Properties

Label 800.2.be.a.209.10
Level $800$
Weight $2$
Character 800.209
Analytic conductor $6.388$
Analytic rank $0$
Dimension $112$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [800,2,Mod(209,800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("800.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(800, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.be (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(28\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 209.10
Character \(\chi\) \(=\) 800.209
Dual form 800.2.be.a.689.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.327557 - 1.00812i) q^{3} +(1.12940 - 1.92988i) q^{5} -3.62100i q^{7} +(1.51804 - 1.10292i) q^{9} +(0.116625 - 0.160521i) q^{11} +(-1.57920 + 1.14736i) q^{13} +(-2.31550 - 0.506422i) q^{15} +(5.99191 + 1.94689i) q^{17} +(-3.31697 - 1.07775i) q^{19} +(-3.65040 + 1.18609i) q^{21} +(0.186374 - 0.256522i) q^{23} +(-2.44891 - 4.35923i) q^{25} +(-4.18179 - 3.03825i) q^{27} +(-1.98323 + 0.644390i) q^{29} +(-2.40398 + 7.39869i) q^{31} +(-0.200025 - 0.0649921i) q^{33} +(-6.98811 - 4.08956i) q^{35} +(-3.14753 + 2.28682i) q^{37} +(1.67395 + 1.21620i) q^{39} +(-2.48445 + 1.80506i) q^{41} +10.3631 q^{43} +(-0.414034 - 4.17529i) q^{45} +(7.86154 - 2.55437i) q^{47} -6.11166 q^{49} -6.67827i q^{51} +(-4.48172 - 13.7933i) q^{53} +(-0.178070 - 0.406365i) q^{55} +3.69692i q^{57} +(0.165441 + 0.227710i) q^{59} +(-1.86928 + 2.57285i) q^{61} +(-3.99368 - 5.49683i) q^{63} +(0.430715 + 4.34351i) q^{65} +(0.0384025 - 0.118191i) q^{67} +(-0.319653 - 0.103862i) q^{69} +(1.42604 + 4.38889i) q^{71} +(7.51775 - 10.3473i) q^{73} +(-3.59246 + 3.89668i) q^{75} +(-0.581246 - 0.422300i) q^{77} +(-1.42060 - 4.37215i) q^{79} +(0.0463838 - 0.142755i) q^{81} +(-4.15123 + 12.7762i) q^{83} +(10.5245 - 9.36487i) q^{85} +(1.29924 + 1.78826i) q^{87} +(-13.8793 - 10.0839i) q^{89} +(4.15459 + 5.71830i) q^{91} +8.24620 q^{93} +(-5.82612 + 5.18416i) q^{95} +(-2.24784 + 0.730369i) q^{97} -0.372306i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q - 30 q^{9} + 2 q^{15} - 10 q^{17} + 10 q^{23} - 6 q^{25} + 18 q^{31} - 10 q^{33} + 10 q^{39} - 10 q^{41} + 10 q^{47} - 80 q^{49} + 34 q^{55} - 60 q^{63} + 40 q^{65} - 22 q^{71} - 10 q^{73} - 14 q^{79}+ \cdots - 50 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.327557 1.00812i −0.189115 0.582037i 0.810880 0.585213i \(-0.198989\pi\)
−0.999995 + 0.00317571i \(0.998989\pi\)
\(4\) 0 0
\(5\) 1.12940 1.92988i 0.505084 0.863070i
\(6\) 0 0
\(7\) 3.62100i 1.36861i −0.729196 0.684305i \(-0.760106\pi\)
0.729196 0.684305i \(-0.239894\pi\)
\(8\) 0 0
\(9\) 1.51804 1.10292i 0.506014 0.367641i
\(10\) 0 0
\(11\) 0.116625 0.160521i 0.0351638 0.0483988i −0.791073 0.611722i \(-0.790477\pi\)
0.826237 + 0.563323i \(0.190477\pi\)
\(12\) 0 0
\(13\) −1.57920 + 1.14736i −0.437992 + 0.318220i −0.784837 0.619703i \(-0.787253\pi\)
0.346845 + 0.937923i \(0.387253\pi\)
\(14\) 0 0
\(15\) −2.31550 0.506422i −0.597858 0.130758i
\(16\) 0 0
\(17\) 5.99191 + 1.94689i 1.45325 + 0.472190i 0.926001 0.377521i \(-0.123223\pi\)
0.527249 + 0.849711i \(0.323223\pi\)
\(18\) 0 0
\(19\) −3.31697 1.07775i −0.760965 0.247253i −0.0972725 0.995258i \(-0.531012\pi\)
−0.663693 + 0.748005i \(0.731012\pi\)
\(20\) 0 0
\(21\) −3.65040 + 1.18609i −0.796582 + 0.258825i
\(22\) 0 0
\(23\) 0.186374 0.256522i 0.0388618 0.0534886i −0.789144 0.614208i \(-0.789475\pi\)
0.828006 + 0.560720i \(0.189475\pi\)
\(24\) 0 0
\(25\) −2.44891 4.35923i −0.489781 0.871845i
\(26\) 0 0
\(27\) −4.18179 3.03825i −0.804786 0.584711i
\(28\) 0 0
\(29\) −1.98323 + 0.644390i −0.368277 + 0.119660i −0.487308 0.873230i \(-0.662021\pi\)
0.119031 + 0.992890i \(0.462021\pi\)
\(30\) 0 0
\(31\) −2.40398 + 7.39869i −0.431768 + 1.32884i 0.464595 + 0.885523i \(0.346200\pi\)
−0.896363 + 0.443321i \(0.853800\pi\)
\(32\) 0 0
\(33\) −0.200025 0.0649921i −0.0348199 0.0113137i
\(34\) 0 0
\(35\) −6.98811 4.08956i −1.18121 0.691262i
\(36\) 0 0
\(37\) −3.14753 + 2.28682i −0.517451 + 0.375950i −0.815643 0.578556i \(-0.803617\pi\)
0.298192 + 0.954506i \(0.403617\pi\)
\(38\) 0 0
\(39\) 1.67395 + 1.21620i 0.268047 + 0.194747i
\(40\) 0 0
\(41\) −2.48445 + 1.80506i −0.388007 + 0.281903i −0.764638 0.644460i \(-0.777082\pi\)
0.376632 + 0.926363i \(0.377082\pi\)
\(42\) 0 0
\(43\) 10.3631 1.58036 0.790179 0.612877i \(-0.209988\pi\)
0.790179 + 0.612877i \(0.209988\pi\)
\(44\) 0 0
\(45\) −0.414034 4.17529i −0.0617205 0.622415i
\(46\) 0 0
\(47\) 7.86154 2.55437i 1.14672 0.372593i 0.326816 0.945088i \(-0.394024\pi\)
0.819908 + 0.572495i \(0.194024\pi\)
\(48\) 0 0
\(49\) −6.11166 −0.873094
\(50\) 0 0
\(51\) 6.67827i 0.935145i
\(52\) 0 0
\(53\) −4.48172 13.7933i −0.615612 1.89466i −0.391917 0.920001i \(-0.628188\pi\)
−0.223695 0.974659i \(-0.571812\pi\)
\(54\) 0 0
\(55\) −0.178070 0.406365i −0.0240109 0.0547943i
\(56\) 0 0
\(57\) 3.69692i 0.489670i
\(58\) 0 0
\(59\) 0.165441 + 0.227710i 0.0215386 + 0.0296454i 0.819651 0.572864i \(-0.194168\pi\)
−0.798112 + 0.602509i \(0.794168\pi\)
\(60\) 0 0
\(61\) −1.86928 + 2.57285i −0.239337 + 0.329419i −0.911741 0.410765i \(-0.865262\pi\)
0.672404 + 0.740184i \(0.265262\pi\)
\(62\) 0 0
\(63\) −3.99368 5.49683i −0.503157 0.692536i
\(64\) 0 0
\(65\) 0.430715 + 4.34351i 0.0534236 + 0.538746i
\(66\) 0 0
\(67\) 0.0384025 0.118191i 0.00469161 0.0144393i −0.948683 0.316228i \(-0.897584\pi\)
0.953375 + 0.301788i \(0.0975836\pi\)
\(68\) 0 0
\(69\) −0.319653 0.103862i −0.0384817 0.0125035i
\(70\) 0 0
\(71\) 1.42604 + 4.38889i 0.169239 + 0.520866i 0.999324 0.0367726i \(-0.0117077\pi\)
−0.830084 + 0.557638i \(0.811708\pi\)
