Properties

Label 800.2.be.a.209.4
Level $800$
Weight $2$
Character 800.209
Analytic conductor $6.388$
Analytic rank $0$
Dimension $112$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [800,2,Mod(209,800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("800.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(800, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.be (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(28\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 209.4
Character \(\chi\) \(=\) 800.209
Dual form 800.2.be.a.689.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.853735 - 2.62753i) q^{3} +(2.18267 - 0.485731i) q^{5} -2.67391i q^{7} +(-3.74798 + 2.72307i) q^{9} +(-0.305554 + 0.420559i) q^{11} +(4.26356 - 3.09766i) q^{13} +(-3.13970 - 5.32035i) q^{15} +(-6.80346 - 2.21058i) q^{17} +(3.74715 + 1.21752i) q^{19} +(-7.02577 + 2.28281i) q^{21} +(2.11996 - 2.91788i) q^{23} +(4.52813 - 2.12038i) q^{25} +(3.64939 + 2.65144i) q^{27} +(3.63988 - 1.18267i) q^{29} +(-2.54168 + 7.82249i) q^{31} +(1.36589 + 0.443805i) q^{33} +(-1.29880 - 5.83628i) q^{35} +(-1.62286 + 1.17908i) q^{37} +(-11.7791 - 8.55804i) q^{39} +(-5.16753 + 3.75443i) q^{41} -5.41659 q^{43} +(-6.85794 + 7.76408i) q^{45} +(-0.748265 + 0.243126i) q^{47} -0.149804 q^{49} +19.7635i q^{51} +(1.71792 + 5.28721i) q^{53} +(-0.462646 + 1.06636i) q^{55} -10.8852i q^{57} +(-3.67423 - 5.05715i) q^{59} +(4.51387 - 6.21281i) q^{61} +(7.28124 + 10.0218i) q^{63} +(7.80133 - 8.83212i) q^{65} +(-1.98087 + 6.09648i) q^{67} +(-9.47669 - 3.07916i) q^{69} +(-0.885245 - 2.72450i) q^{71} +(-0.839035 + 1.15483i) q^{73} +(-9.43719 - 10.0875i) q^{75} +(1.12454 + 0.817024i) q^{77} +(2.10919 + 6.49143i) q^{79} +(-0.443692 + 1.36554i) q^{81} +(-0.170500 + 0.524746i) q^{83} +(-15.9235 - 1.52032i) q^{85} +(-6.21499 - 8.55421i) q^{87} +(-11.0001 - 7.99206i) q^{89} +(-8.28286 - 11.4004i) q^{91} +22.7237 q^{93} +(8.77019 + 0.837348i) q^{95} +(4.85400 - 1.57716i) q^{97} -2.40829i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q - 30 q^{9} + 2 q^{15} - 10 q^{17} + 10 q^{23} - 6 q^{25} + 18 q^{31} - 10 q^{33} + 10 q^{39} - 10 q^{41} + 10 q^{47} - 80 q^{49} + 34 q^{55} - 60 q^{63} + 40 q^{65} - 22 q^{71} - 10 q^{73} - 14 q^{79}+ \cdots - 50 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.853735 2.62753i −0.492904 1.51700i −0.820198 0.572080i \(-0.806137\pi\)
0.327293 0.944923i \(-0.393863\pi\)
\(4\) 0 0
\(5\) 2.18267 0.485731i 0.976121 0.217225i
\(6\) 0 0
\(7\) 2.67391i 1.01064i −0.862931 0.505322i \(-0.831374\pi\)
0.862931 0.505322i \(-0.168626\pi\)
\(8\) 0 0
\(9\) −3.74798 + 2.72307i −1.24933 + 0.907689i
\(10\) 0 0
\(11\) −0.305554 + 0.420559i −0.0921280 + 0.126803i −0.852593 0.522576i \(-0.824971\pi\)
0.760465 + 0.649379i \(0.224971\pi\)
\(12\) 0 0
\(13\) 4.26356 3.09766i 1.18250 0.859136i 0.190047 0.981775i \(-0.439136\pi\)
0.992451 + 0.122639i \(0.0391359\pi\)
\(14\) 0 0
\(15\) −3.13970 5.32035i −0.810666 1.37371i
\(16\) 0 0
\(17\) −6.80346 2.21058i −1.65008 0.536144i −0.671324 0.741164i \(-0.734274\pi\)
−0.978758 + 0.205020i \(0.934274\pi\)
\(18\) 0 0
\(19\) 3.74715 + 1.21752i 0.859654 + 0.279319i 0.705484 0.708726i \(-0.250730\pi\)
0.154170 + 0.988044i \(0.450730\pi\)
\(20\) 0 0
\(21\) −7.02577 + 2.28281i −1.53315 + 0.498151i
\(22\) 0 0
\(23\) 2.11996 2.91788i 0.442043 0.608420i −0.528622 0.848858i \(-0.677291\pi\)
0.970665 + 0.240438i \(0.0772910\pi\)
\(24\) 0 0
\(25\) 4.52813 2.12038i 0.905626 0.424077i
\(26\) 0 0
\(27\) 3.64939 + 2.65144i 0.702326 + 0.510270i
\(28\) 0 0
\(29\) 3.63988 1.18267i 0.675910 0.219616i 0.0491059 0.998794i \(-0.484363\pi\)
0.626804 + 0.779177i \(0.284363\pi\)
\(30\) 0 0
\(31\) −2.54168 + 7.82249i −0.456499 + 1.40496i 0.412867 + 0.910791i \(0.364527\pi\)
−0.869366 + 0.494168i \(0.835473\pi\)
\(32\) 0 0
\(33\) 1.36589 + 0.443805i 0.237771 + 0.0772566i
\(34\) 0 0
\(35\) −1.29880 5.83628i −0.219538 0.986511i
\(36\) 0 0
\(37\) −1.62286 + 1.17908i −0.266797 + 0.193839i −0.713138 0.701024i \(-0.752727\pi\)
0.446341 + 0.894863i \(0.352727\pi\)
\(38\) 0 0
\(39\) −11.7791 8.55804i −1.88617 1.37038i
\(40\) 0 0
\(41\) −5.16753 + 3.75443i −0.807032 + 0.586343i −0.912969 0.408030i \(-0.866216\pi\)
0.105936 + 0.994373i \(0.466216\pi\)
\(42\) 0 0
\(43\) −5.41659 −0.826022 −0.413011 0.910726i \(-0.635523\pi\)
−0.413011 + 0.910726i \(0.635523\pi\)
\(44\) 0 0
\(45\) −6.85794 + 7.76408i −1.02232 + 1.15740i
\(46\) 0 0
\(47\) −0.748265 + 0.243126i −0.109146 + 0.0354636i −0.363081 0.931758i \(-0.618275\pi\)
0.253935 + 0.967221i \(0.418275\pi\)
\(48\) 0 0
\(49\) −0.149804 −0.0214006
\(50\) 0 0
\(51\) 19.7635i 2.76745i
\(52\) 0 0
\(53\) 1.71792 + 5.28721i 0.235974 + 0.726254i 0.996991 + 0.0775214i \(0.0247006\pi\)
−0.761016 + 0.648733i \(0.775299\pi\)
\(54\) 0 0
\(55\) −0.462646 + 1.06636i −0.0623832 + 0.143788i
\(56\) 0 0
\(57\) 10.8852i 1.44178i
\(58\) 0 0
\(59\) −3.67423 5.05715i −0.478344 0.658385i 0.499841 0.866117i \(-0.333392\pi\)
−0.978186 + 0.207732i \(0.933392\pi\)
\(60\) 0 0
\(61\) 4.51387 6.21281i 0.577941 0.795468i −0.415526 0.909581i \(-0.636403\pi\)
0.993468 + 0.114113i \(0.0364026\pi\)
\(62\) 0 0
\(63\) 7.28124 + 10.0218i 0.917350 + 1.26262i
\(64\) 0 0
\(65\) 7.80133 8.83212i 0.967636 1.09549i
\(66\) 0 0
\(67\) −1.98087 + 6.09648i −0.242001 + 0.744804i 0.754114 + 0.656744i \(0.228067\pi\)
−0.996115 + 0.0880600i \(0.971933\pi\)
\(68\) 0 0
\(69\) −9.47669 3.07916i −1.14086 0.370688i
\(70\) 0 0
\(71\) −0.885245 2.72450i −0.105059 0.323339i 0.884685 0.466189i \(-0.154373\pi\)
−0.989744 + 0.142850i \(0.954373\pi\)
