Properties

Label 800.2.bb.b.643.22
Level $800$
Weight $2$
Character 800.643
Analytic conductor $6.388$
Analytic rank $0$
Dimension $88$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [800,2,Mod(107,800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("800.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(800, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 5, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.bb (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 643.22
Character \(\chi\) \(=\) 800.643
Dual form 800.2.bb.b.107.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36334 + 0.375898i) q^{2} +(-1.22690 + 0.508197i) q^{3} +(1.71740 + 1.02496i) q^{4} +(-1.86371 + 0.231658i) q^{6} -0.810621 q^{7} +(1.95613 + 2.04293i) q^{8} +(-0.874309 + 0.874309i) q^{9} +(0.353731 + 0.853982i) q^{11} +(-2.62795 - 0.384736i) q^{12} +(-3.86563 + 1.60120i) q^{13} +(-1.10515 - 0.304711i) q^{14} +(1.89893 + 3.52052i) q^{16} +(4.37679 + 4.37679i) q^{17} +(-1.52063 + 0.863331i) q^{18} +(0.285895 - 0.690211i) q^{19} +(0.994548 - 0.411955i) q^{21} +(0.161246 + 1.29724i) q^{22} -5.36098 q^{23} +(-3.43818 - 1.51237i) q^{24} +(-5.87207 + 0.729895i) q^{26} +(2.15296 - 5.19770i) q^{27} +(-1.39216 - 0.830850i) q^{28} +(-1.48464 + 3.58424i) q^{29} +9.06865i q^{31} +(1.26554 + 5.51348i) q^{32} +(-0.867982 - 0.867982i) q^{33} +(4.32183 + 7.61229i) q^{34} +(-2.39767 + 0.605412i) q^{36} +(0.870467 + 0.360559i) q^{37} +(0.649221 - 0.833526i) q^{38} +(3.92901 - 3.92901i) q^{39} +(0.572180 + 0.572180i) q^{41} +(1.51076 - 0.187787i) q^{42} +(4.42382 - 10.6801i) q^{43} +(-0.267796 + 1.82919i) q^{44} +(-7.30885 - 2.01518i) q^{46} +(1.59734 - 1.59734i) q^{47} +(-4.11891 - 3.35428i) q^{48} -6.34289 q^{49} +(-7.59414 - 3.14560i) q^{51} +(-8.28000 - 1.21220i) q^{52} +(4.62712 + 1.91662i) q^{53} +(4.88902 - 6.27695i) q^{54} +(-1.58568 - 1.65604i) q^{56} +0.992109i q^{57} +(-3.37138 + 4.32846i) q^{58} +(0.996806 + 2.40650i) q^{59} +(5.76047 + 2.38607i) q^{61} +(-3.40889 + 12.3637i) q^{62} +(0.708734 - 0.708734i) q^{63} +(-0.347145 + 7.99246i) q^{64} +(-0.857084 - 1.50963i) q^{66} +(-2.34497 - 5.66126i) q^{67} +(3.03069 + 12.0027i) q^{68} +(6.57737 - 2.72444i) q^{69} +(-1.22326 - 1.22326i) q^{71} +(-3.49641 - 0.0758959i) q^{72} +11.4586i q^{73} +(1.05121 + 0.818772i) q^{74} +(1.19843 - 0.892340i) q^{76} +(-0.286742 - 0.692256i) q^{77} +(6.83349 - 3.87967i) q^{78} -17.0418i q^{79} +3.76178i q^{81} +(0.564996 + 0.995159i) q^{82} +(-3.28569 - 7.93236i) q^{83} +(2.13027 + 0.311875i) q^{84} +(10.0458 - 12.8977i) q^{86} -5.15198i q^{87} +(-1.05269 + 2.39314i) q^{88} +(7.65721 + 7.65721i) q^{89} +(3.13356 - 1.29796i) q^{91} +(-9.20696 - 5.49477i) q^{92} +(-4.60866 - 11.1263i) q^{93} +(2.77815 - 1.57728i) q^{94} +(-4.35462 - 6.12132i) q^{96} +(2.02530 - 2.02530i) q^{97} +(-8.64753 - 2.38428i) q^{98} +(-1.05591 - 0.437374i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{2} + 4 q^{3} - 8 q^{6} + 8 q^{7} - 8 q^{8} - 8 q^{11} + 20 q^{12} + 4 q^{13} - 16 q^{14} - 8 q^{16} + 12 q^{18} - 16 q^{19} - 8 q^{21} + 20 q^{22} + 8 q^{23} + 32 q^{24} - 8 q^{26} - 8 q^{27}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36334 + 0.375898i 0.964028 + 0.265800i
\(3\) −1.22690 + 0.508197i −0.708349 + 0.293408i −0.707621 0.706592i \(-0.750232\pi\)
−0.000727832 1.00000i \(0.500232\pi\)
\(4\) 1.71740 + 1.02496i 0.858701 + 0.512478i
\(5\) 0 0
\(6\) −1.86371 + 0.231658i −0.760856 + 0.0945741i
\(7\) −0.810621 −0.306386 −0.153193 0.988196i \(-0.548956\pi\)
−0.153193 + 0.988196i \(0.548956\pi\)
\(8\) 1.95613 + 2.04293i 0.691595 + 0.722286i
\(9\) −0.874309 + 0.874309i −0.291436 + 0.291436i
\(10\) 0 0
\(11\) 0.353731 + 0.853982i 0.106654 + 0.257485i 0.968192 0.250207i \(-0.0804987\pi\)
−0.861538 + 0.507692i \(0.830499\pi\)
\(12\) −2.62795 0.384736i −0.758625 0.111064i
\(13\) −3.86563 + 1.60120i −1.07213 + 0.444092i −0.847743 0.530407i \(-0.822039\pi\)
−0.224391 + 0.974499i \(0.572039\pi\)
\(14\) −1.10515 0.304711i −0.295365 0.0814374i
\(15\) 0 0
\(16\) 1.89893 + 3.52052i 0.474733 + 0.880130i
\(17\) 4.37679 + 4.37679i 1.06153 + 1.06153i 0.997979 + 0.0635485i \(0.0202418\pi\)
0.0635485 + 0.997979i \(0.479758\pi\)
\(18\) −1.52063 + 0.863331i −0.358417 + 0.203489i
\(19\) 0.285895 0.690211i 0.0655888 0.158345i −0.887687 0.460448i \(-0.847689\pi\)
0.953275 + 0.302103i \(0.0976887\pi\)
\(20\) 0 0
\(21\) 0.994548 0.411955i 0.217028 0.0898960i
\(22\) 0.161246 + 1.29724i 0.0343777 + 0.276572i
\(23\) −5.36098 −1.11784 −0.558921 0.829221i \(-0.688785\pi\)
−0.558921 + 0.829221i \(0.688785\pi\)
\(24\) −3.43818 1.51237i −0.701815 0.308711i
\(25\) 0 0
\(26\) −5.87207 + 0.729895i −1.15161 + 0.143144i
\(27\) 2.15296 5.19770i 0.414337 1.00030i
\(28\) −1.39216 0.830850i −0.263094 0.157016i
\(29\) −1.48464 + 3.58424i −0.275691 + 0.665576i −0.999707 0.0242069i \(-0.992294\pi\)
0.724016 + 0.689783i \(0.242294\pi\)
\(30\) 0 0
\(31\) 9.06865i 1.62878i 0.580319 + 0.814389i \(0.302928\pi\)
−0.580319 + 0.814389i \(0.697072\pi\)
\(32\) 1.26554 + 5.51348i 0.223718 + 0.974654i
\(33\) −0.867982 0.867982i −0.151096 0.151096i
\(34\) 4.32183 + 7.61229i 0.741188 + 1.30550i
\(35\) 0 0
\(36\) −2.39767 + 0.605412i −0.399611 + 0.100902i