\(72\) 0 0
\(73\) 7.51775 10.3473i 0.879886 1.21106i −0.0965664 0.995327i \(-0.530786\pi\)
0.976452 0.215733i \(-0.0692140\pi\)
\(74\) 0 0
\(75\) −3.59246 + 3.89668i −0.414821 + 0.449950i
\(76\) 0 0
\(77\) −0.581246 0.422300i −0.0662391 0.0481255i
\(78\) 0 0
\(79\) −1.42060 4.37215i −0.159830 0.491906i 0.838788 0.544458i \(-0.183265\pi\)
−0.998618 + 0.0525519i \(0.983265\pi\)
\(80\) 0 0
\(81\) 0.0463838 0.142755i 0.00515376 0.0158616i
\(82\) 0 0
\(83\) −4.15123 + 12.7762i −0.455657 + 1.40237i 0.414705 + 0.909956i \(0.363885\pi\)
−0.870362 + 0.492412i \(0.836115\pi\)
\(84\) 0 0
\(85\) 10.5245 9.36487i 1.14155 1.01576i
\(86\) 0 0
\(87\) 1.29924 + 1.78826i 0.139294 + 0.191721i
\(88\) 0 0
\(89\) −13.8793 10.0839i −1.47121 1.06889i −0.980262 0.197702i \(-0.936652\pi\)
−0.490943 0.871192i \(-0.663348\pi\)
\(90\) 0 0
\(91\) 4.15459 + 5.71830i 0.435519 + 0.599440i
\(92\) 0 0
\(93\) 8.24620 0.855091
\(94\) 0 0
\(95\) −5.82612 + 5.18416i −0.597748 + 0.531884i
\(96\) 0 0
\(97\) −2.24784 + 0.730369i −0.228234 + 0.0741577i −0.420901 0.907106i \(-0.638286\pi\)
0.192667 + 0.981264i \(0.438286\pi\)
\(98\) 0 0
\(99\) 0.372306i 0.0374181i
\(100\) 0 0
\(101\) 6.80661i 0.677283i 0.940916 + 0.338641i \(0.109967\pi\)
−0.940916 + 0.338641i \(0.890033\pi\)
\(102\) 0 0
\(103\) 13.8382 4.49631i 1.36352 0.443034i 0.466303 0.884625i \(-0.345586\pi\)
0.897217 + 0.441591i \(0.145586\pi\)
\(104\) 0 0
\(105\) −1.83376 + 8.38441i −0.178956 + 0.818235i
\(106\) 0 0
\(107\) −10.8877 −1.05255 −0.526277 0.850313i \(-0.676413\pi\)
−0.526277 + 0.850313i \(0.676413\pi\)
\(108\) 0 0
\(109\) 8.30694 + 11.4335i 0.795661 + 1.09513i 0.993380 + 0.114874i \(0.0366466\pi\)
−0.197719 + 0.980259i \(0.563353\pi\)
\(110\) 0 0
\(111\) 3.33638 + 2.42402i 0.316675 + 0.230078i
\(112\) 0 0
\(113\) 3.47815 + 4.78726i 0.327197 + 0.450348i 0.940647 0.339385i \(-0.110219\pi\)
−0.613451 + 0.789733i \(0.710219\pi\)
\(114\) 0 0
\(115\) −0.284567 0.649398i −0.0265360 0.0605567i
\(116\) 0 0
\(117\) −1.13185 + 3.48348i −0.104640 + 0.322048i
\(118\) 0 0
\(119\) 7.04969 21.6967i 0.646244 1.98893i
\(120\) 0 0
\(121\) 3.38702 + 10.4242i 0.307911 + 0.947653i
\(122\) 0 0
\(123\) 2.63352 + 1.91336i 0.237456 + 0.172522i
\(124\) 0 0
\(125\) −11.1786 0.197211i −0.999844 0.0176391i
\(126\) 0 0
\(127\) −5.72789 + 7.88376i −0.508268 + 0.699571i −0.983626 0.180222i \(-0.942318\pi\)
0.475358 + 0.879792i \(0.342318\pi\)
\(128\) 0 0
\(129\) −3.39451 10.4472i −0.298870 0.919827i
\(130\) 0 0
\(131\) 8.00383 + 2.60060i 0.699298 + 0.227216i 0.637025 0.770844i \(-0.280165\pi\)
0.0622732 + 0.998059i \(0.480165\pi\)
\(132\) 0 0
\(133\) −3.90253 + 12.0108i −0.338393 + 1.04147i
\(134\) 0 0
\(135\) −10.5864 + 4.63897i −0.911132 + 0.399259i
\(136\) 0 0
\(137\) 1.73426 + 2.38700i 0.148168 + 0.203935i 0.876649 0.481130i \(-0.159774\pi\)
−0.728482 + 0.685065i \(0.759774\pi\)
\(138\) 0 0
\(139\) 7.62813 10.4992i 0.647010 0.890532i −0.351955 0.936017i \(-0.614483\pi\)
0.998965 + 0.0454844i \(0.0144831\pi\)
\(140\) 0 0
\(141\) −5.15021 7.08866i −0.433726 0.596973i
\(142\) 0 0
\(143\) 0.387305i 0.0323881i
\(144\) 0 0
\(145\) −0.996263 + 4.55518i −0.0827352 + 0.378287i
\(146\) 0 0
\(147\) 2.00192 + 6.16127i 0.165115 + 0.508173i
\(148\) 0 0
\(149\) 9.47104i 0.775898i −0.921681 0.387949i \(-0.873184\pi\)
0.921681 0.387949i \(-0.126816\pi\)
\(150\) 0 0
\(151\) 8.83791 0.719219 0.359610 0.933103i \(-0.382910\pi\)
0.359610 + 0.933103i \(0.382910\pi\)
\(152\) 0 0
\(153\) 11.2432 3.65315i 0.908962 0.295340i
\(154\) 0 0
\(155\) 11.5636 + 12.9955i 0.928808 + 1.04382i
\(156\) 0 0
\(157\) 22.6986 1.81154 0.905772 0.423766i \(-0.139292\pi\)
0.905772 + 0.423766i \(0.139292\pi\)
\(158\) 0 0
\(159\) −12.4373 + 9.03622i −0.986341 + 0.716619i
\(160\) 0 0
\(161\) −0.928868 0.674862i −0.0732051 0.0531866i
\(162\) 0 0
\(163\) 9.27063 6.73551i 0.726132 0.527566i −0.162206 0.986757i \(-0.551861\pi\)
0.888337 + 0.459191i \(0.151861\pi\)
\(164\) 0 0
\(165\) −0.351336 + 0.312623i −0.0273515 + 0.0243377i
\(166\) 0 0
\(167\) 18.4583 + 5.99746i 1.42835 + 0.464098i 0.918243 0.396016i \(-0.129608\pi\)
0.510102 + 0.860114i \(0.329608\pi\)
\(168\) 0 0
\(169\) −2.83977 + 8.73991i −0.218444 + 0.672301i
\(170\) 0 0
\(171\) −6.22398 + 2.02229i −0.475959 + 0.154649i
\(172\) 0 0
\(173\) 10.6269 + 7.72090i 0.807949 + 0.587009i 0.913235 0.407433i \(-0.133576\pi\)
−0.105286 + 0.994442i \(0.533576\pi\)
\(174\) 0 0
\(175\) −15.7848 + 8.86749i −1.19322 + 0.670320i
\(176\) 0 0
\(177\) 0.175367 0.241373i 0.0131814 0.0181427i
\(178\) 0 0
\(179\) 14.4002 4.67892i 1.07632 0.349719i 0.283376 0.959009i \(-0.408545\pi\)
0.792948 + 0.609290i \(0.208545\pi\)
\(180\) 0 0
\(181\) 7.53329 + 2.44771i 0.559945 + 0.181937i 0.575296 0.817945i \(-0.304887\pi\)
−0.0153515 + 0.999882i \(0.504887\pi\)
\(182\) 0 0
\(183\) 3.20603 + 1.04170i 0.236997 + 0.0770049i
\(184\) 0 0
\(185\) 0.858464 + 8.65711i 0.0631155 + 0.636483i
\(186\) 0 0
\(187\) 1.01132 0.734769i 0.0739552 0.0537316i
\(188\) 0 0
\(189\) −11.0015 + 15.1423i −0.800242 + 1.10144i
\(190\) 0 0
\(191\) −15.4290 + 11.2098i −1.11640 + 0.811115i −0.983660 0.180035i \(-0.942379\pi\)
−0.132744 + 0.991150i \(0.542379\pi\)
\(192\) 0 0
\(193\) 21.5132i 1.54856i −0.632846 0.774278i \(-0.718113\pi\)
0.632846 0.774278i \(-0.281887\pi\)
\(194\) 0 0
\(195\) 4.23768 1.85696i 0.303467 0.132980i
\(196\) 0 0
\(197\) 1.76320 + 5.42658i 0.125623 + 0.386628i 0.994014 0.109252i \(-0.0348456\pi\)
−0.868391 + 0.495880i \(0.834846\pi\)
\(198\) 0 0
\(199\) −9.81700 −0.695909 −0.347954 0.937512i \(-0.613124\pi\)
−0.347954 + 0.937512i \(0.613124\pi\)