\(72\) 0 0
\(73\) −0.839035 + 1.15483i −0.0982017 + 0.135163i −0.855290 0.518149i \(-0.826621\pi\)
0.757089 + 0.653312i \(0.226621\pi\)
\(74\) 0 0
\(75\) −9.43719 10.0875i −1.08971 1.16481i
\(76\) 0 0
\(77\) 1.12454 + 0.817024i 0.128153 + 0.0931086i
\(78\) 0 0
\(79\) 2.10919 + 6.49143i 0.237303 + 0.730342i 0.996808 + 0.0798409i \(0.0254412\pi\)
−0.759505 + 0.650501i \(0.774559\pi\)
\(80\) 0 0
\(81\) −0.443692 + 1.36554i −0.0492991 + 0.151727i
\(82\) 0 0
\(83\) −0.170500 + 0.524746i −0.0187148 + 0.0575984i −0.959978 0.280076i \(-0.909640\pi\)
0.941263 + 0.337674i \(0.109640\pi\)
\(84\) 0 0
\(85\) −15.9235 1.52032i −1.72714 0.164902i
\(86\) 0 0
\(87\) −6.21499 8.55421i −0.666317 0.917107i
\(88\) 0 0
\(89\) −11.0001 7.99206i −1.16601 0.847156i −0.175485 0.984482i \(-0.556149\pi\)
−0.990526 + 0.137326i \(0.956149\pi\)
\(90\) 0 0
\(91\) −8.28286 11.4004i −0.868280 1.19508i
\(92\) 0 0
\(93\) 22.7237 2.35634
\(94\) 0 0
\(95\) 8.77019 + 0.837348i 0.899802 + 0.0859101i
\(96\) 0 0
\(97\) 4.85400 1.57716i 0.492849 0.160136i −0.0520390 0.998645i \(-0.516572\pi\)
0.544888 + 0.838509i \(0.316572\pi\)
\(98\) 0 0
\(99\) 2.40829i 0.242042i
\(100\) 0 0
\(101\) 1.77393i 0.176513i −0.996098 0.0882565i \(-0.971870\pi\)
0.996098 0.0882565i \(-0.0281295\pi\)
\(102\) 0 0
\(103\) 0.666003 0.216398i 0.0656233 0.0213223i −0.276021 0.961151i \(-0.589016\pi\)
0.341645 + 0.939829i \(0.389016\pi\)
\(104\) 0 0
\(105\) −14.2261 + 8.39527i −1.38833 + 0.819295i
\(106\) 0 0
\(107\) 20.2036 1.95315 0.976576 0.215171i \(-0.0690310\pi\)
0.976576 + 0.215171i \(0.0690310\pi\)
\(108\) 0 0
\(109\) −3.68500 5.07197i −0.352959 0.485807i 0.595211 0.803569i \(-0.297068\pi\)
−0.948170 + 0.317763i \(0.897068\pi\)
\(110\) 0 0
\(111\) 4.48355 + 3.25749i 0.425560 + 0.309188i
\(112\) 0 0
\(113\) −2.03808 2.80517i −0.191726 0.263888i 0.702322 0.711859i \(-0.252147\pi\)
−0.894048 + 0.447971i \(0.852147\pi\)
\(114\) 0 0
\(115\) 3.20988 7.39851i 0.299323 0.689915i
\(116\) 0 0
\(117\) −7.54461 + 23.2199i −0.697499 + 2.14668i
\(118\) 0 0
\(119\) −5.91089 + 18.1919i −0.541851 + 1.66764i
\(120\) 0 0
\(121\) 3.31568 + 10.2046i 0.301425 + 0.927692i
\(122\) 0 0
\(123\) 14.2766 + 10.3725i 1.28727 + 0.935260i
\(124\) 0 0
\(125\) 8.85350 6.82756i 0.791881 0.610676i
\(126\) 0 0
\(127\) 1.99694 2.74856i 0.177200 0.243895i −0.711173 0.703017i \(-0.751836\pi\)
0.888373 + 0.459122i \(0.151836\pi\)
\(128\) 0 0
\(129\) 4.62433 + 14.2322i 0.407150 + 1.25308i
\(130\) 0 0
\(131\) 6.90619 + 2.24396i 0.603397 + 0.196055i 0.594755 0.803907i \(-0.297249\pi\)
0.00864194 + 0.999963i \(0.497249\pi\)
\(132\) 0 0
\(133\) 3.25555 10.0195i 0.282292 0.868804i
\(134\) 0 0
\(135\) 9.25332 + 4.01460i 0.796399 + 0.345522i
\(136\) 0 0
\(137\) 10.8418 + 14.9224i 0.926276 + 1.27491i 0.961295 + 0.275522i \(0.0888508\pi\)
−0.0350190 + 0.999387i \(0.511149\pi\)
\(138\) 0 0
\(139\) 5.88707 8.10286i 0.499335 0.687275i −0.482741 0.875763i \(-0.660359\pi\)
0.982076 + 0.188488i \(0.0603586\pi\)
\(140\) 0 0
\(141\) 1.27764 + 1.75852i 0.107597 + 0.148094i
\(142\) 0 0
\(143\) 2.73958i 0.229095i
\(144\) 0 0
\(145\) 7.37022 4.34939i 0.612064 0.361197i
\(146\) 0 0
\(147\) 0.127893 + 0.393614i 0.0105484 + 0.0324647i
\(148\) 0 0
\(149\) 22.4904i 1.84249i −0.388984 0.921245i \(-0.627174\pi\)
0.388984 0.921245i \(-0.372826\pi\)
\(150\) 0 0
\(151\) 13.2680 1.07974 0.539869 0.841749i \(-0.318474\pi\)
0.539869 + 0.841749i \(0.318474\pi\)
\(152\) 0 0
\(153\) 31.5188 10.2411i 2.54814 0.827942i
\(154\) 0 0
\(155\) −1.74803 + 18.3085i −0.140406 + 1.47057i
\(156\) 0 0
\(157\) 6.77950 0.541063 0.270531 0.962711i \(-0.412801\pi\)
0.270531 + 0.962711i \(0.412801\pi\)
\(158\) 0 0
\(159\) 12.4256 9.02775i 0.985417 0.715947i
\(160\) 0 0
\(161\) −7.80215 5.66859i −0.614896 0.446748i
\(162\) 0 0
\(163\) 11.6472 8.46217i 0.912277 0.662808i −0.0293124 0.999570i \(-0.509332\pi\)
0.941590 + 0.336762i \(0.109332\pi\)
\(164\) 0 0
\(165\) 3.19687 + 0.305226i 0.248876 + 0.0237618i
\(166\) 0 0
\(167\) −3.69785 1.20150i −0.286148 0.0929752i 0.162426 0.986721i \(-0.448068\pi\)
−0.448574 + 0.893746i \(0.648068\pi\)
\(168\) 0 0
\(169\) 4.56524 14.0504i 0.351172 1.08080i
\(170\) 0 0
\(171\) −17.3596 + 5.64048i −1.32752 + 0.431339i
\(172\) 0 0
\(173\) −1.77044 1.28630i −0.134604 0.0977957i 0.518446 0.855111i \(-0.326511\pi\)
−0.653050 + 0.757315i \(0.726511\pi\)
\(174\) 0 0
\(175\) −5.66972 12.1078i −0.428591 0.915265i
\(176\) 0 0
\(177\) −10.1510 + 13.9716i −0.762994 + 1.05017i
\(178\) 0 0
\(179\) 8.52431 2.76971i 0.637137 0.207018i 0.0274027 0.999624i \(-0.491276\pi\)
0.609734 + 0.792606i \(0.291276\pi\)
\(180\) 0 0
\(181\) 20.6836 + 6.72051i 1.53740 + 0.499531i 0.950657 0.310243i \(-0.100410\pi\)
0.586742 + 0.809774i \(0.300410\pi\)
\(182\) 0 0
\(183\) −20.1780 6.55622i −1.49160 0.484649i
\(184\) 0 0
\(185\) −2.96946 + 3.36182i −0.218319 + 0.247166i
\(186\) 0 0
\(187\) 3.00850 2.18581i 0.220004 0.159842i
\(188\) 0 0
\(189\) 7.08972 9.75816i 0.515701 0.709801i
\(190\) 0 0
\(191\) −1.35201 + 0.982290i −0.0978277 + 0.0710760i −0.635624 0.771999i \(-0.719257\pi\)
0.537796 + 0.843075i \(0.319257\pi\)
\(192\) 0 0
\(193\) 8.56535i 0.616548i 0.951298 + 0.308274i \(0.0997513\pi\)
−0.951298 + 0.308274i \(0.900249\pi\)
\(194\) 0 0
\(195\) −29.8669 12.9579i −2.13881 0.927936i
\(196\) 0 0
\(197\) 3.12786 + 9.62655i 0.222851 + 0.685864i 0.998503 + 0.0547029i \(0.0174212\pi\)
−0.775652 + 0.631161i \(0.782579\pi\)
\(198\) 0 0
\(199\) 17.2203 1.22071 0.610356 0.792127i \(-0.291026\pi\)
0.610356 + 0.792127i \(0.291026\pi\)
\(200\) 0 0