\(37\) 0.870467 + 0.360559i 0.143104 + 0.0592756i 0.453086 0.891467i \(-0.350323\pi\)
−0.309982 + 0.950742i \(0.600323\pi\)
\(38\) 0.649221 0.833526i 0.105318 0.135216i
\(39\) 3.92901 3.92901i 0.629145 0.629145i
\(40\) 0 0
\(41\) 0.572180 + 0.572180i 0.0893596 + 0.0893596i 0.750374 0.661014i \(-0.229874\pi\)
−0.661014 + 0.750374i \(0.729874\pi\)
\(42\) 1.51076 0.187787i 0.233116 0.0289762i
\(43\) 4.42382 10.6801i 0.674627 1.62869i −0.0990273 0.995085i \(-0.531573\pi\)
0.773654 0.633608i \(-0.218427\pi\)
\(44\) −0.267796 + 1.82919i −0.0403717 + 0.275760i
\(45\) 0 0
\(46\) −7.30885 2.01518i −1.07763 0.297123i
\(47\) 1.59734 1.59734i 0.232995 0.232995i −0.580946 0.813942i \(-0.697317\pi\)
0.813942 + 0.580946i \(0.197317\pi\)
\(48\) −4.11891 3.35428i −0.594514 0.484149i
\(49\) −6.34289 −0.906128
\(50\) 0 0
\(51\) −7.59414 3.14560i −1.06339 0.440471i
\(52\) −8.28000 1.21220i −1.14823 0.168102i
\(53\) 4.62712 + 1.91662i 0.635584 + 0.263268i 0.677124 0.735869i \(-0.263226\pi\)
−0.0415393 + 0.999137i \(0.513226\pi\)
\(54\) 4.88902 6.27695i 0.665312 0.854184i
\(55\) 0 0
\(56\) −1.58568 1.65604i −0.211895 0.221298i
\(57\) 0.992109i 0.131408i
\(58\) −3.37138 + 4.32846i −0.442684 + 0.568355i
\(59\) 0.996806 + 2.40650i 0.129773 + 0.313300i 0.975389 0.220492i \(-0.0707664\pi\)
−0.845616 + 0.533792i \(0.820766\pi\)
\(60\) 0 0
\(61\) 5.76047 + 2.38607i 0.737553 + 0.305504i 0.719652 0.694335i \(-0.244301\pi\)
0.0179014 + 0.999840i \(0.494301\pi\)
\(62\) −3.40889 + 12.3637i −0.432929 + 1.57019i
\(63\) 0.708734 0.708734i 0.0892920 0.0892920i
\(64\) −0.347145 + 7.99246i −0.0433931 + 0.999058i
\(65\) 0 0
\(66\) −0.857084 1.50963i −0.105500 0.185823i
\(67\) −2.34497 5.66126i −0.286484 0.691633i 0.713475 0.700680i \(-0.247120\pi\)
−0.999959 + 0.00904731i \(0.997120\pi\)
\(68\) 3.03069 + 12.0027i 0.367525 + 1.45554i
\(69\) 6.57737 2.72444i 0.791822 0.327984i
\(70\) 0 0
\(71\) −1.22326 1.22326i −0.145174 0.145174i 0.630784 0.775958i \(-0.282733\pi\)
−0.775958 + 0.630784i \(0.782733\pi\)
\(72\) −3.49641 0.0758959i −0.412056 0.00894442i
\(73\) 11.4586i 1.34113i 0.741851 + 0.670565i \(0.233948\pi\)
−0.741851 + 0.670565i \(0.766052\pi\)
\(74\) 1.05121 + 0.818772i 0.122201 + 0.0951804i
\(75\) 0 0
\(76\) 1.19843 0.892340i 0.137470 0.102358i
\(77\) −0.286742 0.692256i −0.0326773 0.0788899i
\(78\) 6.83349 3.87967i 0.773740 0.439287i
\(79\) 17.0418i 1.91736i −0.284493 0.958678i \(-0.591825\pi\)
0.284493 0.958678i \(-0.408175\pi\)
\(80\) 0 0
\(81\) 3.76178i 0.417976i
\(82\) 0.564996 + 0.995159i 0.0623933 + 0.109897i
\(83\) −3.28569 7.93236i −0.360651 0.870689i −0.995205 0.0978105i \(-0.968816\pi\)
0.634554 0.772879i \(-0.281184\pi\)
\(84\) 2.13027 + 0.311875i 0.232432 + 0.0340283i
\(85\) 0 0
\(86\) 10.0458 12.8977i 1.08327 1.39079i
\(87\) 5.15198i 0.552350i
\(88\) −1.05269 + 2.39314i −0.112217 + 0.255110i
\(89\) 7.65721 + 7.65721i 0.811663 + 0.811663i 0.984883 0.173220i \(-0.0554172\pi\)
−0.173220 + 0.984883i \(0.555417\pi\)
\(90\) 0 0
\(91\) 3.13356 1.29796i 0.328487 0.136064i
\(92\) −9.20696 5.49477i −0.959892 0.572869i
\(93\) −4.60866 11.1263i −0.477896 1.15374i
\(94\) 2.77815 1.57728i 0.286544 0.162684i
\(95\) 0 0
\(96\) −4.35462 6.12132i −0.444441 0.624755i
\(97\) 2.02530 2.02530i 0.205638 0.205638i −0.596772 0.802411i \(-0.703550\pi\)
0.802411 + 0.596772i \(0.203550\pi\)
\(98\) −8.64753 2.38428i −0.873533 0.240849i
\(99\) −1.05591 0.437374i −0.106123 0.0439578i
\(100\) 0 0
\(101\) 0.295173 + 0.712610i 0.0293708 + 0.0709073i 0.937884 0.346948i \(-0.112782\pi\)
−0.908514 + 0.417855i \(0.862782\pi\)
\(102\) −9.17098 7.14314i −0.908063 0.707277i
\(103\) 9.73185i 0.958908i 0.877567 + 0.479454i \(0.159165\pi\)
−0.877567 + 0.479454i \(0.840835\pi\)
\(104\) −10.8328 4.76508i −1.06224 0.467255i
\(105\) 0 0
\(106\) 5.58790 + 4.35233i 0.542745 + 0.422736i
\(107\) 6.55453 + 2.71497i 0.633650 + 0.262466i 0.676303 0.736624i \(-0.263581\pi\)
−0.0426531 + 0.999090i \(0.513581\pi\)
\(108\) 9.02490 6.71985i 0.868421 0.646618i
\(109\) 10.2140 + 4.23080i 0.978328 + 0.405237i 0.813806 0.581137i \(-0.197392\pi\)
0.164522 + 0.986373i \(0.447392\pi\)
\(110\) 0 0
\(111\) −1.25121 −0.118759
\(112\) −1.53932 2.85381i −0.145452 0.269659i
\(113\) 14.5463 14.5463i 1.36841 1.36841i 0.505690 0.862715i \(-0.331238\pi\)
0.862715 0.505690i \(-0.168762\pi\)
\(114\) −0.372932 + 1.35258i −0.0349283 + 0.126681i
\(115\) 0 0
\(116\) −6.22340 + 4.63388i −0.577828 + 0.430245i
\(117\) 1.97982 4.77970i 0.183034 0.441884i
\(118\) 0.454387 + 3.65558i 0.0418297 + 0.336524i
\(119\) −3.54792 3.54792i −0.325237 0.325237i
\(120\) 0 0
\(121\) 7.17401 7.17401i 0.652183 0.652183i
\(122\) 6.95658 + 5.41838i 0.629819 + 0.490557i
\(123\) −0.992787 0.411226i −0.0895166 0.0370790i
\(124\) −9.29496 + 15.5745i −0.834712 + 1.39863i
\(125\) 0 0
\(126\) 1.23266 0.699834i 0.109814 0.0623462i
\(127\) 12.0188 + 12.0188i 1.06649 + 1.06649i 0.997626 + 0.0688681i \(0.0219388\pi\)
0.0688681 + 0.997626i \(0.478061\pi\)
\(128\) −3.47763 + 10.7660i −0.307382 + 0.951586i
\(129\) 15.3515i 1.35162i
\(130\) 0 0
\(131\) 4.28707 10.3499i 0.374563 0.904274i −0.618402 0.785862i \(-0.712220\pi\)
0.992965 0.118412i \(-0.0377805\pi\)
\(132\) −0.601031 2.38032i −0.0523130 0.207180i