\(200\) 0 0
\(201\) −0.131729 −0.00929146
\(202\) 0 0
\(203\) 2.33334 + 7.18128i 0.163768 + 0.504027i
\(204\) 0 0
\(205\) 0.677615 + 6.83335i 0.0473267 + 0.477262i
\(206\) 0 0
\(207\) 0.594968i 0.0413532i
\(208\) 0 0
\(209\) −0.559843 + 0.406750i −0.0387252 + 0.0281355i
\(210\) 0 0
\(211\) −5.52862 + 7.60949i −0.380606 + 0.523859i −0.955745 0.294197i \(-0.904948\pi\)
0.575139 + 0.818056i \(0.304948\pi\)
\(212\) 0 0
\(213\) 3.95741 2.87523i 0.271157 0.197007i
\(214\) 0 0
\(215\) 11.7041 19.9996i 0.798212 1.36396i
\(216\) 0 0
\(217\) 26.7907 + 8.70482i 1.81867 + 0.590922i
\(218\) 0 0
\(219\) −12.8938 4.18945i −0.871282 0.283097i
\(220\) 0 0
\(221\) −11.6962 + 3.80033i −0.786772 + 0.255638i
\(222\) 0 0
\(223\) −3.34947 + 4.61015i −0.224297 + 0.308719i −0.906303 0.422628i \(-0.861108\pi\)
0.682006 + 0.731347i \(0.261108\pi\)
\(224\) 0 0
\(225\) −8.52543 3.91654i −0.568362 0.261103i
\(226\) 0 0
\(227\) 8.52074 + 6.19068i 0.565541 + 0.410890i 0.833483 0.552545i \(-0.186343\pi\)
−0.267942 + 0.963435i \(0.586343\pi\)
\(228\) 0 0
\(229\) 19.9468 6.48109i 1.31812 0.428283i 0.436270 0.899816i \(-0.356299\pi\)
0.881849 + 0.471533i \(0.156299\pi\)
\(230\) 0 0
\(231\) −0.235337 + 0.724292i −0.0154840 + 0.0476549i
\(232\) 0 0
\(233\) −9.63578 3.13085i −0.631261 0.205109i −0.0241273 0.999709i \(-0.507681\pi\)
−0.607134 + 0.794600i \(0.707681\pi\)
\(234\) 0 0
\(235\) 3.94920 18.0568i 0.257617 1.17789i
\(236\) 0 0
\(237\) −3.94232 + 2.86426i −0.256081 + 0.186054i
\(238\) 0 0
\(239\) −17.7260 12.8787i −1.14660 0.833054i −0.158575 0.987347i \(-0.550690\pi\)
−0.988025 + 0.154293i \(0.950690\pi\)
\(240\) 0 0
\(241\) −6.30258 + 4.57909i −0.405985 + 0.294965i −0.771974 0.635654i \(-0.780731\pi\)
0.365989 + 0.930619i \(0.380731\pi\)
\(242\) 0 0
\(243\) −15.6660 −1.00498
\(244\) 0 0
\(245\) −6.90251 + 11.7948i −0.440985 + 0.753542i
\(246\) 0 0
\(247\) 6.47474 2.10377i 0.411978 0.133860i
\(248\) 0 0
\(249\) 14.2397 0.902402
\(250\) 0 0
\(251\) 19.5025i 1.23099i −0.788142 0.615493i \(-0.788957\pi\)
0.788142 0.615493i \(-0.211043\pi\)
\(252\) 0 0
\(253\) −0.0194412 0.0598339i −0.00122226 0.00376173i
\(254\) 0 0
\(255\) −12.8883 7.54244i −0.807096 0.472326i
\(256\) 0 0
\(257\) 11.5160i 0.718350i −0.933270 0.359175i \(-0.883058\pi\)
0.933270 0.359175i \(-0.116942\pi\)
\(258\) 0 0
\(259\) 8.28057 + 11.3972i 0.514529 + 0.708189i
\(260\) 0 0
\(261\) −2.29991 + 3.16556i −0.142361 + 0.195943i
\(262\) 0 0
\(263\) −9.86176 13.5735i −0.608102 0.836980i 0.388318 0.921526i \(-0.373056\pi\)
−0.996420 + 0.0845451i \(0.973056\pi\)
\(264\) 0 0
\(265\) −31.6812 6.92899i −1.94616 0.425645i
\(266\) 0 0
\(267\) −5.61951 + 17.2951i −0.343908 + 1.05844i
\(268\) 0 0
\(269\) 2.68291 + 0.871732i 0.163580 + 0.0531504i 0.389662 0.920958i \(-0.372592\pi\)
−0.226082 + 0.974108i \(0.572592\pi\)
\(270\) 0 0
\(271\) 3.43218 + 10.5632i 0.208490 + 0.641667i 0.999552 + 0.0299305i \(0.00952860\pi\)
−0.791062 + 0.611736i \(0.790471\pi\)
\(272\) 0 0
\(273\) 4.40385 6.06139i 0.266533 0.366852i
\(274\) 0 0
\(275\) −0.985350 0.115295i −0.0594188 0.00695256i
\(276\) 0 0
\(277\) 0.0961570 + 0.0698621i 0.00577751 + 0.00419761i 0.590670 0.806913i \(-0.298863\pi\)
−0.584893 + 0.811111i \(0.698863\pi\)
\(278\) 0 0
\(279\) 4.51084 + 13.8829i 0.270057 + 0.831150i
\(280\) 0 0
\(281\) −5.41333 + 16.6605i −0.322932 + 0.993882i 0.649433 + 0.760418i \(0.275006\pi\)
−0.972365 + 0.233464i \(0.924994\pi\)
\(282\) 0 0
\(283\) 0.274023 0.843357i 0.0162890 0.0501324i −0.942582 0.333976i \(-0.891610\pi\)
0.958871 + 0.283843i \(0.0916096\pi\)
\(284\) 0 0
\(285\) 7.13464 + 4.17531i 0.422619 + 0.247324i
\(286\) 0 0
\(287\) 6.53613 + 8.99622i 0.385816 + 0.531030i
\(288\) 0 0
\(289\) 18.3593 + 13.3388i 1.07996 + 0.784635i
\(290\) 0 0
\(291\) 1.47260 + 2.02685i 0.0863251 + 0.118816i
\(292\) 0 0
\(293\) −14.7850 −0.863751 −0.431875 0.901933i \(-0.642148\pi\)
−0.431875 + 0.901933i \(0.642148\pi\)
\(294\) 0 0
\(295\) 0.626304 0.0621061i 0.0364648 0.00361596i
\(296\) 0 0
\(297\) −0.975404 + 0.316928i −0.0565987 + 0.0183900i
\(298\) 0 0
\(299\) 0.618939i 0.0357942i
\(300\) 0 0
\(301\) 37.5248i 2.16289i
\(302\) 0 0
\(303\) 6.86186 2.22955i 0.394204 0.128085i
\(304\) 0 0
\(305\) 2.85413 + 6.51328i 0.163427 + 0.372949i
\(306\) 0 0
\(307\) 9.60700 0.548300 0.274150 0.961687i \(-0.411603\pi\)
0.274150 + 0.961687i \(0.411603\pi\)
\(308\) 0 0
\(309\) −9.06562 12.4778i −0.515725 0.709835i
\(310\) 0 0
\(311\) 5.67985 + 4.12665i 0.322075 + 0.234001i 0.737060 0.675827i \(-0.236213\pi\)
−0.414986 + 0.909828i \(0.636213\pi\)
\(312\) 0 0
\(313\) 10.9572 + 15.0813i 0.619338 + 0.852445i 0.997305 0.0733737i \(-0.0233766\pi\)
−0.377967 + 0.925819i \(0.623377\pi\)
\(314\) 0 0
\(315\) −15.1187 + 1.49922i −0.851844 + 0.0844713i
\(316\) 0 0
\(317\) 2.03599 6.26613i 0.114353 0.351941i −0.877459 0.479652i \(-0.840763\pi\)
0.991811 + 0.127711i \(0.0407630\pi\)
\(318\) 0 0
\(319\) −0.127856 + 0.393502i −0.00715858 + 0.0220319i
\(320\) 0 0
\(321\) 3.56635 + 10.9761i 0.199054 + 0.612626i
\(322\) 0 0
\(323\) −17.7767 12.9155i −0.989123 0.718640i
\(324\) 0 0
\(325\) 8.86891 + 4.07433i 0.491959 + 0.226003i
\(326\) 0 0
\(327\) 8.80535 12.1195i 0.486937 0.670211i
\(328\) 0 0
\(329\) −9.24938 28.4667i −0.509935 1.56942i
\(330\) 0 0
\(331\) 11.4237 + 3.71177i 0.627902 + 0.204018i 0.605645 0.795735i \(-0.292915\pi\)
0.0222563 + 0.999752i \(0.492915\pi\)
\(332\) 0 0
\(333\) −2.25591 + 6.94297i −0.123623 + 0.380472i
\(334\) 0 0
\(335\) −0.184722 0.207597i −0.0100925 0.0113422i
\(336\) 0 0
\(337\) −0.639745 0.880533i −0.0348491 0.0479657i 0.791237 0.611510i \(-0.209437\pi\)