\(201\) 17.7098 1.24915
\(202\) 0 0
\(203\) −3.16236 9.73273i −0.221954 0.683104i
\(204\) 0 0
\(205\) −9.45539 + 10.7047i −0.660393 + 0.747650i
\(206\) 0 0
\(207\) 16.7090i 1.16135i
\(208\) 0 0
\(209\) −1.65700 + 1.20388i −0.114617 + 0.0832739i
\(210\) 0 0
\(211\) −10.5323 + 14.4965i −0.725075 + 0.997980i 0.274265 + 0.961654i \(0.411565\pi\)
−0.999340 + 0.0363260i \(0.988435\pi\)
\(212\) 0 0
\(213\) −6.40294 + 4.65201i −0.438722 + 0.318751i
\(214\) 0 0
\(215\) −11.8226 + 2.63100i −0.806298 + 0.179433i
\(216\) 0 0
\(217\) 20.9166 + 6.79623i 1.41991 + 0.461358i
\(218\) 0 0
\(219\) 3.75067 + 1.21867i 0.253447 + 0.0823498i
\(220\) 0 0
\(221\) −35.8546 + 11.6499i −2.41184 + 0.783654i
\(222\) 0 0
\(223\) 3.76665 5.18435i 0.252233 0.347170i −0.664058 0.747681i \(-0.731167\pi\)
0.916292 + 0.400511i \(0.131167\pi\)
\(224\) 0 0
\(225\) −11.1974 + 20.2776i −0.746493 + 1.35184i
\(226\) 0 0
\(227\) −21.6339 15.7179i −1.43589 1.04324i −0.988881 0.148706i \(-0.952489\pi\)
−0.447009 0.894529i \(-0.647511\pi\)
\(228\) 0 0
\(229\) −1.64026 + 0.532952i −0.108391 + 0.0352185i −0.362711 0.931902i \(-0.618149\pi\)
0.254319 + 0.967120i \(0.418149\pi\)
\(230\) 0 0
\(231\) 1.18670 3.65228i 0.0780789 0.240302i
\(232\) 0 0
\(233\) −25.2733 8.21180i −1.65571 0.537973i −0.675743 0.737137i \(-0.736177\pi\)
−0.979966 + 0.199164i \(0.936177\pi\)
\(234\) 0 0
\(235\) −1.51512 + 0.894120i −0.0988358 + 0.0583260i
\(236\) 0 0
\(237\) 15.2557 11.0839i 0.990964 0.719978i
\(238\) 0 0
\(239\) 10.8304 + 7.86871i 0.700557 + 0.508985i 0.880114 0.474763i \(-0.157466\pi\)
−0.179556 + 0.983748i \(0.557466\pi\)
\(240\) 0 0
\(241\) 9.29368 6.75225i 0.598658 0.434951i −0.246744 0.969081i \(-0.579361\pi\)
0.845402 + 0.534130i \(0.179361\pi\)
\(242\) 0 0
\(243\) 17.4995 1.12259
\(244\) 0 0
\(245\) −0.326973 + 0.0727644i −0.0208895 + 0.00464875i
\(246\) 0 0
\(247\) 19.7476 6.41640i 1.25651 0.408266i
\(248\) 0 0
\(249\) 1.52435 0.0966015
\(250\) 0 0
\(251\) 10.3951i 0.656130i 0.944655 + 0.328065i \(0.106397\pi\)
−0.944655 + 0.328065i \(0.893603\pi\)
\(252\) 0 0
\(253\) 0.579377 + 1.78314i 0.0364251 + 0.112105i
\(254\) 0 0
\(255\) 9.59976 + 43.1373i 0.601160 + 2.70136i
\(256\) 0 0
\(257\) 5.90778i 0.368517i −0.982878 0.184258i \(-0.941012\pi\)
0.982878 0.184258i \(-0.0589884\pi\)
\(258\) 0 0
\(259\) 3.15275 + 4.33939i 0.195902 + 0.269637i
\(260\) 0 0
\(261\) −10.4217 + 14.3443i −0.645089 + 0.887889i
\(262\) 0 0
\(263\) −3.28152 4.51662i −0.202347 0.278507i 0.695769 0.718266i \(-0.255064\pi\)
−0.898116 + 0.439759i \(0.855064\pi\)
\(264\) 0 0
\(265\) 6.31782 + 10.7058i 0.388100 + 0.657653i
\(266\) 0 0
\(267\) −11.6082 + 35.7262i −0.710407 + 2.18641i
\(268\) 0 0
\(269\) 2.00902 + 0.652770i 0.122492 + 0.0398001i 0.369622 0.929182i \(-0.379487\pi\)
−0.247130 + 0.968982i \(0.579487\pi\)
\(270\) 0 0
\(271\) −5.94944 18.3105i −0.361403 1.11228i −0.952203 0.305466i \(-0.901188\pi\)
0.590800 0.806818i \(-0.298812\pi\)
\(272\) 0 0
\(273\) −22.8834 + 31.4963i −1.38497 + 1.90625i
\(274\) 0 0
\(275\) −0.491842 + 2.55224i −0.0296592 + 0.153906i
\(276\) 0 0
\(277\) −16.0691 11.6749i −0.965498 0.701476i −0.0110772 0.999939i \(-0.503526\pi\)
−0.954421 + 0.298463i \(0.903526\pi\)
\(278\) 0 0
\(279\) −11.7750 36.2397i −0.704950 2.16961i
\(280\) 0 0
\(281\) −3.83866 + 11.8142i −0.228995 + 0.704775i 0.768866 + 0.639410i \(0.220821\pi\)
−0.997861 + 0.0653651i \(0.979179\pi\)
\(282\) 0 0
\(283\) 0.0965181 0.297052i 0.00573740 0.0176579i −0.948147 0.317833i \(-0.897045\pi\)
0.953884 + 0.300175i \(0.0970450\pi\)
\(284\) 0 0
\(285\) −5.28726 23.7588i −0.313190 1.40735i
\(286\) 0 0
\(287\) 10.0390 + 13.8175i 0.592584 + 0.815622i
\(288\) 0 0
\(289\) 27.6471 + 20.0868i 1.62630 + 1.18158i
\(290\) 0 0
\(291\) −8.28807 11.4075i −0.485855 0.668722i
\(292\) 0 0
\(293\) −10.1550 −0.593262 −0.296631 0.954992i \(-0.595863\pi\)
−0.296631 + 0.954992i \(0.595863\pi\)
\(294\) 0 0
\(295\) −10.4761 9.25342i −0.609940 0.538755i
\(296\) 0 0
\(297\) −2.23017 + 0.724627i −0.129408 + 0.0420471i
\(298\) 0 0
\(299\) 19.0075i 1.09923i
\(300\) 0 0
\(301\) 14.4835i 0.834814i
\(302\) 0 0
\(303\) −4.66106 + 1.51447i −0.267771 + 0.0870040i
\(304\) 0 0
\(305\) 6.83455 15.7531i 0.391345 0.902017i
\(306\) 0 0
\(307\) 30.2858 1.72850 0.864250 0.503062i \(-0.167793\pi\)
0.864250 + 0.503062i \(0.167793\pi\)
\(308\) 0 0
\(309\) −1.13718 1.56520i −0.0646920 0.0890408i
\(310\) 0 0
\(311\) −20.4723 14.8740i −1.16088 0.843426i −0.170988 0.985273i \(-0.554696\pi\)
−0.989889 + 0.141847i \(0.954696\pi\)
\(312\) 0 0
\(313\) −15.0000 20.6458i −0.847852 1.16697i −0.984332 0.176325i \(-0.943579\pi\)
0.136480 0.990643i \(-0.456421\pi\)
\(314\) 0 0
\(315\) 20.7605 + 18.3375i 1.16972 + 1.03320i
\(316\) 0 0
\(317\) −8.30209 + 25.5512i −0.466292 + 1.43510i 0.391059 + 0.920366i \(0.372109\pi\)
−0.857351 + 0.514733i \(0.827891\pi\)
\(318\) 0 0
\(319\) −0.614799 + 1.89216i −0.0344221 + 0.105940i
\(320\) 0 0
\(321\) −17.2485 53.0854i −0.962717 2.96294i
\(322\) 0 0
\(323\) −22.8021 16.5667i −1.26874 0.921797i
\(324\) 0 0
\(325\) 12.7377 23.0670i 0.706562 1.27953i
\(326\) 0 0
\(327\) −10.1807 + 14.0126i −0.562995 + 0.774897i
\(328\) 0 0
\(329\) 0.650098 + 2.00079i 0.0358410 + 0.110307i
\(330\) 0 0
\(331\) −11.4630 3.72455i −0.630063 0.204720i −0.0234603 0.999725i \(-0.507468\pi\)
−0.606603 + 0.795005i \(0.707468\pi\)
\(332\) 0 0
\(333\) 2.87175 8.83833i 0.157371 0.484337i
\(334\) 0 0
\(335\) −1.36234 + 14.2688i −0.0744324 + 0.779588i
\(336\) 0 0
\(337\) −8.18324 11.2633i −0.445769 0.613549i 0.525713 0.850662i \(-0.323799\pi\)
