328 0.632785i \(-0.218088\pi\)
\(998\) 0 0
\(999\) 8.11052 0.256606
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.be.a.209.5 112
4.3 odd 2 200.2.o.a.109.26 yes 112
8.3 odd 2 200.2.o.a.109.7 112
8.5 even 2 inner 800.2.be.a.209.24 112
20.3 even 4 1000.2.t.b.701.35 224
20.7 even 4 1000.2.t.b.701.22 224
20.19 odd 2 1000.2.o.a.549.3 112
25.14 even 10 inner 800.2.be.a.689.24 112
40.3 even 4 1000.2.t.b.701.14 224
40.19 odd 2 1000.2.o.a.549.22 112
40.27 even 4 1000.2.t.b.701.43 224
100.11 odd 10 1000.2.o.a.949.22 112
100.23 even 20 1000.2.t.b.301.14 224
100.27 even 20 1000.2.t.b.301.43 224
100.39 odd 10 200.2.o.a.189.7 yes 112
200.11 odd 10 1000.2.o.a.949.3 112
200.27 even 20 1000.2.t.b.301.22 224
200.123 even 20 1000.2.t.b.301.35 224
200.139 odd 10 200.2.o.a.189.26 yes 112
200.189 even 10 inner 800.2.be.a.689.5 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.o.a.109.7 112 8.3 odd 2
200.2.o.a.109.26 yes 112 4.3 odd 2
200.2.o.a.189.7 yes 112 100.39 odd 10
200.2.o.a.189.26 yes 112 200.139 odd 10
800.2.be.a.209.5 112 1.1 even 1 trivial
800.2.be.a.209.24 112 8.5 even 2 inner
800.2.be.a.689.5 112 200.189 even 10 inner
800.2.be.a.689.24 112 25.14 even 10 inner
1000.2.o.a.549.3 112 20.19 odd 2
1000.2.o.a.549.22 112 40.19 odd 2
1000.2.o.a.949.3 112 200.11 odd 10
1000.2.o.a.949.22 112 100.11 odd 10
1000.2.t.b.301.14 224 100.23 even 20
1000.2.t.b.301.22 224 200.27 even 20
1000.2.t.b.301.35 224 200.123 even 20
1000.2.t.b.301.43 224 100.27 even 20
1000.2.t.b.701.14 224 40.3 even 4
1000.2.t.b.701.22 224 20.7 even 4
1000.2.t.b.701.35 224 20.3 even 4
1000.2.t.b.701.43 224 40.27 even 4