−0.826086 + 0.563544i \(0.809437\pi\)
\(338\) 0 0
\(339\) 3.68683 5.07449i 0.200241 0.275608i
\(340\) 0 0
\(341\) 0.907279 + 1.24876i 0.0491319 + 0.0676243i
\(342\) 0 0
\(343\) 3.21669i 0.173685i
\(344\) 0 0
\(345\) −0.561458 + 0.499592i −0.0302279 + 0.0268972i
\(346\) 0 0
\(347\) −2.73396 8.41426i −0.146767 0.451701i 0.850467 0.526028i \(-0.176319\pi\)
−0.997234 + 0.0743267i \(0.976319\pi\)
\(348\) 0 0
\(349\) 25.2958i 1.35406i −0.735957 0.677028i \(-0.763268\pi\)
0.735957 0.677028i \(-0.236732\pi\)
\(350\) 0 0
\(351\) 10.0899 0.538557
\(352\) 0 0
\(353\) −24.2902 + 7.89236i −1.29284 + 0.420068i −0.873083 0.487571i \(-0.837883\pi\)
−0.419752 + 0.907639i \(0.637883\pi\)
\(354\) 0 0
\(355\) 10.0806 + 2.20473i 0.535024 + 0.117015i
\(356\) 0 0
\(357\) −24.1820 −1.27985
\(358\) 0 0
\(359\) 6.90798 5.01894i 0.364589 0.264890i −0.390375 0.920656i \(-0.627654\pi\)
0.754964 + 0.655767i \(0.227654\pi\)
\(360\) 0 0
\(361\) −5.53057 4.01819i −0.291082 0.211484i
\(362\) 0 0
\(363\) 9.39936 6.82904i 0.493339 0.358431i
\(364\) 0 0
\(365\) −11.4785 26.1946i −0.600813 1.37109i
\(366\) 0 0
\(367\) −6.47354 2.10338i −0.337916 0.109796i 0.135144 0.990826i \(-0.456850\pi\)
−0.473059 + 0.881031i \(0.656850\pi\)
\(368\) 0 0
\(369\) −1.78066 + 5.48032i −0.0926977 + 0.285294i
\(370\) 0 0
\(371\) −49.9457 + 16.2283i −2.59305 + 0.842533i
\(372\) 0 0
\(373\) 13.3531 + 9.70157i 0.691395 + 0.502328i 0.877119 0.480274i \(-0.159463\pi\)
−0.185723 + 0.982602i \(0.559463\pi\)
\(374\) 0 0
\(375\) 3.46282 + 11.3339i 0.178819 + 0.585283i
\(376\) 0 0
\(377\) 2.39258 3.29310i 0.123224 0.169603i
\(378\) 0 0
\(379\) −23.7494 + 7.71663i −1.21992 + 0.396377i −0.847054 0.531507i \(-0.821626\pi\)
−0.372869 + 0.927884i \(0.621626\pi\)
\(380\) 0 0
\(381\) 9.82397 + 3.19200i 0.503297 + 0.163531i
\(382\) 0 0
\(383\) 3.39327 + 1.10254i 0.173388 + 0.0563371i 0.394424 0.918928i \(-0.370944\pi\)
−0.221037 + 0.975266i \(0.570944\pi\)
\(384\) 0 0
\(385\) −1.47145 + 0.644791i −0.0749920 + 0.0328616i
\(386\) 0 0
\(387\) 15.7316 11.4297i 0.799683 0.581004i
\(388\) 0 0
\(389\) −1.01897 + 1.40249i −0.0516638 + 0.0711092i −0.834067 0.551663i \(-0.813994\pi\)
0.782403 + 0.622772i \(0.213994\pi\)
\(390\) 0 0
\(391\) 1.61616 1.17421i 0.0817327 0.0593823i
\(392\) 0 0
\(393\) 8.92065i 0.449987i
\(394\) 0 0
\(395\) −10.0422 2.19632i −0.505277 0.110509i
\(396\) 0 0
\(397\) −0.607136 1.86857i −0.0304713 0.0937809i 0.934664 0.355532i \(-0.115700\pi\)
−0.965136 + 0.261751i \(0.915700\pi\)
\(398\) 0 0
\(399\) 13.3866 0.670167
\(400\) 0 0
\(401\) 26.9143 1.34404 0.672019 0.740534i \(-0.265427\pi\)
0.672019 + 0.740534i \(0.265427\pi\)
\(402\) 0 0
\(403\) −4.69258 14.4423i −0.233754 0.719421i
\(404\) 0 0
\(405\) −0.223114 0.250743i −0.0110866 0.0124595i
\(406\) 0 0
\(407\) 0.771944i 0.0382639i
\(408\) 0 0
\(409\) 20.3675 14.7978i 1.00711 0.731705i 0.0435059 0.999053i \(-0.486147\pi\)
0.963600 + 0.267348i \(0.0861473\pi\)
\(410\) 0 0
\(411\) 1.83831 2.53022i 0.0906771 0.124806i
\(412\) 0 0
\(413\) 0.824540 0.599063i 0.0405729 0.0294780i
\(414\) 0 0
\(415\) 19.9681 + 22.4408i 0.980198 + 1.10158i
\(416\) 0 0
\(417\) −13.0831 4.25096i −0.640683 0.208170i
\(418\) 0 0
\(419\) 23.6210 + 7.67492i 1.15396 + 0.374944i 0.822634 0.568572i \(-0.192504\pi\)
0.331326 + 0.943516i \(0.392504\pi\)
\(420\) 0 0
\(421\) −9.29784 + 3.02105i −0.453149 + 0.147237i −0.526694 0.850055i \(-0.676569\pi\)
0.0735452 + 0.997292i \(0.476569\pi\)
\(422\) 0 0
\(423\) 9.11688 12.5483i 0.443278 0.610120i
\(424\) 0 0
\(425\) −6.18669 30.8878i −0.300098 1.49828i
\(426\) 0 0
\(427\) 9.31629 + 6.76868i 0.450847 + 0.327559i
\(428\) 0 0
\(429\) 0.390450 0.126865i 0.0188511 0.00612509i
\(430\) 0 0
\(431\) 3.73202 11.4860i 0.179765 0.553260i −0.820054 0.572286i \(-0.806057\pi\)
0.999819 + 0.0190265i \(0.00605667\pi\)
\(432\) 0 0
\(433\) −0.593995 0.193001i −0.0285456 0.00927502i 0.294709 0.955587i \(-0.404777\pi\)
−0.323255 + 0.946312i \(0.604777\pi\)
\(434\) 0 0
\(435\) 4.91849 0.487732i 0.235824 0.0233850i
\(436\) 0 0
\(437\) −0.894666 + 0.650013i −0.0427977 + 0.0310943i
\(438\) 0 0
\(439\) 0.528473 + 0.383958i 0.0252226 + 0.0183253i 0.600325 0.799756i \(-0.295038\pi\)
−0.575103 + 0.818081i \(0.695038\pi\)
\(440\) 0 0
\(441\) −9.27775 + 6.74068i −0.441798 + 0.320985i
\(442\) 0 0
\(443\) −26.8618 −1.27624 −0.638121 0.769936i \(-0.720288\pi\)
−0.638121 + 0.769936i \(0.720288\pi\)
\(444\) 0 0
\(445\) −35.1361 + 15.3967i −1.66561 + 0.729873i
\(446\) 0 0
\(447\) −9.54793 + 3.10231i −0.451601 + 0.146734i
\(448\) 0 0
\(449\) −27.5980 −1.30243 −0.651214 0.758894i \(-0.725740\pi\)
−0.651214 + 0.758894i \(0.725740\pi\)
\(450\) 0 0
\(451\) 0.609322i 0.0286918i
\(452\) 0 0
\(453\) −2.89492 8.90966i −0.136015 0.418612i
\(454\) 0 0
\(455\) 15.7278 1.55962i 0.737333 0.0731160i
\(456\) 0 0
\(457\) 9.43766i 0.441475i 0.975333 + 0.220738i \(0.0708464\pi\)
−0.975333 + 0.220738i \(0.929154\pi\)
\(458\) 0 0
\(459\) −19.1418 26.3464i −0.893461 1.22974i
\(460\) 0 0
\(461\) 0.351432 0.483704i 0.0163678 0.0225284i −0.800755 0.598992i \(-0.795568\pi\)
0.817122 + 0.576464i \(0.195568\pi\)
\(462\) 0 0
\(463\) −3.40130 4.68149i −0.158072 0.217567i 0.722634 0.691231i \(-0.242931\pi\)
−0.880706 + 0.473664i \(0.842931\pi\)
\(464\) 0 0
\(465\) 9.31327 15.9142i 0.431893 0.738004i
\(466\) 0 0
\(467\) 1.50734 4.63913i 0.0697516 0.214673i −0.910104 0.414379i \(-0.863999\pi\)
0.979856 + 0.199706i \(0.0639987\pi\)
\(468\) 0 0
\(469\) −0.427969 0.139055i −0.0197618 0.00642098i
\(470\) 0 0
\(471\) −7.43509 22.8829i −0.342591 1.05439i
\(472\) 0 0