\(133\) −0.231752 + 0.559500i −0.0200955 + 0.0485148i
\(134\) −1.06894 8.59970i −0.0923423 0.742901i
\(135\) 0 0
\(136\) −0.379935 + 17.5030i −0.0325791 + 1.50087i
\(137\) −1.71157 −0.146229 −0.0731145 0.997324i \(-0.523294\pi\)
−0.0731145 + 0.997324i \(0.523294\pi\)
\(138\) 9.99132 1.24192i 0.850517 0.105719i
\(139\) −1.54808 + 0.641236i −0.131306 + 0.0543889i −0.447369 0.894349i \(-0.647639\pi\)
0.316063 + 0.948738i \(0.397639\pi\)
\(140\) 0 0
\(141\) −1.14800 + 2.77153i −0.0966794 + 0.233405i
\(142\) −1.20790 2.12754i −0.101365 0.178539i
\(143\) −2.73479 2.73479i −0.228694 0.228694i
\(144\) −4.73828 1.41777i −0.394857 0.118147i
\(145\) 0 0
\(146\) −4.30727 + 15.6220i −0.356473 + 1.29289i
\(147\) 7.78207 3.22344i 0.641855 0.265865i
\(148\) 1.12538 + 1.51141i 0.0925060 + 0.124238i
\(149\) −7.10915 17.1630i −0.582404 1.40605i −0.890627 0.454734i \(-0.849734\pi\)
0.308223 0.951314i \(-0.400266\pi\)
\(150\) 0 0
\(151\) 7.59514 7.59514i 0.618083 0.618083i −0.326956 0.945040i \(-0.606023\pi\)
0.945040 + 0.326956i \(0.106023\pi\)
\(152\) 1.96930 0.766076i 0.159731 0.0621370i
\(153\) −7.65334 −0.618736
\(154\) −0.130709 1.05157i −0.0105329 0.0847377i
\(155\) 0 0
\(156\) 10.7747 2.72062i 0.862670 0.217824i
\(157\) −13.5947 + 5.63110i −1.08497 + 0.449411i −0.852251 0.523133i \(-0.824763\pi\)
−0.232722 + 0.972543i \(0.574763\pi\)
\(158\) 6.40600 23.2338i 0.509634 1.84839i
\(159\) −6.65102 −0.527460
\(160\) 0 0
\(161\) 4.34573 0.342491
\(162\) −1.41405 + 5.12860i −0.111098 + 0.402941i
\(163\) 4.78964 1.98393i 0.375154 0.155394i −0.187136 0.982334i \(-0.559921\pi\)
0.562290 + 0.826940i \(0.309921\pi\)
\(164\) 0.396204 + 1.56912i 0.0309383 + 0.122528i
\(165\) 0 0
\(166\) −1.49776 12.0496i −0.116249 0.935230i
\(167\) 7.59626 0.587817 0.293908 0.955834i \(-0.405044\pi\)
0.293908 + 0.955834i \(0.405044\pi\)
\(168\) 2.78706 + 1.22596i 0.215026 + 0.0945847i
\(169\) 3.18690 3.18690i 0.245146 0.245146i
\(170\) 0 0
\(171\) 0.353498 + 0.853419i 0.0270326 + 0.0652626i
\(172\) 18.5441 13.8077i 1.41397 1.05283i
\(173\) −0.0431970 + 0.0178928i −0.00328421 + 0.00136036i −0.384325 0.923198i \(-0.625566\pi\)
0.381041 + 0.924558i \(0.375566\pi\)
\(174\) 1.93662 7.02390i 0.146815 0.532481i
\(175\) 0 0
\(176\) −2.33475 + 2.86697i −0.175988 + 0.216106i
\(177\) −2.44595 2.44595i −0.183849 0.183849i
\(178\) 7.56106 + 13.3177i 0.566726 + 0.998206i
\(179\) 7.55581 18.2413i 0.564748 1.36342i −0.341183 0.939997i \(-0.610828\pi\)
0.905931 0.423425i \(-0.139172\pi\)
\(180\) 0 0
\(181\) 22.1793 9.18697i 1.64858 0.682862i 0.651454 0.758688i \(-0.274159\pi\)
0.997121 + 0.0758260i \(0.0241593\pi\)
\(182\) 4.76002 0.591668i 0.352836 0.0438574i
\(183\) −8.28010 −0.612082
\(184\) −10.4868 10.9521i −0.773094 0.807401i
\(185\) 0 0
\(186\) −2.10083 16.9013i −0.154040 1.23927i
\(187\) −2.18949 + 5.28590i −0.160112 + 0.386544i
\(188\) 4.38046 1.10607i 0.319478 0.0806683i
\(189\) −1.74523 + 4.21336i −0.126947 + 0.306477i
\(190\) 0 0
\(191\) 10.7326i 0.776586i 0.921536 + 0.388293i \(0.126935\pi\)
−0.921536 + 0.388293i \(0.873065\pi\)
\(192\) −3.63584 9.98235i −0.262394 0.720414i
\(193\) 13.3767 + 13.3767i 0.962880 + 0.962880i 0.999335 0.0364558i \(-0.0116068\pi\)
−0.0364558 + 0.999335i \(0.511607\pi\)
\(194\) 3.52249 1.99987i 0.252900 0.143582i
\(195\) 0 0
\(196\) −10.8933 6.50118i −0.778092 0.464370i
\(197\) −7.08755 2.93576i −0.504967 0.209164i 0.115632 0.993292i \(-0.463111\pi\)
−0.620599 + 0.784128i \(0.713111\pi\)
\(198\) −1.27516 0.993207i −0.0906220 0.0705841i
\(199\) −15.2564 + 15.2564i −1.08149 + 1.08149i −0.0851236 + 0.996370i \(0.527129\pi\)
−0.996370 + 0.0851236i \(0.972871\pi\)
\(200\) 0 0
\(201\) 5.75407 + 5.75407i 0.405861 + 0.405861i
\(202\) 0.134552 + 1.08249i 0.00946708 + 0.0761634i
\(203\) 1.20348 2.90546i 0.0844677 0.203923i
\(204\) −9.81809 13.1859i −0.687404 0.923198i
\(205\) 0 0
\(206\) −3.65818 + 13.2678i −0.254878 + 0.924414i
\(207\) 4.68716 4.68716i 0.325780 0.325780i
\(208\) −12.9776 10.5685i −0.899836 0.732791i
\(209\) 0.690558 0.0477669
\(210\) 0 0
\(211\) −12.4406 5.15308i −0.856449 0.354753i −0.0891311 0.996020i \(-0.528409\pi\)
−0.767318 + 0.641267i \(0.778409\pi\)
\(212\) 5.98218 + 8.03420i 0.410858 + 0.551791i
\(213\) 2.12247 + 0.879155i 0.145429 + 0.0602387i
\(214\) 7.91550 + 6.16527i 0.541093 + 0.421449i
\(215\) 0 0
\(216\) 14.8300 5.76901i 1.00905 0.392531i
\(217\) 7.35124i 0.499035i
\(218\) 12.3349 + 9.60746i 0.835424 + 0.650699i
\(219\) −5.82324 14.0585i −0.393498 0.949988i
\(220\) 0 0
\(221\) −23.9272 9.91096i −1.60952 0.666683i
\(222\) −1.70582 0.470327i −0.114487 0.0315663i
\(223\) −18.6893 + 18.6893i −1.25153 + 1.25153i −0.296495 + 0.955035i \(0.595818\pi\)
−0.955035 + 0.296495i \(0.904182\pi\)
\(224\) −1.02587 4.46934i −0.0685439 0.298620i
\(225\) 0 0
\(226\) 25.2996 14.3637i 1.68290 0.955459i
\(227\) −8.91547 21.5239i −0.591741 1.42859i −0.881820 0.471586i \(-0.843682\pi\)
0.290080 0.957003i \(-0.406318\pi\)
\(228\) −1.01687 + 1.70385i −0.0673437 + 0.112840i
\(229\) −9.93553 + 4.11543i −0.656558 + 0.271955i −0.685989 0.727612i \(-0.740630\pi\)
0.0294313 + 0.999567i \(0.490630\pi\)
\(230\) 0 0
\(231\) 0.703605 + 0.703605i 0.0462938 + 0.0462938i
\(232\) −10.2265 + 3.97820i −0.671402 + 0.261181i