−0.971482 + 0.237113i \(0.923799\pi\)
\(338\) 0 0
\(339\) −5.63068 + 7.74997i −0.305817 + 0.420921i
\(340\) 0 0
\(341\) −2.51320 3.45912i −0.136097 0.187322i
\(342\) 0 0
\(343\) 18.3168i 0.989015i
\(344\) 0 0
\(345\) −22.1802 2.11769i −1.19414 0.114012i
\(346\) 0 0
\(347\) 4.69862 + 14.4609i 0.252235 + 0.776300i 0.994362 + 0.106041i \(0.0338173\pi\)
−0.742127 + 0.670260i \(0.766183\pi\)
\(348\) 0 0
\(349\) 23.4212i 1.25371i 0.779136 + 0.626854i \(0.215658\pi\)
−0.779136 + 0.626854i \(0.784342\pi\)
\(350\) 0 0
\(351\) 23.7727 1.26889
\(352\) 0 0
\(353\) −4.26001 + 1.38416i −0.226738 + 0.0736715i −0.420182 0.907440i \(-0.638034\pi\)
0.193445 + 0.981111i \(0.438034\pi\)
\(354\) 0 0
\(355\) −3.25558 5.51671i −0.172788 0.292797i
\(356\) 0 0
\(357\) 52.8459 2.79690
\(358\) 0 0
\(359\) 7.45656 5.41751i 0.393542 0.285925i −0.373363 0.927685i \(-0.621795\pi\)
0.766906 + 0.641760i \(0.221795\pi\)
\(360\) 0 0
\(361\) −2.81258 2.04346i −0.148030 0.107550i
\(362\) 0 0
\(363\) 23.9822 17.4241i 1.25874 0.914527i
\(364\) 0 0
\(365\) −1.27040 + 2.92817i −0.0664959 + 0.153267i
\(366\) 0 0
\(367\) 32.3311 + 10.5050i 1.68767 + 0.548357i 0.986375 0.164513i \(-0.0526053\pi\)
0.701296 + 0.712871i \(0.252605\pi\)
\(368\) 0 0
\(369\) 9.14424 28.1431i 0.476030 1.46507i
\(370\) 0 0
\(371\) 14.1375 4.59356i 0.733984 0.238486i
\(372\) 0 0
\(373\) 20.7909 + 15.1054i 1.07651 + 0.782130i 0.977071 0.212914i \(-0.0682953\pi\)
0.0994385 + 0.995044i \(0.468295\pi\)
\(374\) 0 0
\(375\) −25.4981 17.4339i −1.31672 0.900281i
\(376\) 0 0
\(377\) 11.8554 16.3175i 0.610582 0.840394i
\(378\) 0 0
\(379\) −23.6500 + 7.68435i −1.21482 + 0.394719i −0.845193 0.534462i \(-0.820514\pi\)
−0.369627 + 0.929180i \(0.620514\pi\)
\(380\) 0 0
\(381\) −8.92676 2.90048i −0.457332 0.148596i
\(382\) 0 0
\(383\) −5.06647 1.64620i −0.258885 0.0841167i 0.176699 0.984265i \(-0.443458\pi\)
−0.435584 + 0.900148i \(0.643458\pi\)
\(384\) 0 0
\(385\) 2.85135 + 1.23708i 0.145318 + 0.0630472i
\(386\) 0 0
\(387\) 20.3013 14.7497i 1.03197 0.749771i
\(388\) 0 0
\(389\) 6.84259 9.41801i 0.346933 0.477512i −0.599517 0.800362i \(-0.704641\pi\)
0.946450 + 0.322850i \(0.104641\pi\)
\(390\) 0 0
\(391\) −20.8733 + 15.1653i −1.05561 + 0.766944i
\(392\) 0 0
\(393\) 20.0619i 1.01199i
\(394\) 0 0
\(395\) 7.75676 + 13.1442i 0.390285 + 0.661355i
\(396\) 0 0
\(397\) −1.22834 3.78044i −0.0616486 0.189735i 0.915489 0.402343i \(-0.131804\pi\)
−0.977137 + 0.212608i \(0.931804\pi\)
\(398\) 0 0
\(399\) −29.1060 −1.45712
\(400\) 0 0
\(401\) 14.8970 0.743920 0.371960 0.928249i \(-0.378686\pi\)
0.371960 + 0.928249i \(0.378686\pi\)
\(402\) 0 0
\(403\) 13.3948 + 41.2249i 0.667241 + 2.05356i
\(404\) 0 0
\(405\) −0.305148 + 3.19605i −0.0151629 + 0.158813i
\(406\) 0 0
\(407\) 1.04278i 0.0516888i
\(408\) 0 0
\(409\) −9.86001 + 7.16371i −0.487546 + 0.354223i −0.804240 0.594305i \(-0.797427\pi\)
0.316694 + 0.948528i \(0.397427\pi\)
\(410\) 0 0
\(411\) 29.9531 41.2269i 1.47748 2.03357i
\(412\) 0 0
\(413\) −13.5224 + 9.82457i −0.665392 + 0.483436i
\(414\) 0 0
\(415\) −0.117261 + 1.22817i −0.00575613 + 0.0602883i
\(416\) 0 0
\(417\) −26.3165 8.55074i −1.28872 0.418732i
\(418\) 0 0
\(419\) −11.9484 3.88226i −0.583716 0.189661i 0.00224856 0.999997i \(-0.499284\pi\)
−0.585965 + 0.810337i \(0.699284\pi\)
\(420\) 0 0
\(421\) 6.83134 2.21964i 0.332939 0.108179i −0.137777 0.990463i \(-0.543996\pi\)
0.470716 + 0.882285i \(0.343996\pi\)
\(422\) 0 0
\(423\) 2.14243 2.94881i 0.104169 0.143376i
\(424\) 0 0
\(425\) −35.4942 + 4.41616i −1.72172 + 0.214215i
\(426\) 0 0
\(427\) −16.6125 12.0697i −0.803935 0.584093i
\(428\) 0 0
\(429\) 7.19832 2.33888i 0.347538 0.112922i
\(430\) 0 0
\(431\) −7.56243 + 23.2748i −0.364269 + 1.12111i 0.586168 + 0.810190i \(0.300636\pi\)
−0.950437 + 0.310916i \(0.899364\pi\)
\(432\) 0 0
\(433\) −0.422614 0.137316i −0.0203095 0.00659896i 0.298845 0.954302i \(-0.403399\pi\)
−0.319154 + 0.947703i \(0.603399\pi\)
\(434\) 0 0
\(435\) −17.7203 15.6522i −0.849626 0.750467i
\(436\) 0 0
\(437\) 11.4964 8.35262i 0.549947 0.399560i
\(438\) 0 0
\(439\) 20.5740 + 14.9479i 0.981941 + 0.713422i 0.958142 0.286295i \(-0.0924236\pi\)
0.0237998 + 0.999717i \(0.492424\pi\)
\(440\) 0 0
\(441\) 0.561462 0.407926i 0.0267363 0.0194251i
\(442\) 0 0
\(443\) 1.21860 0.0578973 0.0289486 0.999581i \(-0.490784\pi\)
0.0289486 + 0.999581i \(0.490784\pi\)
\(444\) 0 0
\(445\) −27.8917 12.1010i −1.32219 0.573640i
\(446\) 0 0
\(447\) −59.0943 + 19.2009i −2.79506 + 0.908171i
\(448\) 0 0
\(449\) 5.21381 0.246055 0.123027 0.992403i \(-0.460740\pi\)
0.123027 + 0.992403i \(0.460740\pi\)
\(450\) 0 0
\(451\) 3.32043i 0.156353i
\(452\) 0 0
\(453\) −11.3274 34.8622i −0.532208 1.63797i
\(454\) 0 0
\(455\) −23.6163 20.8601i −1.10715 0.977935i
\(456\) 0 0
\(457\) 29.9606i 1.40150i 0.713408 + 0.700749i \(0.247151\pi\)
−0.713408 + 0.700749i \(0.752849\pi\)
\(458\) 0 0
\(459\) −18.9673 26.1062i −0.885317 1.21853i
\(460\) 0 0
\(461\) 14.3867 19.8016i 0.670055 0.922251i −0.329707 0.944083i \(-0.606950\pi\)
0.999762 + 0.0218322i \(0.00694996\pi\)
\(462\) 0 0
\(463\) 19.5394 + 26.8937i 0.908072 + 1.24985i 0.967821 + 0.251641i \(0.0809702\pi\)
−0.0597482 + 0.998213i \(0.519030\pi\)
\(464\) 0 0
\(465\) 49.5984 11.0376i 2.30007 0.511857i
\(466\) 0 0
\(467\) −6.61921 + 20.3718i −0.306301 + 0.942697i 0.672888 + 0.739744i \(0.265054\pi\)
−0.979189 + 0.202952i \(0.934946\pi\)
\(468\) 0 0
\(469\) 16.3015 + 5.29666i 0.752731 + 0.244577i
\(470\) 0 0
\(471\) −5.78790 17.8133i −0.266692 0.820794i
\(472\) 0 0
\(473\) 1.65506 2.27799i 0.0760997 0.104742i