\(473\) 1.20860 1.66349i 0.0555713 0.0764874i
\(474\) 0 0
\(475\) 3.42480 + 17.0987i 0.157140 + 0.784544i
\(476\) 0 0
\(477\) −22.0164 15.9959i −1.00806 0.732400i
\(478\) 0 0
\(479\) 1.23698 + 3.80704i 0.0565192 + 0.173948i 0.975331 0.220748i \(-0.0708498\pi\)
−0.918812 + 0.394696i \(0.870850\pi\)
\(480\) 0 0
\(481\) 2.34680 7.22269i 0.107005 0.329327i
\(482\) 0 0
\(483\) −0.376083 + 1.15747i −0.0171124 + 0.0526665i
\(484\) 0 0
\(485\) −1.12919 + 5.16296i −0.0512739 + 0.234438i
\(486\) 0 0
\(487\) 0.896846 + 1.23440i 0.0406400 + 0.0559361i 0.828853 0.559466i \(-0.188994\pi\)
−0.788213 + 0.615402i \(0.788994\pi\)
\(488\) 0 0
\(489\) −9.82685 7.13963i −0.444386 0.322865i
\(490\) 0 0
\(491\) −19.8358 27.3017i −0.895178 1.23211i −0.971981 0.235060i \(-0.924471\pi\)
0.0768029 0.997046i \(-0.475529\pi\)
\(492\) 0 0
\(493\) −13.1379 −0.591700
\(494\) 0 0
\(495\) −0.718507 0.420482i −0.0322945 0.0188993i
\(496\) 0 0
\(497\) 15.8922 5.16368i 0.712862 0.231623i
\(498\) 0 0
\(499\) 39.2516i 1.75714i 0.477611 + 0.878571i \(0.341503\pi\)
−0.477611 + 0.878571i \(0.658497\pi\)
\(500\) 0 0
\(501\) 20.5727i 0.919118i
\(502\) 0 0
\(503\) 25.3583 8.23943i 1.13067 0.367378i 0.316841 0.948479i \(-0.397378\pi\)
0.813832 + 0.581101i \(0.197378\pi\)
\(504\) 0 0
\(505\) 13.1360 + 7.68739i 0.584543 + 0.342084i
\(506\) 0 0
\(507\) 9.74105 0.432615
\(508\) 0 0
\(509\) −11.9720 16.4780i −0.530648 0.730374i 0.456581 0.889682i \(-0.349074\pi\)
−0.987229 + 0.159308i \(0.949074\pi\)
\(510\) 0 0
\(511\) −37.4676 27.2218i −1.65747 1.20422i
\(512\) 0 0
\(513\) 10.5964 + 14.5847i 0.467843 + 0.643931i
\(514\) 0 0
\(515\) 6.95154 31.7843i 0.306321 1.40058i
\(516\) 0 0
\(517\) 0.506824 1.55984i 0.0222901 0.0686019i
\(518\) 0 0
\(519\) 4.30266 13.2422i 0.188866 0.581269i
\(520\) 0 0
\(521\) −4.34547 13.3740i −0.190379 0.585925i 0.809621 0.586953i \(-0.199673\pi\)
−0.999999 + 0.00102824i \(0.999673\pi\)
\(522\) 0 0
\(523\) 35.4414 + 25.7497i 1.54974 + 1.12595i 0.943834 + 0.330419i \(0.107190\pi\)
0.605908 + 0.795535i \(0.292810\pi\)
\(524\) 0 0
\(525\) 14.1099 + 13.0083i 0.615807 + 0.567729i
\(526\) 0 0
\(527\) −28.8089 + 39.6520i −1.25493 + 1.72727i
\(528\) 0 0
\(529\) 7.07632 + 21.7787i 0.307666 + 0.946899i
\(530\) 0 0
\(531\) 0.502294 + 0.163205i 0.0217977 + 0.00708250i
\(532\) 0 0
\(533\) 1.85241 5.70112i 0.0802366 0.246943i
\(534\) 0 0
\(535\) −12.2966 + 21.0120i −0.531628 + 0.908428i
\(536\) 0 0
\(537\) −9.43381 12.9845i −0.407099 0.560324i
\(538\) 0 0
\(539\) −0.712773 + 0.981047i −0.0307013 + 0.0422567i
\(540\) 0 0
\(541\) 24.0222 + 33.0637i 1.03279 + 1.42152i 0.902829 + 0.430000i \(0.141486\pi\)
0.129964 + 0.991519i \(0.458514\pi\)
\(542\) 0 0
\(543\) 8.39621i 0.360316i
\(544\) 0 0
\(545\) 31.4473 3.11840i 1.34705 0.133578i
\(546\) 0 0
\(547\) −9.64491 29.6840i −0.412386 1.26919i −0.914568 0.404433i \(-0.867469\pi\)
0.502181 0.864762i \(-0.332531\pi\)
\(548\) 0 0
\(549\) 5.96737i 0.254681i
\(550\) 0 0
\(551\) 7.27281 0.309832
\(552\) 0 0
\(553\) −15.8316 + 5.14399i −0.673227 + 0.218745i
\(554\) 0 0
\(555\) 8.44619 3.70113i 0.358521 0.157104i
\(556\) 0 0
\(557\) −23.4264 −0.992610 −0.496305 0.868148i \(-0.665310\pi\)
−0.496305 + 0.868148i \(0.665310\pi\)
\(558\) 0 0
\(559\) −16.3654 + 11.8902i −0.692184 + 0.502901i
\(560\) 0 0
\(561\) −1.07200 0.778854i −0.0452599 0.0328832i
\(562\) 0 0
\(563\) 19.7424 14.3437i 0.832042 0.604514i −0.0880945 0.996112i \(-0.528078\pi\)
0.920136 + 0.391598i \(0.128078\pi\)
\(564\) 0 0
\(565\) 13.1671 1.30569i 0.553944 0.0549306i
\(566\) 0 0
\(567\) −0.516915 0.167956i −0.0217084 0.00705348i
\(568\) 0 0
\(569\) −7.23960 + 22.2812i −0.303500 + 0.934076i 0.676733 + 0.736229i \(0.263395\pi\)
−0.980233 + 0.197848i \(0.936605\pi\)
\(570\) 0 0
\(571\) 22.0658 7.16961i 0.923425 0.300039i 0.191554 0.981482i \(-0.438647\pi\)
0.731871 + 0.681443i \(0.238647\pi\)
\(572\) 0 0
\(573\) 16.3547 + 11.8824i 0.683229 + 0.496395i
\(574\) 0 0
\(575\) −1.57465 0.184249i −0.0656676 0.00768372i
\(576\) 0 0
\(577\) −12.6072 + 17.3523i −0.524845 + 0.722387i −0.986334 0.164759i \(-0.947315\pi\)
0.461489 + 0.887146i \(0.347315\pi\)
\(578\) 0 0
\(579\) −21.6879 + 7.04682i −0.901318 + 0.292856i
\(580\) 0 0
\(581\) 46.2626 + 15.0316i 1.91930 + 0.623617i
\(582\) 0 0
\(583\) −2.73680 0.889239i −0.113347 0.0368285i
\(584\) 0 0
\(585\) 5.44439 + 6.11858i 0.225098 + 0.252972i
\(586\) 0 0
\(587\) −17.9454 + 13.0381i −0.740687 + 0.538141i −0.892926 0.450203i \(-0.851352\pi\)
0.152239 + 0.988344i \(0.451352\pi\)
\(588\) 0 0
\(589\) 15.9479 21.9504i 0.657121 0.904449i
\(590\) 0 0
\(591\) 4.89308 3.55503i 0.201275 0.146234i
\(592\) 0 0
\(593\) 27.6075i 1.13370i 0.823820 + 0.566852i \(0.191839\pi\)
−0.823820 + 0.566852i \(0.808161\pi\)
\(594\) 0 0
\(595\) −33.9102 38.1094i −1.39018 1.56233i
\(596\) 0 0
\(597\) 3.21563 + 9.89670i 0.131607 + 0.405045i
\(598\) 0 0
\(599\) −13.7667 −0.562492 −0.281246 0.959636i \(-0.590748\pi\)
−0.281246 + 0.959636i \(0.590748\pi\)
\(600\) 0 0
\(601\) 11.4574 0.467356 0.233678 0.972314i \(-0.424924\pi\)
0.233678 + 0.972314i \(0.424924\pi\)
\(602\) 0 0
\(603\) −0.0720585 0.221773i −0.00293445 0.00903131i
\(604\) 0 0
\(605\) 23.9428 + 5.23652i 0.973412 + 0.212895i
\(606\) 0 0
\(607\) 32.7284i 1.32841i −0.747552 0.664203i \(-0.768771\pi\)
0.747552 0.664203i \(-0.231229\pi\)
\(608\) 0 0
\(609\) 6.47528 4.70456i 0.262391 0.190639i
\(610\) 0 0
\(611\) −9.48419 + 13.0539i −0.383689 + 0.528103i
\(612\) 0 0
\(613\) −5.53010 + 4.01785i −0.223358 + 0.162279i −0.693837 0.720132i \(-0.744081\pi\)
0.470479 + 0.882411i \(0.344081\pi\)
\(614\) 0 0
\(615\) 6.66687 2.92143i 0.268834 0.117803i