\(233\) 16.9133i 1.10803i 0.832507 + 0.554014i \(0.186905\pi\)
−0.832507 + 0.554014i \(0.813095\pi\)
\(234\) 4.49585 5.77216i 0.293903 0.377338i
\(235\) 0 0
\(236\) −0.754642 + 5.15461i −0.0491230 + 0.335536i
\(237\) 8.66061 + 20.9086i 0.562567 + 1.35816i
\(238\) −3.50337 6.17068i −0.227090 0.399986i
\(239\) 16.3930i 1.06038i 0.847880 + 0.530189i \(0.177879\pi\)
−0.847880 + 0.530189i \(0.822121\pi\)
\(240\) 0 0
\(241\) 2.00046i 0.128861i −0.997922 0.0644306i \(-0.979477\pi\)
0.997922 0.0644306i \(-0.0205231\pi\)
\(242\) 12.4773 7.08393i 0.802073 0.455373i
\(243\) 4.54714 + 10.9778i 0.291699 + 0.704225i
\(244\) 7.44743 + 10.0021i 0.476773 + 0.640316i
\(245\) 0 0
\(246\) −1.19893 0.933828i −0.0764409 0.0595387i
\(247\) 3.12588i 0.198895i
\(248\) −18.5266 + 17.7394i −1.17644 + 1.12645i
\(249\) 8.06240 + 8.06240i 0.510934 + 0.510934i
\(250\) 0 0
\(251\) 2.14679 0.889229i 0.135504 0.0561277i −0.313901 0.949456i \(-0.601636\pi\)
0.449405 + 0.893328i \(0.351636\pi\)
\(252\) 1.94360 0.490760i 0.122435 0.0309149i
\(253\) −1.89635 4.57818i −0.119222 0.287828i
\(254\) 11.8679 + 20.9035i 0.744656 + 1.31160i
\(255\) 0 0
\(256\) −8.78811 + 13.3705i −0.549257 + 0.835654i
\(257\) −5.89815 + 5.89815i −0.367916 + 0.367916i −0.866717 0.498800i \(-0.833774\pi\)
0.498800 + 0.866717i \(0.333774\pi\)
\(258\) −5.77060 + 20.9293i −0.359262 + 1.30300i
\(259\) −0.705619 0.292277i −0.0438450 0.0181612i
\(260\) 0 0
\(261\) −1.83570 4.43176i −0.113627 0.274319i
\(262\) 9.73524 12.4989i 0.601445 0.772187i
\(263\) 6.25098i 0.385452i −0.981253 0.192726i \(-0.938267\pi\)
0.981253 0.192726i \(-0.0617328\pi\)
\(264\) 0.0753467 3.47111i 0.00463727 0.213632i
\(265\) 0 0
\(266\) −0.526273 + 0.675674i −0.0322678 + 0.0414282i
\(267\) −13.2860 5.50323i −0.813089 0.336792i
\(268\) 1.77528 12.1261i 0.108443 0.740722i
\(269\) −5.81666 2.40934i −0.354648 0.146900i 0.198244 0.980153i \(-0.436476\pi\)
−0.552893 + 0.833252i \(0.686476\pi\)
\(270\) 0 0
\(271\) −15.8408 −0.962258 −0.481129 0.876650i \(-0.659773\pi\)
−0.481129 + 0.876650i \(0.659773\pi\)
\(272\) −7.09734 + 23.7198i −0.430339 + 1.43822i
\(273\) −3.18494 + 3.18494i −0.192761 + 0.192761i
\(274\) −2.33345 0.643375i −0.140969 0.0388677i
\(275\) 0 0
\(276\) 14.0884 + 2.06256i 0.848023 + 0.124152i
\(277\) −4.18090 + 10.0936i −0.251206 + 0.606465i −0.998302 0.0582513i \(-0.981448\pi\)
0.747096 + 0.664716i \(0.231448\pi\)
\(278\) −2.35160 + 0.292303i −0.141040 + 0.0175312i
\(279\) −7.92881 7.92881i −0.474685 0.474685i
\(280\) 0 0
\(281\) −4.80986 + 4.80986i −0.286932 + 0.286932i −0.835866 0.548934i \(-0.815034\pi\)
0.548934 + 0.835866i \(0.315034\pi\)
\(282\) −2.60693 + 3.34700i −0.155241 + 0.199311i
\(283\) 24.3013 + 10.0659i 1.44456 + 0.598358i 0.960900 0.276897i \(-0.0893059\pi\)
0.483663 + 0.875254i \(0.339306\pi\)
\(284\) −0.847040 3.35461i −0.0502626 0.199060i
\(285\) 0 0
\(286\) −2.70045 4.75645i −0.159681 0.281255i
\(287\) −0.463821 0.463821i −0.0273785 0.0273785i
\(288\) −5.92696 3.71401i −0.349249 0.218850i
\(289\) 21.3126i 1.25368i
\(290\) 0 0
\(291\) −1.45558 + 3.51409i −0.0853278 + 0.206000i
\(292\) −11.7446 + 19.6790i −0.687299 + 1.15163i
\(293\) 7.47876 18.0553i 0.436914 1.05480i −0.540095 0.841604i \(-0.681612\pi\)
0.977009 0.213199i \(-0.0683882\pi\)
\(294\) 11.8213 1.46938i 0.689433 0.0856962i
\(295\) 0 0
\(296\) 0.966145 + 2.48360i 0.0561560 + 0.144357i
\(297\) 5.20031 0.301753
\(298\) −3.24066 26.0713i −0.187726 1.51027i
\(299\) 20.7236 8.58399i 1.19848 0.496425i
\(300\) 0 0
\(301\) −3.58604 + 8.65748i −0.206696 + 0.499009i
\(302\) 13.2098 7.49977i 0.760136 0.431563i
\(303\) −0.724293 0.724293i −0.0416095 0.0416095i
\(304\) 2.97280 0.304167i 0.170502 0.0174452i
\(305\) 0 0
\(306\) −10.4341 2.87688i −0.596479 0.164460i
\(307\) −30.3123 + 12.5558i −1.73001 + 0.716595i −0.730585 + 0.682822i \(0.760752\pi\)
−0.999430 + 0.0337730i \(0.989248\pi\)
\(308\) 0.217081 1.48278i 0.0123693 0.0844891i
\(309\) −4.94570 11.9400i −0.281351 0.679241i
\(310\) 0 0
\(311\) −9.72842 + 9.72842i −0.551648 + 0.551648i −0.926916 0.375268i \(-0.877551\pi\)
0.375268 + 0.926916i \(0.377551\pi\)
\(312\) 15.7123 + 0.341064i 0.889536 + 0.0193090i
\(313\) 12.4426 0.703299 0.351649 0.936132i \(-0.385621\pi\)
0.351649 + 0.936132i \(0.385621\pi\)
\(314\) −20.6509 + 2.56690i −1.16540 + 0.144858i
\(315\) 0 0
\(316\) 17.4671 29.2677i 0.982602 1.64644i
\(317\) −19.8193 + 8.20943i −1.11316 + 0.461087i −0.862026 0.506864i \(-0.830805\pi\)
−0.251138 + 0.967951i \(0.580805\pi\)
\(318\) −9.06762 2.50011i −0.508487 0.140199i
\(319\) −3.58604 −0.200779
\(320\) 0 0
\(321\) −9.42147 −0.525855
\(322\) 5.92471 + 1.63355i 0.330171 + 0.0910342i
\(323\) 4.27221 1.76961i 0.237712 0.0984636i
\(324\) −3.85566 + 6.46049i −0.214203 + 0.358916i
\(325\) 0 0
\(326\) 7.27567 0.904363i 0.402962 0.0500880i
\(327\) −14.6817 −0.811897
\(328\) −0.0496691 + 2.28818i −0.00274252 + 0.126344i
\(329\) −1.29483 + 1.29483i −0.0713865 + 0.0713865i
\(330\) 0 0
\(331\) 8.99571 + 21.7176i 0.494449 + 1.19371i 0.952434 + 0.304746i \(0.0985714\pi\)
−0.457985 + 0.888960i \(0.651429\pi\)
\(332\) 2.48746 16.9907i 0.136517 0.932487i
\(333\) −1.07630 + 0.445817i −0.0589808 + 0.0244306i
\(334\) 10.3563 + 2.85542i 0.566672 + 0.156242i