\(474\) 0 0
\(475\) 19.5492 2.43229i 0.896978 0.111601i
\(476\) 0 0
\(477\) −20.8362 15.1384i −0.954022 0.693138i
\(478\) 0 0
\(479\) 2.03109 + 6.25104i 0.0928026 + 0.285617i 0.986675 0.162705i \(-0.0520218\pi\)
−0.893872 + 0.448322i \(0.852022\pi\)
\(480\) 0 0
\(481\) −3.26679 + 10.0541i −0.148953 + 0.458429i
\(482\) 0 0
\(483\) −8.23341 + 25.3398i −0.374633 + 1.15300i
\(484\) 0 0
\(485\) 9.82863 5.80017i 0.446295 0.263372i
\(486\) 0 0
\(487\) −13.2598 18.2506i −0.600860 0.827013i 0.394927 0.918713i \(-0.370770\pi\)
−0.995787 + 0.0917000i \(0.970770\pi\)
\(488\) 0 0
\(489\) −32.1782 23.3788i −1.45515 1.05723i
\(490\) 0 0
\(491\) 16.2270 + 22.3345i 0.732313 + 1.00794i 0.999024 + 0.0441661i \(0.0140631\pi\)
−0.266711 + 0.963777i \(0.585937\pi\)
\(492\) 0 0
\(493\) −27.3782 −1.23305
\(494\) 0 0
\(495\) −1.16978 5.25652i −0.0525778 0.236263i
\(496\) 0 0
\(497\) −7.28509 + 2.36707i −0.326781 + 0.106177i
\(498\) 0 0
\(499\) 15.6614i 0.701101i −0.936544 0.350551i \(-0.885994\pi\)
0.936544 0.350551i \(-0.114006\pi\)
\(500\) 0 0
\(501\) 10.7420i 0.479916i
\(502\) 0 0
\(503\) −15.7968 + 5.13269i −0.704344 + 0.228855i −0.639222 0.769022i \(-0.720744\pi\)
−0.0651216 + 0.997877i \(0.520744\pi\)
\(504\) 0 0
\(505\) −0.861655 3.87192i −0.0383431 0.172298i
\(506\) 0 0
\(507\) −40.8152 −1.81267
\(508\) 0 0
\(509\) 7.12293 + 9.80387i 0.315718 + 0.434549i 0.937154 0.348916i \(-0.113450\pi\)
−0.621436 + 0.783465i \(0.713450\pi\)
\(510\) 0 0
\(511\) 3.08792 + 2.24351i 0.136602 + 0.0992469i
\(512\) 0 0
\(513\) 10.4466 + 14.3785i 0.461230 + 0.634828i
\(514\) 0 0
\(515\) 1.34856 0.795824i 0.0594245 0.0350682i
\(516\) 0 0
\(517\) 0.126387 0.388978i 0.00555847 0.0171072i
\(518\) 0 0
\(519\) −1.86830 + 5.75005i −0.0820094 + 0.252399i
\(520\) 0 0
\(521\) 6.53479 + 20.1120i 0.286294 + 0.881123i 0.986008 + 0.166700i \(0.0533110\pi\)
−0.699713 + 0.714424i \(0.746689\pi\)
\(522\) 0 0
\(523\) 19.5338 + 14.1922i 0.854155 + 0.620580i 0.926289 0.376815i \(-0.122981\pi\)
−0.0721334 + 0.997395i \(0.522981\pi\)
\(524\) 0 0
\(525\) −26.9732 + 25.2342i −1.17721 + 1.10131i
\(526\) 0 0
\(527\) 34.5844 47.6014i 1.50652 2.07355i
\(528\) 0 0
\(529\) 3.08762 + 9.50271i 0.134244 + 0.413161i
\(530\) 0 0
\(531\) 27.5419 + 8.94891i 1.19522 + 0.388350i
\(532\) 0 0
\(533\) −10.4021 + 32.0145i −0.450566 + 1.38670i
\(534\) 0 0
\(535\) 44.0978 9.81350i 1.90651 0.424275i
\(536\) 0 0
\(537\) −14.5550 20.0332i −0.628095 0.864498i
\(538\) 0 0
\(539\) 0.0457732 0.0630014i 0.00197159 0.00271366i
\(540\) 0 0
\(541\) −4.93039 6.78610i −0.211974 0.291757i 0.689769 0.724029i \(-0.257712\pi\)
−0.901743 + 0.432272i \(0.857712\pi\)
\(542\) 0 0
\(543\) 60.0842i 2.57846i
\(544\) 0 0
\(545\) −10.5068 9.28054i −0.450061 0.397535i
\(546\) 0 0
\(547\) −6.01158 18.5017i −0.257037 0.791077i −0.993422 0.114514i \(-0.963469\pi\)
0.736385 0.676563i \(-0.236531\pi\)
\(548\) 0 0
\(549\) 35.5770i 1.51839i
\(550\) 0 0
\(551\) 15.0791 0.642391
\(552\) 0 0
\(553\) 17.3575 5.63979i 0.738116 0.239828i
\(554\) 0 0
\(555\) 11.3684 + 4.93224i 0.482562 + 0.209362i
\(556\) 0 0
\(557\) −16.0914 −0.681815 −0.340907 0.940097i \(-0.610734\pi\)
−0.340907 + 0.940097i \(0.610734\pi\)
\(558\) 0 0
\(559\) −23.0939 + 16.7787i −0.976770 + 0.709665i
\(560\) 0 0
\(561\) −8.31173 6.03882i −0.350921 0.254959i
\(562\) 0 0
\(563\) −21.5684 + 15.6704i −0.909000 + 0.660427i −0.940762 0.339068i \(-0.889888\pi\)
0.0317617 + 0.999495i \(0.489888\pi\)
\(564\) 0 0
\(565\) −5.81101 5.13282i −0.244471 0.215939i
\(566\) 0 0
\(567\) 3.65134 + 1.18639i 0.153342 + 0.0498238i
\(568\) 0 0
\(569\) 0.701887 2.16018i 0.0294246 0.0905597i −0.935266 0.353946i \(-0.884840\pi\)
0.964690 + 0.263387i \(0.0848395\pi\)
\(570\) 0 0
\(571\) −26.3024 + 8.54617i −1.10072 + 0.357646i −0.802380 0.596813i \(-0.796433\pi\)
−0.298342 + 0.954459i \(0.596433\pi\)
\(572\) 0 0
\(573\) 3.73525 + 2.71382i 0.156042 + 0.113371i
\(574\) 0 0
\(575\) 3.41245 17.7077i 0.142309 0.738461i
\(576\) 0 0
\(577\) −7.01351 + 9.65326i −0.291976 + 0.401871i −0.929655 0.368432i \(-0.879895\pi\)
0.637679 + 0.770302i \(0.279895\pi\)
\(578\) 0 0
\(579\) 22.5057 7.31254i 0.935305 0.303899i
\(580\) 0 0
\(581\) 1.40312 + 0.455903i 0.0582114 + 0.0189140i
\(582\) 0 0
\(583\) −2.74850 0.893042i −0.113831 0.0369860i
\(584\) 0 0
\(585\) −5.18879 + 54.3462i −0.214530 + 2.24694i
\(586\) 0 0
\(587\) −32.6376 + 23.7126i −1.34710 + 0.978723i −0.347946 + 0.937515i \(0.613121\pi\)
−0.999151 + 0.0412086i \(0.986879\pi\)
\(588\) 0 0
\(589\) −19.0481 + 26.2174i −0.784863 + 1.08027i
\(590\) 0 0
\(591\) 22.6237 16.4371i 0.930613 0.676130i
\(592\) 0 0
\(593\) 5.46839i 0.224560i −0.993677 0.112280i \(-0.964185\pi\)
0.993677 0.112280i \(-0.0358153\pi\)
\(594\) 0 0
\(595\) −4.06520 + 42.5780i −0.166657 + 1.74553i
\(596\) 0 0
\(597\) −14.7015 45.2467i −0.601694 1.85182i
\(598\) 0 0
\(599\) −27.9052 −1.14017 −0.570087 0.821584i \(-0.693091\pi\)
−0.570087 + 0.821584i \(0.693091\pi\)
\(600\) 0 0
\(601\) 13.3613 0.545018 0.272509 0.962153i \(-0.412146\pi\)
0.272509 + 0.962153i \(0.412146\pi\)
\(602\) 0 0
\(603\) −9.17688 28.2435i −0.373712 1.15017i
\(604\) 0 0
\(605\) 12.1937 + 20.6628i 0.495746 + 0.840063i
\(606\) 0 0
\(607\) 31.7630i 1.28922i −0.764511 0.644611i \(-0.777019\pi\)
0.764511 0.644611i \(-0.222981\pi\)
\(608\) 0 0
\(609\) −22.8732 + 16.6183i −0.926869 + 0.673409i
\(610\) 0 0
\(611\) −2.43715 + 3.35445i −0.0985966 + 0.135707i
\(612\) 0 0
\(613\) 31.8620 23.1491i 1.28690 0.934985i 0.287158 0.957883i \(-0.407289\pi\)
0.999738 + 0.0228985i \(0.00728944\pi\)
\(614\) 0 0