\(616\) 0 0
\(617\) −4.31211 1.40109i −0.173599 0.0564058i 0.220928 0.975290i \(-0.429091\pi\)
−0.394527 + 0.918884i \(0.629091\pi\)
\(618\) 0 0
\(619\) 25.4717 + 8.27626i 1.02379 + 0.332651i 0.772334 0.635217i \(-0.219089\pi\)
0.251461 + 0.967868i \(0.419089\pi\)
\(620\) 0 0
\(621\) −1.55876 + 0.506471i −0.0625508 + 0.0203240i
\(622\) 0 0
\(623\) −36.5139 + 50.2571i −1.46290 + 2.01351i
\(624\) 0 0
\(625\) −13.0057 + 21.3507i −0.520229 + 0.854027i
\(626\) 0 0
\(627\) 0.593433 + 0.431154i 0.0236994 + 0.0172186i
\(628\) 0 0
\(629\) −23.3119 + 7.57449i −0.929506 + 0.302015i
\(630\) 0 0
\(631\) −4.08094 + 12.5598i −0.162460 + 0.499999i −0.998840 0.0481500i \(-0.984667\pi\)
0.836380 + 0.548149i \(0.184667\pi\)
\(632\) 0 0
\(633\) 9.48220 + 3.08095i 0.376884 + 0.122457i
\(634\) 0 0
\(635\) 8.74566 + 19.9581i 0.347061 + 0.792012i
\(636\) 0 0
\(637\) 9.65155 7.01226i 0.382408 0.277836i
\(638\) 0 0
\(639\) 7.00539 + 5.08971i 0.277129 + 0.201346i
\(640\) 0 0
\(641\) 23.3026 16.9304i 0.920399 0.668709i −0.0232242 0.999730i \(-0.507393\pi\)
0.943623 + 0.331021i \(0.107393\pi\)
\(642\) 0 0
\(643\) −43.3080 −1.70790 −0.853951 0.520353i \(-0.825800\pi\)
−0.853951 + 0.520353i \(0.825800\pi\)
\(644\) 0 0
\(645\) −23.9957 5.24810i −0.944830 0.206644i
\(646\) 0 0
\(647\) −37.6363 + 12.2288i −1.47964 + 0.480763i −0.934004 0.357263i \(-0.883710\pi\)
−0.545631 + 0.838025i \(0.683710\pi\)
\(648\) 0 0
\(649\) 0.0558468 0.00219218
\(650\) 0 0
\(651\) 29.8595i 1.17029i
\(652\) 0 0
\(653\) −8.47955 26.0974i −0.331830 1.02127i −0.968262 0.249936i \(-0.919590\pi\)
0.636432 0.771333i \(-0.280410\pi\)
\(654\) 0 0
\(655\) 14.0584 12.5093i 0.549307 0.488780i
\(656\) 0 0
\(657\) 23.9991i 0.936295i
\(658\) 0 0
\(659\) −0.823638 1.13364i −0.0320844 0.0441604i 0.792673 0.609646i \(-0.208689\pi\)
−0.824758 + 0.565486i \(0.808689\pi\)
\(660\) 0 0
\(661\) −13.3496 + 18.3742i −0.519240 + 0.714673i −0.985443 0.170005i \(-0.945622\pi\)
0.466203 + 0.884678i \(0.345622\pi\)
\(662\) 0 0
\(663\) 7.66236 + 10.5463i 0.297582 + 0.409586i
\(664\) 0 0
\(665\) 18.7719 + 21.0964i 0.727941 + 0.818083i
\(666\) 0 0
\(667\) −0.204323 + 0.628841i −0.00791141 + 0.0243488i
\(668\) 0 0
\(669\) 5.74473 + 1.86657i 0.222104 + 0.0721659i
\(670\) 0 0
\(671\) 0.194990 + 0.600117i 0.00752750 + 0.0231673i
\(672\) 0 0
\(673\) −9.83764 + 13.5404i −0.379213 + 0.521942i −0.955376 0.295393i \(-0.904549\pi\)
0.576163 + 0.817335i \(0.304549\pi\)
\(674\) 0 0
\(675\) −3.00360 + 25.6698i −0.115609 + 0.988030i
\(676\) 0 0
\(677\) 5.14888 + 3.74088i 0.197888 + 0.143774i 0.682317 0.731057i \(-0.260973\pi\)
−0.484429 + 0.874831i \(0.660973\pi\)
\(678\) 0 0
\(679\) 2.64467 + 8.13945i 0.101493 + 0.312363i
\(680\) 0 0
\(681\) 3.44990 10.6177i 0.132201 0.406872i
\(682\) 0 0
\(683\) −3.13870 + 9.65993i −0.120099 + 0.369627i −0.992976 0.118313i \(-0.962251\pi\)
0.872877 + 0.487940i \(0.162251\pi\)
\(684\) 0 0
\(685\) 6.56531 0.651035i 0.250847 0.0248748i
\(686\) 0 0
\(687\) −13.0674 17.9858i −0.498553 0.686200i
\(688\) 0 0
\(689\) 22.9034 + 16.6403i 0.872552 + 0.633946i
\(690\) 0 0
\(691\) 27.3168 + 37.5984i 1.03918 + 1.43031i 0.897826 + 0.440351i \(0.145146\pi\)
0.141355 + 0.989959i \(0.454854\pi\)
\(692\) 0 0
\(693\) −1.34812 −0.0512108
\(694\) 0 0
\(695\) −11.6471 26.5792i −0.441798 1.00821i
\(696\) 0 0
\(697\) −18.4009 + 5.97881i −0.696983 + 0.226463i
\(698\) 0 0
\(699\) 10.7395i 0.406207i
\(700\) 0 0
\(701\) 7.10253i 0.268259i 0.990964 + 0.134130i \(0.0428238\pi\)
−0.990964 + 0.134130i \(0.957176\pi\)
\(702\) 0 0
\(703\) 12.9049 4.19305i 0.486717 0.158144i
\(704\) 0 0
\(705\) −19.4970 + 1.93337i −0.734298 + 0.0728151i
\(706\) 0 0
\(707\) 24.6467 0.926936
\(708\) 0 0
\(709\) 12.5939 + 17.3341i 0.472975 + 0.650994i 0.977136 0.212615i \(-0.0681982\pi\)
−0.504161 + 0.863610i \(0.668198\pi\)
\(710\) 0 0
\(711\) −6.97868 5.07031i −0.261721 0.190151i
\(712\) 0 0
\(713\) 1.44989 + 1.99560i 0.0542988 + 0.0747359i
\(714\) 0 0
\(715\) 0.747455 + 0.437423i 0.0279532 + 0.0163587i
\(716\) 0 0
\(717\) −7.17696 + 22.0884i −0.268029 + 0.824907i
\(718\) 0 0
\(719\) −5.11431 + 15.7402i −0.190732 + 0.587012i −1.00000 0.000427596i \(-0.999864\pi\)
0.809268 + 0.587439i \(0.199864\pi\)
\(720\) 0 0
\(721\) −16.2811 50.1082i −0.606341 1.86613i
\(722\) 0 0
\(723\) 6.68073 + 4.85383i 0.248459 + 0.180516i
\(724\) 0 0
\(725\) 7.66579 + 7.06730i 0.284700 + 0.262473i
\(726\) 0 0
\(727\) 11.4199 15.7182i 0.423542 0.582955i −0.542914 0.839788i \(-0.682679\pi\)
0.966456 + 0.256833i \(0.0826791\pi\)
\(728\) 0 0
\(729\) 4.99238 + 15.3650i 0.184903 + 0.569073i
\(730\) 0 0
\(731\) 62.0947 + 20.1758i 2.29665 + 0.746228i
\(732\) 0 0
\(733\) 1.75635 5.40548i 0.0648722 0.199656i −0.913367 0.407138i \(-0.866527\pi\)
0.978239 + 0.207482i \(0.0665268\pi\)
\(734\) 0 0
\(735\) 14.1515 + 3.09508i 0.521986 + 0.114164i
\(736\) 0 0
\(737\) −0.0144934 0.0199484i −0.000533869 0.000734808i
\(738\) 0 0
\(739\) −14.0693 + 19.3647i −0.517546 + 0.712341i −0.985169 0.171587i \(-0.945110\pi\)
0.467623 + 0.883928i \(0.345110\pi\)
\(740\) 0 0
\(741\) −4.24170 5.83819i −0.155823 0.214471i
\(742\) 0 0
\(743\) 23.3975i 0.858370i 0.903217 + 0.429185i \(0.141199\pi\)
−0.903217 + 0.429185i \(0.858801\pi\)
\(744\) 0 0
\(745\) −18.2780 10.6966i −0.669654 0.391893i
\(746\) 0 0
\(747\) 7.78939 + 23.9733i 0.284999 + 0.877136i
\(748\) 0 0
\(749\) 39.4244i 1.44054i
\(750\) 0 0
\(751\) −10.2670 −0.374648 −0.187324 0.982298i \(-0.559981\pi\)
−0.187324 + 0.982298i \(0.559981\pi\)
\(752\) 0 0
\(753\) −19.6608 + 6.38819i −0.716480 + 0.232798i
\(754\) 0 0