\(335\) 0 0
\(336\) 3.33888 + 2.71905i 0.182151 + 0.148336i
\(337\) −6.90744 6.90744i −0.376272 0.376272i 0.493483 0.869755i \(-0.335723\pi\)
−0.869755 + 0.493483i \(0.835723\pi\)
\(338\) 5.54278 3.14688i 0.301488 0.171168i
\(339\) −10.4545 + 25.2393i −0.567808 + 1.37081i
\(340\) 0 0
\(341\) −7.74446 + 3.20786i −0.419386 + 0.173715i
\(342\) 0.161139 + 1.29638i 0.00871342 + 0.0701002i
\(343\) 10.8160 0.584011
\(344\) 30.4722 11.8540i 1.64295 0.639123i
\(345\) 0 0
\(346\) −0.0656181 + 0.00815630i −0.00352765 + 0.000438486i
\(347\) 2.89398 6.98669i 0.155357 0.375065i −0.826968 0.562249i \(-0.809936\pi\)
0.982325 + 0.187184i \(0.0599361\pi\)
\(348\) 5.28055 8.84801i 0.283067 0.474303i
\(349\) −1.31230 + 3.16817i −0.0702457 + 0.169588i −0.955103 0.296274i \(-0.904256\pi\)
0.884857 + 0.465862i \(0.154256\pi\)
\(350\) 0 0
\(351\) 23.5397i 1.25646i
\(352\) −4.26075 + 3.03103i −0.227099 + 0.161555i
\(353\) −7.05995 7.05995i −0.375763 0.375763i 0.493808 0.869571i \(-0.335605\pi\)
−0.869571 + 0.493808i \(0.835605\pi\)
\(354\) −2.41524 4.25410i −0.128369 0.226103i
\(355\) 0 0
\(356\) 5.30220 + 20.9988i 0.281016 + 1.11293i
\(357\) 6.15597 + 2.54989i 0.325808 + 0.134954i
\(358\) 17.1580 22.0290i 0.906830 1.16427i
\(359\) −6.96604 + 6.96604i −0.367654 + 0.367654i −0.866621 0.498967i \(-0.833713\pi\)
0.498967 + 0.866621i \(0.333713\pi\)
\(360\) 0 0
\(361\) 13.0404 + 13.0404i 0.686335 + 0.686335i
\(362\) 33.6913 4.18782i 1.77078 0.220107i
\(363\) −5.15596 + 12.4476i −0.270618 + 0.653329i
\(364\) 6.71194 + 0.982637i 0.351801 + 0.0515042i
\(365\) 0 0
\(366\) −11.2886 3.11247i −0.590065 0.162692i
\(367\) 10.5140 10.5140i 0.548826 0.548826i −0.377275 0.926101i \(-0.623139\pi\)
0.926101 + 0.377275i \(0.123139\pi\)
\(368\) −10.1801 18.8734i −0.530677 0.983846i
\(369\) −1.00053 −0.0520853
\(370\) 0 0
\(371\) −3.75084 1.55365i −0.194734 0.0806615i
\(372\) 3.48903 23.8320i 0.180898 1.23563i
\(373\) −14.8828 6.16467i −0.770604 0.319195i −0.0374868 0.999297i \(-0.511935\pi\)
−0.733117 + 0.680103i \(0.761935\pi\)
\(374\) −4.97199 + 6.38347i −0.257095 + 0.330081i
\(375\) 0 0
\(376\) 6.38784 + 0.138659i 0.329427 + 0.00715081i
\(377\) 16.2325i 0.836018i
\(378\) −3.96314 + 5.08822i −0.203842 + 0.261710i
\(379\) 4.07716 + 9.84314i 0.209430 + 0.505608i 0.993334 0.115274i \(-0.0367746\pi\)
−0.783904 + 0.620882i \(0.786775\pi\)
\(380\) 0 0
\(381\) −20.8537 8.63789i −1.06837 0.442532i
\(382\) −4.03438 + 14.6322i −0.206417 + 0.748651i
\(383\) 0.245014 0.245014i 0.0125196 0.0125196i −0.700819 0.713339i \(-0.747182\pi\)
0.713339 + 0.700819i \(0.247182\pi\)
\(384\) −1.20454 14.9761i −0.0614691 0.764243i
\(385\) 0 0
\(386\) 13.2088 + 23.2654i 0.672309 + 1.18418i
\(387\) 5.46988 + 13.2055i 0.278050 + 0.671271i
\(388\) 5.55410 1.40241i 0.281967 0.0711967i
\(389\) 9.70866 4.02146i 0.492248 0.203896i −0.122730 0.992440i \(-0.539165\pi\)
0.614978 + 0.788544i \(0.289165\pi\)
\(390\) 0 0
\(391\) −23.4639 23.4639i −1.18662 1.18662i
\(392\) −12.4075 12.9581i −0.626673 0.654483i
\(393\) 14.8769i 0.750442i
\(394\) −8.55921 6.66664i −0.431207 0.335860i
\(395\) 0 0
\(396\) −1.36514 1.83341i −0.0686009 0.0921324i
\(397\) 5.50244 + 13.2841i 0.276159 + 0.666708i 0.999723 0.0235503i \(-0.00749698\pi\)
−0.723563 + 0.690258i \(0.757497\pi\)
\(398\) −26.5345 + 15.0648i −1.33005 + 0.755129i
\(399\) 0.804224i 0.0402616i
\(400\) 0 0
\(401\) 36.3553i 1.81550i −0.419515 0.907748i \(-0.637800\pi\)
0.419515 0.907748i \(-0.362200\pi\)
\(402\) 5.68182 + 10.0077i 0.283384 + 0.499139i
\(403\) −14.5207 35.0561i −0.723328 1.74627i
\(404\) −0.223463 + 1.52638i −0.0111177 + 0.0759400i
\(405\) 0 0
\(406\) 2.73291 3.50874i 0.135632 0.174136i
\(407\) 0.870904i 0.0431691i
\(408\) −8.42885 21.6675i −0.417290 1.07270i
\(409\) −1.73940 1.73940i −0.0860076 0.0860076i 0.662794 0.748802i \(-0.269370\pi\)
−0.748802 + 0.662794i \(0.769370\pi\)
\(410\) 0 0
\(411\) 2.09991 0.869813i 0.103581 0.0429047i
\(412\) −9.97471 + 16.7135i −0.491419 + 0.823415i
\(413\) −0.808032 1.95076i −0.0397606 0.0959907i
\(414\) 8.15209 4.62830i 0.400653 0.227469i
\(415\) 0 0
\(416\) −13.7203 19.2867i −0.672692 0.945608i
\(417\) 1.57346 1.57346i 0.0770527 0.0770527i
\(418\) 0.941466 + 0.259579i 0.0460486 + 0.0126964i
\(419\) 30.4757 + 12.6234i 1.48883 + 0.616695i 0.971063 0.238824i \(-0.0767620\pi\)
0.517771 + 0.855519i \(0.326762\pi\)
\(420\) 0 0
\(421\) −2.20626 5.32637i −0.107526 0.259591i 0.860953 0.508684i \(-0.169868\pi\)
−0.968480 + 0.249092i \(0.919868\pi\)
\(422\) −15.0238 11.7018i −0.731347 0.569636i
\(423\) 2.79313i 0.135807i
\(424\) 5.13572 + 13.2020i 0.249412 + 0.641148i
\(425\) 0 0
\(426\) 2.56318 + 1.99642i 0.124186 + 0.0967269i
\(427\) −4.66956 1.93420i −0.225976 0.0936023i
\(428\) 8.47402 + 11.3808i 0.409607 + 0.550111i
\(429\) 4.74511 + 1.96549i 0.229096 + 0.0948948i
\(430\) 0 0
\(431\) 11.5520 0.556441 0.278220 0.960517i \(-0.410255\pi\)
0.278220 + 0.960517i \(0.410255\pi\)
\(432\) 22.3869 2.29056i 1.07709 0.110204i
\(433\) −4.86860 + 4.86860i −0.233970 + 0.233970i −0.814348 0.580378i \(-0.802905\pi\)
0.580378 + 0.814348i \(0.302905\pi\)
\(434\) 2.76332 10.0223i 0.132643 0.481083i
\(435\) 0 0
\(436\) 13.2052 + 17.7349i 0.632416 + 0.849348i