\(615\) 36.1993 + 15.7053i 1.45970 + 0.633298i
\(616\) 0 0
\(617\) 16.4548 + 5.34648i 0.662445 + 0.215241i 0.620893 0.783895i \(-0.286770\pi\)
0.0415512 + 0.999136i \(0.486770\pi\)
\(618\) 0 0
\(619\) −19.9635 6.48655i −0.802402 0.260716i −0.121026 0.992649i \(-0.538618\pi\)
−0.681377 + 0.731933i \(0.738618\pi\)
\(620\) 0 0
\(621\) 15.4732 5.02753i 0.620916 0.201748i
\(622\) 0 0
\(623\) −21.3701 + 29.4134i −0.856173 + 1.17842i
\(624\) 0 0
\(625\) 16.0079 19.2028i 0.640318 0.768110i
\(626\) 0 0
\(627\) 4.57786 + 3.32601i 0.182822 + 0.132828i
\(628\) 0 0
\(629\) 13.6475 4.43435i 0.544163 0.176809i
\(630\) 0 0
\(631\) −4.33588 + 13.3445i −0.172609 + 0.531235i −0.999516 0.0311029i \(-0.990098\pi\)
0.826907 + 0.562338i \(0.190098\pi\)
\(632\) 0 0
\(633\) 47.0818 + 15.2978i 1.87133 + 0.608032i
\(634\) 0 0
\(635\) 3.02362 6.96918i 0.119989 0.276563i
\(636\) 0 0
\(637\) −0.638698 + 0.464041i −0.0253061 + 0.0183860i
\(638\) 0 0
\(639\) 10.7369 + 7.80081i 0.424745 + 0.308595i
\(640\) 0 0
\(641\) −38.2200 + 27.7684i −1.50960 + 1.09679i −0.543242 + 0.839576i \(0.682803\pi\)
−0.966355 + 0.257210i \(0.917197\pi\)
\(642\) 0 0
\(643\) −35.9924 −1.41940 −0.709702 0.704502i \(-0.751170\pi\)
−0.709702 + 0.704502i \(0.751170\pi\)
\(644\) 0 0
\(645\) 17.0064 + 28.8181i 0.669628 + 1.13471i
\(646\) 0 0
\(647\) 0.591058 0.192046i 0.0232369 0.00755012i −0.297375 0.954761i \(-0.596111\pi\)
0.320612 + 0.947210i \(0.396111\pi\)
\(648\) 0 0
\(649\) 3.24951 0.127554
\(650\) 0 0
\(651\) 60.7612i 2.38142i
\(652\) 0 0
\(653\) 2.23277 + 6.87175i 0.0873749 + 0.268912i 0.985192 0.171457i \(-0.0548475\pi\)
−0.897817 + 0.440369i \(0.854848\pi\)
\(654\) 0 0
\(655\) 16.1639 + 1.54328i 0.631577 + 0.0603008i
\(656\) 0 0
\(657\) 6.61304i 0.257999i
\(658\) 0 0
\(659\) 14.7715 + 20.3312i 0.575415 + 0.791991i 0.993183 0.116563i \(-0.0371875\pi\)
−0.417768 + 0.908554i \(0.637188\pi\)
\(660\) 0 0
\(661\) −1.96163 + 2.69996i −0.0762987 + 0.105016i −0.845461 0.534038i \(-0.820674\pi\)
0.769162 + 0.639054i \(0.220674\pi\)
\(662\) 0 0
\(663\) 61.2206 + 84.2630i 2.37761 + 3.27250i
\(664\) 0 0
\(665\) 2.23899 23.4507i 0.0868245 0.909379i
\(666\) 0 0
\(667\) 4.26553 13.1280i 0.165162 0.508317i
\(668\) 0 0
\(669\) −16.8377 5.47091i −0.650984 0.211518i
\(670\) 0 0
\(671\) 1.23362 + 3.79670i 0.0476234 + 0.146570i
\(672\) 0 0
\(673\) −19.4876 + 26.8224i −0.751191 + 1.03393i 0.246705 + 0.969091i \(0.420652\pi\)
−0.997896 + 0.0648353i \(0.979348\pi\)
\(674\) 0 0
\(675\) 22.1470 + 4.26795i 0.852439 + 0.164273i
\(676\) 0 0
\(677\) 9.80817 + 7.12605i 0.376959 + 0.273876i 0.760091 0.649817i \(-0.225155\pi\)
−0.383132 + 0.923694i \(0.625155\pi\)
\(678\) 0 0
\(679\) −4.21719 12.9792i −0.161841 0.498095i
\(680\) 0 0
\(681\) −22.8297 + 70.2625i −0.874835 + 2.69247i
\(682\) 0 0
\(683\) 12.5862 38.7363i 0.481597 1.48220i −0.355253 0.934770i \(-0.615605\pi\)
0.836850 0.547432i \(-0.184395\pi\)
\(684\) 0 0
\(685\) 30.9124 + 27.3046i 1.18110 + 1.04326i
\(686\) 0 0
\(687\) 2.80069 + 3.85482i 0.106853 + 0.147071i
\(688\) 0 0
\(689\) 23.7024 + 17.2208i 0.902990 + 0.656061i
\(690\) 0 0
\(691\) −4.49348 6.18474i −0.170940 0.235279i 0.714948 0.699177i \(-0.246450\pi\)
−0.885888 + 0.463899i \(0.846450\pi\)
\(692\) 0 0
\(693\) −6.43956 −0.244619
\(694\) 0 0
\(695\) 8.91375 20.5454i 0.338118 0.779332i
\(696\) 0 0
\(697\) 43.4565 14.1199i 1.64603 0.534829i
\(698\) 0 0
\(699\) 73.4170i 2.77689i
\(700\) 0 0
\(701\) 41.0013i 1.54860i 0.632820 + 0.774299i \(0.281897\pi\)
−0.632820 + 0.774299i \(0.718103\pi\)
\(702\) 0 0
\(703\) −7.51666 + 2.44231i −0.283496 + 0.0921135i
\(704\) 0 0
\(705\) 3.64284 + 3.21769i 0.137197 + 0.121185i
\(706\) 0 0
\(707\) −4.74334 −0.178392
\(708\) 0 0
\(709\) 18.4825 + 25.4390i 0.694125 + 0.955382i 0.999995 + 0.00330817i \(0.00105303\pi\)
−0.305869 + 0.952074i \(0.598947\pi\)
\(710\) 0 0
\(711\) −25.5818 18.5863i −0.959393 0.697040i
\(712\) 0 0
\(713\) 17.4368 + 23.9997i 0.653013 + 0.898796i
\(714\) 0 0
\(715\) 1.33070 + 5.97961i 0.0497653 + 0.223625i
\(716\) 0 0
\(717\) 11.4290 35.1748i 0.426824 1.31363i
\(718\) 0 0
\(719\) 0.494184 1.52094i 0.0184300 0.0567216i −0.941419 0.337240i \(-0.890506\pi\)
0.959849 + 0.280519i \(0.0905065\pi\)
\(720\) 0 0
\(721\) −0.578628 1.78083i −0.0215492 0.0663217i
\(722\) 0 0
\(723\) −25.6761 18.6548i −0.954903 0.693778i
\(724\) 0 0
\(725\) 13.9742 13.0732i 0.518987 0.485528i
\(726\) 0 0
\(727\) −29.8436 + 41.0762i −1.10684 + 1.52343i −0.280843 + 0.959754i \(0.590614\pi\)
−0.825995 + 0.563678i \(0.809386\pi\)
\(728\) 0 0
\(729\) −13.6089 41.8837i −0.504032 1.55125i
\(730\) 0 0
\(731\) 36.8515 + 11.9738i 1.36300 + 0.442867i
\(732\) 0 0
\(733\) 6.55606 20.1775i 0.242154 0.745272i −0.753938 0.656946i \(-0.771848\pi\)
0.996092 0.0883266i \(-0.0281519\pi\)
\(734\) 0 0
\(735\) 0.470339 + 0.797009i 0.0173487 + 0.0293981i
\(736\) 0 0
\(737\) −1.95867 2.69588i −0.0721485 0.0993039i
\(738\) 0 0
\(739\) 14.2869 19.6642i 0.525551 0.723358i −0.460894 0.887455i \(-0.652471\pi\)
0.986444 + 0.164097i \(0.0524710\pi\)
\(740\) 0 0
\(741\) −33.7185 46.4096i −1.23868 1.70490i
\(742\) 0 0
\(743\) 11.2680i 0.413384i −0.978406 0.206692i \(-0.933730\pi\)
0.978406 0.206692i \(-0.0662698\pi\)
\(744\) 0 0
\(745\) −10.9243 49.0893i −0.400236 1.79849i
\(746\) 0 0
\(747\) −0.789887 2.43102i −0.0289005 0.0889465i
\(748\) 0 0
\(749\) 54.0226i 1.97394i
\(750\) 0 0
\(751\) 8.71647 0.318068 0.159034 0.987273i \(-0.449162\pi\)
0.159034 + 0.987273i \(0.449162\pi\)
\(752\) 0 0
\(753\) 27.3133 8.87463i 0.995352 0.323409i
\(754\) 0 0
\(755\) 28.9598 6.44470i 1.05396 0.234547i