\(755\) 9.98155 17.0562i 0.363266 0.620737i
\(756\) 0 0
\(757\) 15.7129 0.571096 0.285548 0.958364i \(-0.407824\pi\)
0.285548 + 0.958364i \(0.407824\pi\)
\(758\) 0 0
\(759\) −0.0539515 + 0.0391981i −0.00195832 + 0.00142280i
\(760\) 0 0
\(761\) 14.8631 + 10.7986i 0.538786 + 0.391451i 0.823634 0.567122i \(-0.191943\pi\)
−0.284848 + 0.958573i \(0.591943\pi\)
\(762\) 0 0
\(763\) 41.4008 30.0795i 1.49881 1.08895i
\(764\) 0 0
\(765\) 5.64797 25.8240i 0.204203 0.933669i
\(766\) 0 0
\(767\) −0.522531 0.169780i −0.0188675 0.00613042i
\(768\) 0 0
\(769\) 3.93043 12.0966i 0.141735 0.436215i −0.854842 0.518889i \(-0.826346\pi\)
0.996577 + 0.0826738i \(0.0263460\pi\)
\(770\) 0 0
\(771\) −11.6095 + 3.77216i −0.418106 + 0.135851i
\(772\) 0 0
\(773\) 35.6762 + 25.9203i 1.28318 + 0.932288i 0.999644 0.0266727i \(-0.00849118\pi\)
0.283540 + 0.958960i \(0.408491\pi\)
\(774\) 0 0
\(775\) 38.1397 7.63921i 1.37002 0.274408i
\(776\) 0 0
\(777\) 8.77739 12.0810i 0.314887 0.433405i
\(778\) 0 0
\(779\) 10.1863 3.30972i 0.364961 0.118583i
\(780\) 0 0
\(781\) 0.870819 + 0.282946i 0.0311604 + 0.0101246i
\(782\) 0 0
\(783\) 10.2513 + 3.33084i 0.366351 + 0.119035i
\(784\) 0 0
\(785\) 25.6358 43.8056i 0.914981 1.56349i
\(786\) 0 0
\(787\) −3.65925 + 2.65860i −0.130438 + 0.0947689i −0.651091 0.758999i \(-0.725689\pi\)
0.520653 + 0.853768i \(0.325689\pi\)
\(788\) 0 0
\(789\) −10.4534 + 14.3879i −0.372152 + 0.512224i
\(790\) 0 0
\(791\) 17.3347 12.5944i 0.616351 0.447805i
\(792\) 0 0
\(793\) 6.20779i 0.220445i
\(794\) 0 0
\(795\) 3.39217 + 34.2080i 0.120308 + 1.21323i
\(796\) 0 0
\(797\) −3.75727 11.5637i −0.133089 0.409606i 0.862199 0.506570i \(-0.169087\pi\)
−0.995288 + 0.0969638i \(0.969087\pi\)
\(798\) 0 0
\(799\) 52.0787 1.84241
\(800\) 0 0
\(801\) −32.1912 −1.13742
\(802\) 0 0
\(803\) −0.784196 2.41351i −0.0276737 0.0851709i
\(804\) 0 0
\(805\) −2.35147 + 1.03042i −0.0828785 + 0.0363175i
\(806\) 0 0
\(807\) 2.99024i 0.105261i
\(808\) 0 0
\(809\) 5.08569 3.69497i 0.178803 0.129908i −0.494784 0.869016i \(-0.664753\pi\)
0.673587 + 0.739108i \(0.264753\pi\)
\(810\) 0 0
\(811\) −8.25457 + 11.3614i −0.289857 + 0.398954i −0.928968 0.370161i \(-0.879303\pi\)
0.639111 + 0.769115i \(0.279303\pi\)
\(812\) 0 0
\(813\) 9.52469 6.92009i 0.334045 0.242698i
\(814\) 0 0
\(815\) −2.52849 25.4983i −0.0885691 0.893168i
\(816\) 0 0
\(817\) −34.3741 11.1688i −1.20260 0.390748i
\(818\) 0 0
\(819\) 12.6137 + 4.09843i 0.440758 + 0.143211i
\(820\) 0 0
\(821\) −31.6198 + 10.2739i −1.10354 + 0.358562i −0.803464 0.595354i \(-0.797012\pi\)
−0.300075 + 0.953915i \(0.597012\pi\)
\(822\) 0 0
\(823\) −27.9854 + 38.5186i −0.975510 + 1.34267i −0.0362964 + 0.999341i \(0.511556\pi\)
−0.939214 + 0.343333i \(0.888444\pi\)
\(824\) 0 0
\(825\) 0.206528 + 1.03112i 0.00719037 + 0.0358988i
\(826\) 0 0
\(827\) −35.3159 25.6585i −1.22805 0.892233i −0.231311 0.972880i \(-0.574302\pi\)
−0.996743 + 0.0806464i \(0.974302\pi\)
\(828\) 0 0
\(829\) −14.9283 + 4.85051i −0.518483 + 0.168465i −0.556557 0.830810i \(-0.687878\pi\)
0.0380738 + 0.999275i \(0.487878\pi\)
\(830\) 0 0
\(831\) 0.0389324 0.119821i 0.00135055 0.00415656i
\(832\) 0 0
\(833\) −36.6205 11.8987i −1.26882 0.412266i
\(834\) 0 0
\(835\) 32.4212 28.8488i 1.12198 0.998355i
\(836\) 0 0
\(837\) 32.5320 23.6359i 1.12447 0.816976i
\(838\) 0 0
\(839\) 17.6519 + 12.8248i 0.609410 + 0.442762i 0.849207 0.528061i \(-0.177081\pi\)
−0.239796 + 0.970823i \(0.577081\pi\)
\(840\) 0 0
\(841\) −19.9435 + 14.4898i −0.687708 + 0.499649i
\(842\) 0 0
\(843\) 18.5689 0.639548
\(844\) 0 0
\(845\) 13.6598 + 15.3513i 0.469911 + 0.528101i
\(846\) 0 0
\(847\) 37.7460 12.2644i 1.29697 0.421410i
\(848\) 0 0
\(849\) −0.939962 −0.0322594
\(850\) 0 0
\(851\) 1.23362i 0.0422878i
\(852\) 0 0
\(853\) 2.13725 + 6.57778i 0.0731781 + 0.225219i 0.980955 0.194234i \(-0.0622220\pi\)
−0.907777 + 0.419453i \(0.862222\pi\)
\(854\) 0 0
\(855\) −3.12658 + 14.2955i −0.106927 + 0.488897i
\(856\) 0 0
\(857\) 36.4862i 1.24634i 0.782085 + 0.623172i \(0.214156\pi\)
−0.782085 + 0.623172i \(0.785844\pi\)
\(858\) 0 0
\(859\) −15.3190 21.0848i −0.522678 0.719405i 0.463315 0.886194i \(-0.346660\pi\)
−0.985993 + 0.166789i \(0.946660\pi\)
\(860\) 0 0
\(861\) 6.92829 9.53597i 0.236116 0.324985i
\(862\) 0 0
\(863\) −10.3548 14.2522i −0.352482 0.485150i 0.595553 0.803316i \(-0.296933\pi\)
−0.948035 + 0.318166i \(0.896933\pi\)
\(864\) 0 0
\(865\) 26.9025 11.7887i 0.914712 0.400828i
\(866\) 0 0
\(867\) 7.43336 22.8775i 0.252450 0.776962i
\(868\) 0 0
\(869\) −0.867499 0.281867i −0.0294279 0.00956170i
\(870\) 0 0
\(871\) 0.0749617 + 0.230708i 0.00253998 + 0.00781726i
\(872\) 0 0
\(873\) −2.60678 + 3.58793i −0.0882262 + 0.121433i
\(874\) 0 0
\(875\) −0.714101 + 40.4777i −0.0241410 + 1.36840i
\(876\) 0 0
\(877\) 40.1802 + 29.1927i 1.35679 + 0.985766i 0.998642 + 0.0521012i \(0.0165918\pi\)
0.358148 + 0.933665i \(0.383408\pi\)
\(878\) 0 0
\(879\) 4.84295 + 14.9051i 0.163349 + 0.502735i
\(880\) 0 0
\(881\) −2.73149 + 8.40666i −0.0920262 + 0.283228i −0.986467 0.163958i \(-0.947574\pi\)
0.894441 + 0.447186i \(0.147574\pi\)
\(882\) 0 0
\(883\) −7.32413 + 22.5414i −0.246477 + 0.758577i 0.748913 + 0.662668i \(0.230576\pi\)
−0.995390 + 0.0959094i \(0.969424\pi\)
\(884\) 0 0
\(885\) −0.267761 0.611045i −0.00900069 0.0205401i
\(886\) 0 0
\(887\) −2.51532 3.46203i −0.0844560 0.116244i 0.764698 0.644388i \(-0.222888\pi\)
−0.849154 + 0.528145i \(0.822888\pi\)
\(888\) 0 0
\(889\) 28.5471 + 20.7407i 0.957439 + 0.695620i
\(890\) 0 0
\(891\) −0.0175056 0.0240943i −0.000586458 0.000807191i
\(892\) 0 0
\(893\) −28.8295 −0.964742
\(894\) 0 0