\(437\) −1.53268 + 3.70021i −0.0733179 + 0.177005i
\(438\) −2.65448 21.3555i −0.126836 1.02041i
\(439\) −12.4739 12.4739i −0.595347 0.595347i 0.343724 0.939071i \(-0.388312\pi\)
−0.939071 + 0.343724i \(0.888312\pi\)
\(440\) 0 0
\(441\) 5.54565 5.54565i 0.264079 0.264079i
\(442\) −28.8954 22.5062i −1.37441 1.07051i
\(443\) 10.2113 + 4.22965i 0.485152 + 0.200957i 0.611833 0.790987i \(-0.290432\pi\)
−0.126681 + 0.991944i \(0.540432\pi\)
\(444\) −2.14883 1.28243i −0.101979 0.0608616i
\(445\) 0 0
\(446\) −32.5052 + 18.4546i −1.53917 + 0.873853i
\(447\) 17.4444 + 17.4444i 0.825091 + 0.825091i
\(448\) 0.281403 6.47886i 0.0132950 0.306097i
\(449\) 23.5370i 1.11078i −0.831589 0.555391i \(-0.812569\pi\)
0.831589 0.555391i \(-0.187431\pi\)
\(450\) 0 0
\(451\) −0.286234 + 0.691030i −0.0134782 + 0.0325393i
\(452\) 39.8913 10.0726i 1.87633 0.473773i
\(453\) −5.45862 + 13.1783i −0.256468 + 0.619169i
\(454\) −4.06406 32.6957i −0.190736 1.53448i
\(455\) 0 0
\(456\) −2.02681 + 1.94069i −0.0949141 + 0.0908811i
\(457\) 9.83092 0.459871 0.229936 0.973206i \(-0.426148\pi\)
0.229936 + 0.973206i \(0.426148\pi\)
\(458\) −15.0925 + 1.87599i −0.705226 + 0.0876593i
\(459\) 32.1723 13.3262i 1.50167 0.622013i
\(460\) 0 0
\(461\) −8.56757 + 20.6839i −0.399031 + 0.963347i 0.588865 + 0.808231i \(0.299575\pi\)
−0.987896 + 0.155116i \(0.950425\pi\)
\(462\) 0.694770 + 1.22374i 0.0323236 + 0.0569334i
\(463\) −10.2145 10.2145i −0.474707 0.474707i 0.428727 0.903434i \(-0.358962\pi\)
−0.903434 + 0.428727i \(0.858962\pi\)
\(464\) −15.4376 + 1.57952i −0.716673 + 0.0733276i
\(465\) 0 0
\(466\) −6.35769 + 23.0586i −0.294514 + 1.06817i
\(467\) −1.32214 + 0.547649i −0.0611814 + 0.0253422i −0.413064 0.910702i \(-0.635542\pi\)
0.351883 + 0.936044i \(0.385542\pi\)
\(468\) 8.29912 6.17944i 0.383627 0.285645i
\(469\) 1.90088 + 4.58914i 0.0877746 + 0.211907i
\(470\) 0 0
\(471\) 13.8176 13.8176i 0.636679 0.636679i
\(472\) −2.96644 + 6.74383i −0.136542 + 0.310410i
\(473\) 10.6854 0.491316
\(474\) 3.94788 + 31.7610i 0.181332 + 1.45883i
\(475\) 0 0
\(476\) −2.45674 9.72965i −0.112605 0.445958i
\(477\) −5.72126 + 2.36982i −0.261958 + 0.108507i
\(478\) −6.16211 + 22.3493i −0.281848 + 1.02223i
\(479\) 31.8238 1.45407 0.727033 0.686602i \(-0.240899\pi\)
0.727033 + 0.686602i \(0.240899\pi\)
\(480\) 0 0
\(481\) −3.94223 −0.179750
\(482\) 0.751971 2.72732i 0.0342513 0.124226i
\(483\) −5.33176 + 2.20849i −0.242603 + 0.100490i
\(484\) 19.6737 4.96762i 0.894259 0.225801i
\(485\) 0 0
\(486\) 2.07278 + 16.6757i 0.0940234 + 0.756426i
\(487\) −9.67742 −0.438526 −0.219263 0.975666i \(-0.570365\pi\)
−0.219263 + 0.975666i \(0.570365\pi\)
\(488\) 6.39364 + 16.4357i 0.289426 + 0.744009i
\(489\) −4.86816 + 4.86816i −0.220146 + 0.220146i
\(490\) 0 0
\(491\) −9.42241 22.7477i −0.425227 1.02659i −0.980781 0.195109i \(-0.937494\pi\)
0.555554 0.831480i \(-0.312506\pi\)
\(492\) −1.28352 1.72380i −0.0578658 0.0777150i
\(493\) −22.1854 + 9.18949i −0.999180 + 0.413874i
\(494\) −1.17501 + 4.26164i −0.0528663 + 0.191740i
\(495\) 0 0
\(496\) −31.9264 + 17.2208i −1.43354 + 0.773235i
\(497\) 0.991599 + 0.991599i 0.0444793 + 0.0444793i
\(498\) 7.96117 + 14.0225i 0.356748 + 0.628361i
\(499\) −7.85461 + 18.9627i −0.351621 + 0.848887i 0.644800 + 0.764351i \(0.276941\pi\)
−0.996420 + 0.0845356i \(0.973059\pi\)
\(500\) 0 0
\(501\) −9.31983 + 3.86040i −0.416379 + 0.172470i
\(502\) 3.26107 0.405349i 0.145549 0.0180916i
\(503\) 20.3583 0.907731 0.453865 0.891070i \(-0.350045\pi\)
0.453865 + 0.891070i \(0.350045\pi\)
\(504\) 2.83427 + 0.0615228i 0.126248 + 0.00274044i
\(505\) 0 0
\(506\) −0.864436 6.95446i −0.0384289 0.309163i
\(507\) −2.29042 + 5.52957i −0.101721 + 0.245577i
\(508\) 8.32235 + 32.9598i 0.369245 + 1.46235i
\(509\) 1.82470 4.40522i 0.0808785 0.195258i −0.878267 0.478170i \(-0.841300\pi\)
0.959146 + 0.282912i \(0.0913004\pi\)
\(510\) 0 0
\(511\) 9.28860i 0.410903i
\(512\) −17.0071 + 14.9251i −0.751616 + 0.659601i
\(513\) −2.97199 2.97199i −0.131217 0.131217i
\(514\) −10.2583 + 5.82409i −0.452474 + 0.256890i
\(515\) 0 0
\(516\) −15.7346 + 26.3647i −0.692677 + 1.16064i
\(517\) 1.92912 + 0.799069i 0.0848427 + 0.0351430i
\(518\) −0.852133 0.663714i −0.0374406 0.0291619i
\(519\) 0.0439052 0.0439052i 0.00192722 0.00192722i
\(520\) 0 0
\(521\) 7.13106 + 7.13106i 0.312417 + 0.312417i 0.845845 0.533428i \(-0.179097\pi\)
−0.533428 + 0.845845i \(0.679097\pi\)
\(522\) −0.836790 6.73205i −0.0366253 0.294654i
\(523\) −5.75338 + 13.8899i −0.251578 + 0.607363i −0.998332 0.0577377i \(-0.981611\pi\)
0.746754 + 0.665100i \(0.231611\pi\)
\(524\) 17.9708 13.3809i 0.785058 0.584546i
\(525\) 0 0
\(526\) 2.34973 8.52222i 0.102453 0.371586i
\(527\) −39.6916 + 39.6916i −1.72899 + 1.72899i
\(528\) 1.40751 4.70399i 0.0612539 0.204715i
\(529\) 5.74014 0.249571
\(530\) 0 0
\(531\) −2.97554 1.23251i −0.129128 0.0534864i
\(532\) −0.971474 + 0.723349i −0.0421187 + 0.0313612i
\(533\) −3.12801 1.29567i −0.135489 0.0561215i
\(534\) −16.0447 12.4970i −0.694321 0.540797i
\(535\) 0 0
\(536\) 6.97852 15.8648i 0.301426 0.685253i
\(537\) 26.2201i 1.13148i
\(538\) −7.02443 5.47123i −0.302845 0.235881i
\(539\) −2.24368 5.41672i −0.0966420 0.233315i
\(540\) 0 0