\(756\) 0 0
\(757\) −38.5500 −1.40112 −0.700562 0.713592i \(-0.747067\pi\)
−0.700562 + 0.713592i \(0.747067\pi\)
\(758\) 0 0
\(759\) 4.19061 3.04466i 0.152110 0.110514i
\(760\) 0 0
\(761\) 22.7571 + 16.5340i 0.824944 + 0.599357i 0.918124 0.396292i \(-0.129703\pi\)
−0.0931801 + 0.995649i \(0.529703\pi\)
\(762\) 0 0
\(763\) −13.5620 + 9.85338i −0.490978 + 0.356716i
\(764\) 0 0
\(765\) 63.8209 37.6626i 2.30745 1.36169i
\(766\) 0 0
\(767\) −31.3306 10.1799i −1.13128 0.367576i
\(768\) 0 0
\(769\) −1.71576 + 5.28055i −0.0618717 + 0.190422i −0.977215 0.212254i \(-0.931920\pi\)
0.915343 + 0.402675i \(0.131920\pi\)
\(770\) 0 0
\(771\) −15.5228 + 5.04368i −0.559041 + 0.181644i
\(772\) 0 0
\(773\) −26.9230 19.5607i −0.968353 0.703549i −0.0132772 0.999912i \(-0.504226\pi\)
−0.955076 + 0.296362i \(0.904226\pi\)
\(774\) 0 0
\(775\) 5.07762 + 40.8106i 0.182393 + 1.46596i
\(776\) 0 0
\(777\) 8.71025 11.9886i 0.312478 0.430090i
\(778\) 0 0
\(779\) −23.9346 + 7.77682i −0.857545 + 0.278633i
\(780\) 0 0
\(781\) 1.41631 + 0.460185i 0.0506794 + 0.0164667i
\(782\) 0 0
\(783\) 16.4191 + 5.33491i 0.586773 + 0.190654i
\(784\) 0 0
\(785\) 14.7974 3.29301i 0.528143 0.117533i
\(786\) 0 0
\(787\) 17.2535 12.5354i 0.615021 0.446839i −0.236158 0.971715i \(-0.575888\pi\)
0.851179 + 0.524876i \(0.175888\pi\)
\(788\) 0 0
\(789\) −9.06600 + 12.4783i −0.322758 + 0.444239i
\(790\) 0 0
\(791\) −7.50078 + 5.44963i −0.266697 + 0.193767i
\(792\) 0 0
\(793\) 40.4711i 1.43717i
\(794\) 0 0
\(795\) 22.7361 25.7402i 0.806365 0.912909i
\(796\) 0 0
\(797\) −0.373055 1.14814i −0.0132143 0.0406694i 0.944232 0.329281i \(-0.106806\pi\)
−0.957446 + 0.288612i \(0.906806\pi\)
\(798\) 0 0
\(799\) 5.62824 0.199113
\(800\) 0 0
\(801\) 62.9912 2.22568
\(802\) 0 0
\(803\) −0.229305 0.705728i −0.00809199 0.0249046i
\(804\) 0 0
\(805\) −19.7830 8.58295i −0.697258 0.302509i
\(806\) 0 0
\(807\) 5.83604i 0.205438i
\(808\) 0 0
\(809\) −8.23313 + 5.98172i −0.289462 + 0.210306i −0.723034 0.690813i \(-0.757253\pi\)
0.433572 + 0.901119i \(0.357253\pi\)
\(810\) 0 0
\(811\) 9.04159 12.4447i 0.317493 0.436992i −0.620206 0.784439i \(-0.712951\pi\)
0.937700 + 0.347447i \(0.112951\pi\)
\(812\) 0 0
\(813\) −43.0321 + 31.2646i −1.50920 + 1.09650i
\(814\) 0 0
\(815\) 21.3117 24.1276i 0.746515 0.845151i
\(816\) 0 0
\(817\) −20.2967 6.59481i −0.710093 0.230723i
\(818\) 0 0
\(819\) 62.0880 + 20.1736i 2.16953 + 0.704923i
\(820\) 0 0
\(821\) 49.2854 16.0138i 1.72007 0.558885i 0.728115 0.685455i \(-0.240397\pi\)
0.991958 + 0.126570i \(0.0403968\pi\)
\(822\) 0 0
\(823\) 15.1546 20.8585i 0.528256 0.727082i −0.458607 0.888639i \(-0.651651\pi\)
0.986863 + 0.161557i \(0.0516515\pi\)
\(824\) 0 0
\(825\) 7.12598 0.886608i 0.248095 0.0308677i
\(826\) 0 0
\(827\) −2.88316 2.09474i −0.100257 0.0728411i 0.536527 0.843883i \(-0.319736\pi\)
−0.636784 + 0.771042i \(0.719736\pi\)
\(828\) 0 0
\(829\) −25.3530 + 8.23770i −0.880547 + 0.286107i −0.714184 0.699958i \(-0.753202\pi\)
−0.166362 + 0.986065i \(0.553202\pi\)
\(830\) 0 0
\(831\) −16.9573 + 52.1892i −0.588243 + 1.81042i
\(832\) 0 0
\(833\) 1.01919 + 0.331153i 0.0353127 + 0.0114738i
\(834\) 0 0
\(835\) −8.65481 0.826332i −0.299512 0.0285964i
\(836\) 0 0
\(837\) −30.0164 + 21.8082i −1.03752 + 0.753802i
\(838\) 0 0
\(839\) 2.07141 + 1.50497i 0.0715131 + 0.0519573i 0.622967 0.782248i \(-0.285927\pi\)
−0.551454 + 0.834205i \(0.685927\pi\)
\(840\) 0 0
\(841\) −11.6114 + 8.43621i −0.400395 + 0.290904i
\(842\) 0 0
\(843\) 34.3193 1.18202
\(844\) 0 0
\(845\) 3.13973 32.8848i 0.108010 1.13127i
\(846\) 0 0
\(847\) 27.2862 8.86584i 0.937566 0.304634i
\(848\) 0 0
\(849\) −0.862913 −0.0296151
\(850\) 0 0
\(851\) 7.23492i 0.248010i
\(852\) 0 0
\(853\) 0.926669 + 2.85199i 0.0317285 + 0.0976504i 0.965667 0.259784i \(-0.0836515\pi\)
−0.933938 + 0.357435i \(0.883651\pi\)
\(854\) 0 0
\(855\) −35.1506 + 20.7434i −1.20213 + 0.709411i
\(856\) 0 0
\(857\) 6.92518i 0.236560i 0.992980 + 0.118280i \(0.0377380\pi\)
−0.992980 + 0.118280i \(0.962262\pi\)
\(858\) 0 0
\(859\) 15.0901 + 20.7697i 0.514866 + 0.708653i 0.984730 0.174086i \(-0.0556971\pi\)
−0.469864 + 0.882739i \(0.655697\pi\)
\(860\) 0 0
\(861\) 27.7352 38.1743i 0.945214 1.30098i
\(862\) 0 0
\(863\) −8.57489 11.8023i −0.291893 0.401756i 0.637735 0.770256i \(-0.279871\pi\)
−0.929628 + 0.368500i \(0.879871\pi\)
\(864\) 0 0
\(865\) −4.48910 1.94762i −0.152634 0.0662210i
\(866\) 0 0
\(867\) 29.1753 89.7924i 0.990846 3.04951i
\(868\) 0 0
\(869\) −3.37450 1.09644i −0.114472 0.0371942i
\(870\) 0 0
\(871\) 10.4393 + 32.1288i 0.353721 + 1.08864i
\(872\) 0 0
\(873\) −13.8980 + 19.1289i −0.470376 + 0.647417i
\(874\) 0 0
\(875\) −18.2563 23.6735i −0.617175 0.800309i
\(876\) 0 0
\(877\) 29.6831 + 21.5661i 1.00233 + 0.728234i 0.962586 0.270976i \(-0.0873463\pi\)
0.0397424 + 0.999210i \(0.487346\pi\)
\(878\) 0 0
\(879\) 8.66968 + 26.6825i 0.292421 + 0.899980i
\(880\) 0 0
\(881\) 7.66494 23.5903i 0.258238 0.794776i −0.734936 0.678137i \(-0.762788\pi\)
0.993174 0.116639i \(-0.0372122\pi\)
\(882\) 0 0
\(883\) 3.12800 9.62701i 0.105266 0.323975i −0.884527 0.466489i \(-0.845519\pi\)
0.989793 + 0.142514i \(0.0455187\pi\)
\(884\) 0 0
\(885\) −15.3698 + 35.4261i −0.516651 + 1.19084i
\(886\) 0 0
\(887\) 6.68404 + 9.19979i 0.224428 + 0.308899i 0.906351 0.422525i \(-0.138856\pi\)
−0.681923 + 0.731424i \(0.738856\pi\)
\(888\) 0 0
\(889\) −7.34939 5.33965i −0.246491 0.179086i
\(890\) 0 0
\(891\) −0.438720 0.603846i −0.0146977 0.0202296i
\(892\) 0 0
\(893\) −3.09987 −0.103733
\(894\) 0 0
\(895\) 17.2604 10.1859i 0.576953 0.340477i