\(895\) 7.23387 33.0752i 0.241802 1.10558i
\(896\) 0 0
\(897\) 0.623964 0.202738i 0.0208336 0.00676923i
\(898\) 0 0
\(899\) 16.2224i 0.541048i
\(900\) 0 0
\(901\) 91.3738i 3.04410i
\(902\) 0 0
\(903\) −37.8294 + 12.2915i −1.25888 + 0.409036i
\(904\) 0 0
\(905\) 13.2319 11.7739i 0.439843 0.391378i
\(906\) 0 0
\(907\) −41.2693 −1.37032 −0.685162 0.728391i \(-0.740269\pi\)
−0.685162 + 0.728391i \(0.740269\pi\)
\(908\) 0 0
\(909\) 7.50716 + 10.3327i 0.248997 + 0.342715i
\(910\) 0 0
\(911\) 28.3265 + 20.5804i 0.938498 + 0.681859i 0.948059 0.318096i \(-0.103043\pi\)
−0.00956063 + 0.999954i \(0.503043\pi\)
\(912\) 0 0
\(913\) 1.56670 + 2.15638i 0.0518503 + 0.0713658i
\(914\) 0 0
\(915\) 5.63126 5.01077i 0.186164 0.165651i
\(916\) 0 0
\(917\) 9.41678 28.9819i 0.310970 0.957066i
\(918\) 0 0
\(919\) −14.7119 + 45.2785i −0.485300 + 1.49360i 0.346246 + 0.938144i \(0.387456\pi\)
−0.831546 + 0.555456i \(0.812544\pi\)
\(920\) 0 0
\(921\) −3.14684 9.68499i −0.103692 0.319131i
\(922\) 0 0
\(923\) −7.28763 5.29477i −0.239875 0.174280i
\(924\) 0 0
\(925\) 17.6768 + 8.12061i 0.581208 + 0.267004i
\(926\) 0 0
\(927\) 16.0479 22.0881i 0.527083 0.725467i
\(928\) 0 0
\(929\) 5.64100 + 17.3612i 0.185075 + 0.569603i 0.999950 0.0100347i \(-0.00319421\pi\)
−0.814875 + 0.579637i \(0.803194\pi\)
\(930\) 0 0
\(931\) 20.2722 + 6.58683i 0.664394 + 0.215875i
\(932\) 0 0
\(933\) 2.29968 7.07767i 0.0752880 0.231713i
\(934\) 0 0
\(935\) −0.275830 2.78158i −0.00902060 0.0909675i
\(936\) 0 0
\(937\) −21.0733 29.0049i −0.688435 0.947550i 0.311561 0.950226i \(-0.399148\pi\)
−0.999996 + 0.00267611i \(0.999148\pi\)
\(938\) 0 0
\(939\) 11.6146 15.9862i 0.379029 0.521688i
\(940\) 0 0
\(941\) 21.7339 + 29.9141i 0.708504 + 0.975172i 0.999828 + 0.0185478i \(0.00590428\pi\)
−0.291324 + 0.956624i \(0.594096\pi\)
\(942\) 0 0
\(943\) 0.973736i 0.0317092i
\(944\) 0 0
\(945\) 16.7977 + 38.3333i 0.546430 + 1.24698i
\(946\) 0 0
\(947\) 7.56047 + 23.2687i 0.245682 + 0.756132i 0.995523 + 0.0945146i \(0.0301299\pi\)
−0.749841 + 0.661618i \(0.769870\pi\)
\(948\) 0 0
\(949\) 24.9660i 0.810432i
\(950\) 0 0
\(951\) −6.98390 −0.226469
\(952\) 0 0
\(953\) −12.5944 + 4.09216i −0.407972 + 0.132558i −0.505811 0.862644i \(-0.668807\pi\)
0.0978395 + 0.995202i \(0.468807\pi\)
\(954\) 0 0
\(955\) 4.20814 + 42.4366i 0.136172 + 1.37322i
\(956\) 0 0
\(957\) 0.438576 0.0141772
\(958\) 0 0
\(959\) 8.64333 6.27975i 0.279108 0.202784i
\(960\) 0 0
\(961\) −23.8820 17.3513i −0.770388 0.559720i
\(962\) 0 0
\(963\) −16.5280 + 12.0083i −0.532607 + 0.386962i
\(964\) 0 0
\(965\) −41.5180 24.2971i −1.33651 0.782150i
\(966\) 0 0
\(967\) −37.4471 12.1673i −1.20422 0.391274i −0.362908 0.931825i \(-0.618216\pi\)
−0.841311 + 0.540551i \(0.818216\pi\)
\(968\) 0 0
\(969\) −7.19750 + 22.1516i −0.231217 + 0.711613i
\(970\) 0 0
\(971\) −10.1646 + 3.30267i −0.326197 + 0.105988i −0.467537 0.883973i \(-0.654859\pi\)
0.141341 + 0.989961i \(0.454859\pi\)
\(972\) 0 0
\(973\) −38.0177 27.6215i −1.21879 0.885504i
\(974\) 0 0
\(975\) 1.20233 10.2755i 0.0385054 0.329079i
\(976\) 0 0
\(977\) −15.2242 + 20.9543i −0.487064 + 0.670387i −0.979843 0.199768i \(-0.935981\pi\)
0.492779 + 0.870155i \(0.335981\pi\)
\(978\) 0 0
\(979\) −3.23735 + 1.05188i −0.103466 + 0.0336182i
\(980\) 0 0
\(981\) 25.2206 + 8.19466i 0.805231 + 0.261635i
\(982\) 0 0
\(983\) −57.4643 18.6713i −1.83283 0.595521i −0.999057 0.0434073i \(-0.986179\pi\)
−0.833769 0.552114i \(-0.813821\pi\)
\(984\) 0 0
\(985\) 12.4640 + 2.72601i 0.397137 + 0.0868578i
\(986\) 0 0
\(987\) −25.6681 + 18.6489i −0.817023 + 0.593602i
\(988\) 0 0
\(989\) 1.93142 2.65837i 0.0614155 0.0845311i
\(990\) 0 0
\(991\) 2.63278 1.91282i 0.0836329 0.0607629i −0.545183 0.838317i \(-0.683540\pi\)
0.628816 + 0.777554i \(0.283540\pi\)
\(992\) 0 0
\(993\) 12.7322i 0.404045i
\(994\) 0 0
\(995\) −11.0873 + 18.9457i −0.351492 + 0.600618i
\(996\) 0 0
\(997\) −9.81828 30.2175i −0.310948 0.956999i −0.977390 0.211443i \(-0.932184\pi\)
0.666442 0.745556i \(-0.267816\pi\)
\(998\) 0 0
\(999\) 20.1102 0.636260
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.be.a.209.10 112
4.3 odd 2 200.2.o.a.109.4 112
8.3 odd 2 200.2.o.a.109.20 yes 112
8.5 even 2 inner 800.2.be.a.209.19 112
20.3 even 4 1000.2.t.b.701.23 224
20.7 even 4 1000.2.t.b.701.34 224
20.19 odd 2 1000.2.o.a.549.25 112
25.14 even 10 inner 800.2.be.a.689.19 112
40.3 even 4 1000.2.t.b.701.46 224
40.19 odd 2 1000.2.o.a.549.9 112
40.27 even 4 1000.2.t.b.701.11 224
100.11 odd 10 1000.2.o.a.949.9 112
100.23 even 20 1000.2.t.b.301.46 224
100.27 even 20 1000.2.t.b.301.11 224
100.39 odd 10 200.2.o.a.189.20 yes 112
200.11 odd 10 1000.2.o.a.949.25 112
200.27 even 20 1000.2.t.b.301.34 224
200.123 even 20 1000.2.t.b.301.23 224
200.139 odd 10 200.2.o.a.189.4 yes 112
200.189 even 10 inner 800.2.be.a.689.10 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.o.a.109.4 112 4.3 odd 2
200.2.o.a.109.20 yes 112 8.3 odd 2
200.2.o.a.189.4 yes 112 200.139 odd 10
200.2.o.a.189.20 yes 112 100.39 odd 10
800.2.be.a.209.10 112 1.1 even 1 trivial
800.2.be.a.209.19 112 8.5 even 2 inner
800.2.be.a.689.10 112 200.189 even 10 inner
800.2.be.a.689.19 112 25.14 even 10 inner
1000.2.o.a.549.9 112 40.19 odd 2
1000.2.o.a.549.25 112 20.19 odd 2
1000.2.o.a.949.9 112 100.11 odd 10
1000.2.o.a.949.25 112 200.11 odd 10
1000.2.t.b.301.11 224 100.27 even 20
1000.2.t.b.301.23 224 200.123 even 20
1000.2.t.b.301.34 224 200.27 even 20
1000.2.t.b.301.46 224 100.23 even 20
1000.2.t.b.701.11 224 40.27 even 4
1000.2.t.b.701.23 224 20.3 even 4
1000.2.t.b.701.34 224 20.7 even 4
1000.2.t.b.701.46 224 40.3 even 4