\(541\) 16.0301 + 6.63988i 0.689187 + 0.285471i 0.699662 0.714474i \(-0.253334\pi\)
−0.0104742 + 0.999945i \(0.503334\pi\)
\(542\) −21.5964 5.95451i −0.927644 0.255768i
\(543\) −22.5429 + 22.5429i −0.967410 + 0.967410i
\(544\) −18.5923 + 29.6703i −0.797139 + 1.27210i
\(545\) 0 0
\(546\) −5.53937 + 3.14494i −0.237063 + 0.134591i
\(547\) 7.54852 + 18.2237i 0.322751 + 0.779191i 0.999092 + 0.0426017i \(0.0135647\pi\)
−0.676341 + 0.736589i \(0.736435\pi\)
\(548\) −2.93945 1.75428i −0.125567 0.0749391i
\(549\) −7.12260 + 2.95028i −0.303985 + 0.125915i
\(550\) 0 0
\(551\) 2.04943 + 2.04943i 0.0873086 + 0.0873086i
\(552\) 18.4320 + 8.10778i 0.784518 + 0.345090i
\(553\) 13.8145i 0.587451i
\(554\) −9.49416 + 12.1894i −0.403368 + 0.517879i
\(555\) 0 0
\(556\) −3.31591 0.485454i −0.140626 0.0205878i
\(557\) −9.98481 24.1055i −0.423070 1.02138i −0.981437 0.191787i \(-0.938572\pi\)
0.558367 0.829594i \(-0.311428\pi\)
\(558\) −7.82925 13.7901i −0.331439 0.583781i
\(559\) 48.3686i 2.04577i
\(560\) 0 0
\(561\) 7.59795i 0.320786i
\(562\) −8.36550 + 4.74946i −0.352877 + 0.200344i
\(563\) −8.21473 19.8321i −0.346210 0.835824i −0.997060 0.0766186i \(-0.975588\pi\)
0.650851 0.759206i \(-0.274412\pi\)
\(564\) −4.81227 + 3.58317i −0.202633 + 0.150879i
\(565\) 0 0
\(566\) 29.3472 + 22.8581i 1.23356 + 0.960799i
\(567\) 3.04938i 0.128062i
\(568\) 0.106187 4.89188i 0.00445551 0.205259i
\(569\) −14.8979 14.8979i −0.624551 0.624551i 0.322141 0.946692i \(-0.395597\pi\)
−0.946692 + 0.322141i \(0.895597\pi\)
\(570\) 0 0
\(571\) 6.23047 2.58075i 0.260737 0.108001i −0.248486 0.968636i \(-0.579933\pi\)
0.509223 + 0.860635i \(0.329933\pi\)
\(572\) −1.89369 7.49976i −0.0791793 0.313581i
\(573\) −5.45429 13.1678i −0.227856 0.550094i
\(574\) −0.457997 0.806697i −0.0191164 0.0336709i
\(575\) 0 0
\(576\) −6.68438 7.29140i −0.278516 0.303808i
\(577\) 18.1617 18.1617i 0.756080 0.756080i −0.219526 0.975607i \(-0.570451\pi\)
0.975607 + 0.219526i \(0.0704512\pi\)
\(578\) −8.01135 + 29.0563i −0.333228 + 1.20858i
\(579\) −23.2099 9.61386i −0.964571 0.399538i
\(580\) 0 0
\(581\) 2.66345 + 6.43014i 0.110498 + 0.266767i
\(582\) −3.30540 + 4.24375i −0.137013 + 0.175909i
\(583\) 4.62945i 0.191732i
\(584\) −23.4092 + 22.4145i −0.968679 + 0.927519i
\(585\) 0 0
\(586\) 16.9831 21.8043i 0.701564 0.900728i
\(587\) 22.7897 + 9.43980i 0.940631 + 0.389622i 0.799702 0.600398i \(-0.204991\pi\)
0.140929 + 0.990020i \(0.454991\pi\)
\(588\) 16.6688 + 2.44034i 0.687411 + 0.100638i
\(589\) 6.25928 + 2.59268i 0.257909 + 0.106830i
\(590\) 0 0
\(591\) 10.1876 0.419063
\(592\) 0.383603 + 3.74917i 0.0157660 + 0.154090i
\(593\) 6.73738 6.73738i 0.276671 0.276671i −0.555107 0.831779i \(-0.687323\pi\)
0.831779 + 0.555107i \(0.187323\pi\)
\(594\) 7.08980 + 1.95479i 0.290898 + 0.0802059i
\(595\) 0 0
\(596\) 5.38205 36.7623i 0.220457 1.50584i
\(597\) 10.9647 26.4712i 0.448757 1.08339i
\(598\) 31.4800 3.91295i 1.28731 0.160013i
\(599\) −17.9363 17.9363i −0.732856 0.732856i 0.238328 0.971185i \(-0.423401\pi\)
−0.971185 + 0.238328i \(0.923401\pi\)
\(600\) 0 0
\(601\) −29.0033 + 29.0033i −1.18307 + 1.18307i −0.204126 + 0.978945i \(0.565435\pi\)
−0.978945 + 0.204126i \(0.934565\pi\)
\(602\) −8.14333 + 10.4551i −0.331897 + 0.426119i
\(603\) 6.99992 + 2.89946i 0.285059 + 0.118075i
\(604\) 20.8286 5.25922i 0.847502 0.213995i
\(605\) 0 0
\(606\) −0.715198 1.25972i −0.0290529 0.0511726i
\(607\) −9.76508 9.76508i −0.396352 0.396352i 0.480592 0.876944i \(-0.340422\pi\)
−0.876944 + 0.480592i \(0.840422\pi\)
\(608\) 4.16727 + 0.702786i 0.169005 + 0.0285017i
\(609\) 4.17630i 0.169232i
\(610\) 0 0
\(611\) −3.61706 + 8.73236i −0.146331 + 0.353274i
\(612\) −13.1438 7.84433i −0.531309 0.317088i
\(613\) 2.09885 5.06707i 0.0847717 0.204657i −0.875809 0.482657i \(-0.839672\pi\)
0.960581 + 0.278000i \(0.0896716\pi\)
\(614\) −46.0457 + 5.72346i −1.85825 + 0.230980i
\(615\) 0 0
\(616\) 0.853329 1.93993i 0.0343816 0.0781621i
\(617\) 27.5407 1.10875 0.554374 0.832268i \(-0.312958\pi\)
0.554374 + 0.832268i \(0.312958\pi\)
\(618\) −2.25446 18.1373i −0.0906878 0.729591i
\(619\) −18.0221 + 7.46500i −0.724370 + 0.300044i −0.714236 0.699905i \(-0.753226\pi\)
−0.0101336 + 0.999949i \(0.503226\pi\)
\(620\) 0 0
\(621\) −11.5420 + 27.8648i −0.463163 + 1.11817i
\(622\) −16.9201 + 9.60627i −0.678433 + 0.385176i
\(623\) −6.20710 6.20710i −0.248682 0.248682i
\(624\) 21.2931 + 6.37122i 0.852405 + 0.255053i
\(625\) 0 0
\(626\) 16.9636 + 4.67716i 0.678000 + 0.186937i
\(627\) −0.847243 + 0.350939i −0.0338356 + 0.0140152i
\(628\) −29.1191 4.26308i −1.16198 0.170115i
\(629\) 2.23176 + 5.38794i 0.0889861 + 0.214831i
\(630\) 0 0
\(631\) 25.8413 25.8413i 1.02873 1.02873i 0.0291526 0.999575i \(-0.490719\pi\)
0.999575 0.0291526i \(-0.00928088\pi\)
\(632\) 34.8153 33.3360i 1.38488 1.32603i
\(633\) 17.8822 0.710752
\(634\) −30.1064 + 3.74221i −1.19568 + 0.148622i
\(635\) 0 0
\(636\) −11.4225 6.81700i −0.452931 0.270312i
\(637\) 24.5193 10.1562i 0.971490 0.402404i
\(638\) −4.88899 1.34798i −0.193557 0.0533672i
\(639\) 2.13901 0.0846180
\(640\) 0 0
\(641\) 10.5781 0.417809 0.208904 0.977936i \(-0.433010\pi\)
0.208904 + 0.977936i \(0.433010\pi\)
\(642\) −12.8447 3.54151i −0.506939 0.139772i