\(896\) 0 0
\(897\) −49.9426 + 16.2273i −1.66754 + 0.541815i
\(898\) 0 0
\(899\) 31.4789i 1.04988i
\(900\) 0 0
\(901\) 39.7689i 1.32489i
\(902\) 0 0
\(903\) 38.0557 12.3651i 1.26642 0.411483i
\(904\) 0 0
\(905\) 48.4099 + 4.62201i 1.60920 + 0.153641i
\(906\) 0 0
\(907\) 16.5101 0.548207 0.274104 0.961700i \(-0.411619\pi\)
0.274104 + 0.961700i \(0.411619\pi\)
\(908\) 0 0
\(909\) 4.83054 + 6.64867i 0.160219 + 0.220523i
\(910\) 0 0
\(911\) 10.4321 + 7.57935i 0.345630 + 0.251115i 0.747033 0.664786i \(-0.231477\pi\)
−0.401403 + 0.915901i \(0.631477\pi\)
\(912\) 0 0
\(913\) −0.168590 0.232044i −0.00557950 0.00767953i
\(914\) 0 0
\(915\) −47.2265 4.50902i −1.56126 0.149064i
\(916\) 0 0
\(917\) 6.00014 18.4665i 0.198142 0.609819i
\(918\) 0 0
\(919\) −6.83471 + 21.0351i −0.225456 + 0.693883i 0.772789 + 0.634663i \(0.218861\pi\)
−0.998245 + 0.0592194i \(0.981139\pi\)
\(920\) 0 0
\(921\) −25.8560 79.5767i −0.851985 2.62214i
\(922\) 0 0
\(923\) −12.2139 8.87390i −0.402025 0.292088i
\(924\) 0 0
\(925\) −4.84843 + 8.78011i −0.159416 + 0.288688i
\(926\) 0 0
\(927\) −1.90690 + 2.62463i −0.0626309 + 0.0862040i
\(928\) 0 0
\(929\) 11.8169 + 36.3687i 0.387701 + 1.19322i 0.934502 + 0.355958i \(0.115845\pi\)
−0.546801 + 0.837262i \(0.684155\pi\)
\(930\) 0 0
\(931\) −0.561337 0.182390i −0.0183971 0.00597758i
\(932\) 0 0
\(933\) −21.6039 + 66.4899i −0.707279 + 2.17678i
\(934\) 0 0
\(935\) 5.50487 6.23222i 0.180028 0.203816i
\(936\) 0 0
\(937\) −8.14697 11.2133i −0.266150 0.366324i 0.654935 0.755685i \(-0.272696\pi\)
−0.921085 + 0.389361i \(0.872696\pi\)
\(938\) 0 0
\(939\) −41.4413 + 57.0390i −1.35238 + 1.86140i
\(940\) 0 0
\(941\) 23.3206 + 32.0981i 0.760230 + 1.04637i 0.997195 + 0.0748487i \(0.0238474\pi\)
−0.236965 + 0.971518i \(0.576153\pi\)
\(942\) 0 0
\(943\) 23.0375i 0.750203i
\(944\) 0 0
\(945\) 10.7347 24.7426i 0.349200 0.804876i
\(946\) 0 0
\(947\) −9.93611 30.5802i −0.322880 0.993724i −0.972388 0.233369i \(-0.925025\pi\)
0.649508 0.760355i \(-0.274975\pi\)
\(948\) 0 0
\(949\) 7.52274i 0.244199i
\(950\) 0 0
\(951\) 74.2243 2.40689
\(952\) 0 0
\(953\) 2.59539 0.843293i 0.0840729 0.0273169i −0.266679 0.963786i \(-0.585926\pi\)
0.350751 + 0.936469i \(0.385926\pi\)
\(954\) 0 0
\(955\) −2.47386 + 2.80073i −0.0800522 + 0.0906295i
\(956\) 0 0
\(957\) 5.49657 0.177679
\(958\) 0 0
\(959\) 39.9013 28.9900i 1.28848 0.936135i
\(960\) 0 0
\(961\) −29.6516 21.5432i −0.956504 0.694941i
\(962\) 0 0
\(963\) −75.7226 + 55.0157i −2.44013 + 1.77286i
\(964\) 0 0
\(965\) 4.16046 + 18.6954i 0.133930 + 0.601825i
\(966\) 0 0
\(967\) −18.5861 6.03899i −0.597689 0.194201i −0.00547963 0.999985i \(-0.501744\pi\)
−0.592210 + 0.805784i \(0.701744\pi\)
\(968\) 0 0
\(969\) −24.0625 + 74.0568i −0.772999 + 2.37905i
\(970\) 0 0
\(971\) 5.24830 1.70528i 0.168426 0.0547250i −0.223590 0.974683i \(-0.571778\pi\)
0.392016 + 0.919958i \(0.371778\pi\)
\(972\) 0 0
\(973\) −21.6663 15.7415i −0.694591 0.504650i
\(974\) 0 0
\(975\) −71.4838 13.7756i −2.28931 0.441173i
\(976\) 0 0
\(977\) −0.133245 + 0.183396i −0.00426289 + 0.00586736i −0.811143 0.584848i \(-0.801154\pi\)
0.806880 + 0.590715i \(0.201154\pi\)
\(978\) 0 0
\(979\) 6.72226 2.18420i 0.214844 0.0698072i
\(980\) 0 0
\(981\) 27.6227 + 8.97514i 0.881923 + 0.286554i
\(982\) 0 0
\(983\) −36.7510 11.9411i −1.17217 0.380862i −0.342720 0.939438i \(-0.611348\pi\)
−0.829454 + 0.558575i \(0.811348\pi\)
\(984\) 0 0
\(985\) 11.5030 + 19.4923i 0.366516 + 0.621077i
\(986\) 0 0
\(987\) 4.70213 3.41630i 0.149670 0.108742i
\(988\) 0 0
\(989\) −11.4830 + 15.8049i −0.365137 + 0.502568i
\(990\) 0 0
\(991\) −41.5262 + 30.1706i −1.31912 + 0.958400i −0.319181 + 0.947694i \(0.603408\pi\)
−0.999943 + 0.0107060i \(0.996592\pi\)
\(992\) 0 0
\(993\) 33.2991i 1.05672i
\(994\) 0 0
\(995\) 37.5862 8.36441i 1.19156 0.265170i
\(996\) 0 0
\(997\) 6.00849 + 18.4922i 0.190291 + 0.585655i 0.999999 0.00117756i \(-0.000374828\pi\)
−0.809709 + 0.586832i \(0.800375\pi\)
\(998\) 0 0
\(999\) −9.04872 −0.286289
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.be.a.209.4 112
4.3 odd 2 200.2.o.a.109.8 112
8.3 odd 2 200.2.o.a.109.11 yes 112
8.5 even 2 inner 800.2.be.a.209.25 112
20.3 even 4 1000.2.t.b.701.44 224
20.7 even 4 1000.2.t.b.701.13 224
20.19 odd 2 1000.2.o.a.549.21 112
25.14 even 10 inner 800.2.be.a.689.25 112
40.3 even 4 1000.2.t.b.701.48 224
40.19 odd 2 1000.2.o.a.549.18 112
40.27 even 4 1000.2.t.b.701.9 224
100.11 odd 10 1000.2.o.a.949.18 112
100.23 even 20 1000.2.t.b.301.48 224
100.27 even 20 1000.2.t.b.301.9 224
100.39 odd 10 200.2.o.a.189.11 yes 112
200.11 odd 10 1000.2.o.a.949.21 112
200.27 even 20 1000.2.t.b.301.13 224
200.123 even 20 1000.2.t.b.301.44 224
200.139 odd 10 200.2.o.a.189.8 yes 112
200.189 even 10 inner 800.2.be.a.689.4 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.o.a.109.8 112 4.3 odd 2
200.2.o.a.109.11 yes 112 8.3 odd 2
200.2.o.a.189.8 yes 112 200.139 odd 10
200.2.o.a.189.11 yes 112 100.39 odd 10
800.2.be.a.209.4 112 1.1 even 1 trivial
800.2.be.a.209.25 112 8.5 even 2 inner
800.2.be.a.689.4 112 200.189 even 10 inner
800.2.be.a.689.25 112 25.14 even 10 inner
1000.2.o.a.549.18 112 40.19 odd 2
1000.2.o.a.549.21 112 20.19 odd 2
1000.2.o.a.949.18 112 100.11 odd 10
1000.2.o.a.949.21 112 200.11 odd 10
1000.2.t.b.301.9 224 100.27 even 20
1000.2.t.b.301.13 224 200.27 even 20
1000.2.t.b.301.44 224 200.123 even 20
1000.2.t.b.301.48 224 100.23 even 20
1000.2.t.b.701.9 224 40.27 even 4
1000.2.t.b.701.13 224 20.7 even 4
1000.2.t.b.701.44 224 20.3 even 4
1000.2.t.b.701.48 224 40.3 even 4