\(643\) 37.7706 15.6451i 1.48953 0.616982i 0.518312 0.855192i \(-0.326561\pi\)
0.971214 + 0.238210i \(0.0765606\pi\)
\(644\) 7.46335 + 4.45417i 0.294097 + 0.175519i
\(645\) 0 0
\(646\) 6.48967 0.806663i 0.255333 0.0317377i
\(647\) 2.74049 0.107740 0.0538699 0.998548i \(-0.482844\pi\)
0.0538699 + 0.998548i \(0.482844\pi\)
\(648\) −7.68507 + 7.35852i −0.301898 + 0.289070i
\(649\) −1.70251 + 1.70251i −0.0668293 + 0.0668293i
\(650\) 0 0
\(651\) 3.73588 + 9.01921i 0.146421 + 0.353491i
\(652\) 10.2592 + 1.50196i 0.401780 + 0.0588212i
\(653\) −18.0867 + 7.49175i −0.707787 + 0.293175i −0.707388 0.706825i \(-0.750127\pi\)
−0.000398301 1.00000i \(0.500127\pi\)
\(654\) −20.0161 5.51881i −0.782692 0.215802i
\(655\) 0 0
\(656\) −0.927840 + 3.10090i −0.0362261 + 0.121070i
\(657\) −10.0184 10.0184i −0.390854 0.390854i
\(658\) −2.25203 + 1.27857i −0.0877931 + 0.0498440i
\(659\) −12.5791 + 30.3686i −0.490012 + 1.18299i 0.464702 + 0.885467i \(0.346161\pi\)
−0.954714 + 0.297526i \(0.903839\pi\)
\(660\) 0 0
\(661\) 23.3971 9.69138i 0.910041 0.376951i 0.121968 0.992534i \(-0.461079\pi\)
0.788072 + 0.615583i \(0.211079\pi\)
\(662\) 4.10063 + 32.9899i 0.159376 + 1.28219i
\(663\) 34.3929 1.33571
\(664\) 9.77805 22.2291i 0.379462 0.862657i
\(665\) 0 0
\(666\) −1.63494 + 0.203223i −0.0633528 + 0.00787472i
\(667\) 7.95912 19.2150i 0.308179 0.744009i
\(668\) 13.0458 + 7.78583i 0.504758 + 0.301243i
\(669\) 13.4320 32.4277i 0.519311 1.25373i
\(670\) 0 0
\(671\) 5.76337i 0.222492i
\(672\) 3.52994 + 4.96207i 0.136171 + 0.191416i
\(673\) 20.6746 + 20.6746i 0.796946 + 0.796946i 0.982613 0.185667i \(-0.0594446\pi\)
−0.185667 + 0.982613i \(0.559445\pi\)
\(674\) −6.82070 12.0137i −0.262724 0.462750i
\(675\) 0 0
\(676\) 8.73961 2.20675i 0.336139 0.0848752i
\(677\) −34.6696 14.3606i −1.33246 0.551924i −0.401106 0.916032i \(-0.631374\pi\)
−0.931357 + 0.364107i \(0.881374\pi\)
\(678\) −23.7404 + 30.4800i −0.911744 + 1.17058i
\(679\) −1.64175 + 1.64175i −0.0630047 + 0.0630047i
\(680\) 0 0
\(681\) 21.8767 + 21.8767i 0.838318 + 0.838318i
\(682\) −11.7642 + 1.46228i −0.450474 + 0.0559937i
\(683\) −7.42928 + 17.9359i −0.284274 + 0.686297i −0.999926 0.0121593i \(-0.996129\pi\)
0.715652 + 0.698457i \(0.246129\pi\)
\(684\) −0.267619 + 1.82798i −0.0102327 + 0.0698946i
\(685\) 0 0
\(686\) 14.7459 + 4.06573i 0.563003 + 0.155230i
\(687\) 10.0984 10.0984i 0.385279 0.385279i
\(688\) 45.9999 4.70655i 1.75373 0.179436i
\(689\) −20.9557 −0.798347
\(690\) 0 0
\(691\) −10.7885 4.46873i −0.410413 0.169999i 0.167918 0.985801i \(-0.446296\pi\)
−0.578331 + 0.815802i \(0.696296\pi\)
\(692\) −0.0925259 0.0135459i −0.00351731 0.000514938i
\(693\) 0.855947 + 0.354545i 0.0325147 + 0.0134680i
\(694\) 6.57177 8.43740i 0.249461 0.320279i
\(695\) 0 0
\(696\) 10.5251 10.0779i 0.398954 0.382002i
\(697\) 5.00863i 0.189715i
\(698\) −2.98002 + 3.82601i −0.112795 + 0.144816i
\(699\) −8.59530 20.7509i −0.325104 0.784871i
\(700\) 0 0
\(701\) −47.2867 19.5868i −1.78599 0.739782i −0.991114 0.133014i \(-0.957535\pi\)
−0.794879 0.606769i \(-0.792465\pi\)
\(702\) −8.84853 + 32.0927i −0.333966 + 1.21126i
\(703\) 0.497724 0.497724i 0.0187720 0.0187720i
\(704\) −6.94822 + 2.53073i −0.261871 + 0.0953803i
\(705\) 0 0
\(706\) −6.97130 12.2790i −0.262369 0.462124i
\(707\) −0.239273 0.577657i −0.00899879 0.0217250i
\(708\) −1.69369 6.70768i −0.0636528 0.252090i
\(709\) −0.906566 + 0.375512i −0.0340468 + 0.0141027i −0.399642 0.916671i \(-0.630866\pi\)
0.365595 + 0.930774i \(0.380866\pi\)
\(710\) 0 0
\(711\) 14.8998 + 14.8998i 0.558788 + 0.558788i
\(712\) −0.664697 + 30.6216i −0.0249106 + 1.14759i
\(713\) 48.6169i 1.82072i
\(714\) 7.43419 + 5.79038i 0.278218 + 0.216700i
\(715\) 0 0
\(716\) 31.6729 23.5833i 1.18367 0.881350i
\(717\) −8.33090 20.1126i −0.311123 0.751117i
\(718\) −12.1156 + 6.87857i −0.452151 + 0.256706i
\(719\) 42.1446i 1.57173i −0.618399 0.785864i \(-0.712218\pi\)
0.618399 0.785864i \(-0.287782\pi\)
\(720\) 0 0
\(721\) 7.88884i 0.293796i
\(722\) 12.8766 + 22.6803i 0.479219 + 0.844075i
\(723\) 1.01663 + 2.45436i 0.0378089 + 0.0912787i
\(724\) 47.5070 + 6.95509i 1.76558 + 0.258484i
\(725\) 0 0
\(726\) −11.7084 + 15.0322i −0.434538 + 0.557897i
\(727\) 17.3527i 0.643576i 0.946812 + 0.321788i \(0.104284\pi\)
−0.946812 + 0.321788i \(0.895716\pi\)
\(728\) 8.78130 + 3.86268i 0.325457 + 0.143160i
\(729\) −19.1377 19.1377i −0.708804 0.708804i
\(730\) 0 0
\(731\) 66.1065 27.3822i 2.44504 1.01277i
\(732\) −14.2202 8.48673i −0.525596 0.313679i
\(733\) 1.67662 + 4.04772i 0.0619273 + 0.149506i 0.951814 0.306676i \(-0.0992167\pi\)
−0.889887 + 0.456182i \(0.849217\pi\)
\(734\) 18.2864 10.3820i 0.674962 0.383206i
\(735\) 0 0
\(736\) −6.78453 29.5576i −0.250081 1.08951i
\(737\) 4.00513 4.00513i 0.147531 0.147531i
\(738\) −1.36406 0.376096i −0.0502117 0.0138443i
\(739\) 27.4135 + 11.3551i 1.00842 + 0.417703i 0.824879 0.565309i \(-0.191243\pi\)
0.183544 + 0.983011i \(0.441243\pi\)
\(740\) 0 0
\(741\) −1.58856 3.83513i −0.0583573 0.140887i
\(742\) −4.52967 3.52809i −0.166289 0.129520i
\(743\) 23.9173i 0.877440i −0.898624 0.438720i \(-0.855432\pi\)
0.898624 0.438720i \(-0.144568\pi\)
\(744\) 13.7151 31.1796i 0.502822 1.14310i
\(745\) 0 0
\(746\) −17.9731 13.9990i −0.658042 0.512539i
\(747\) 9.80804 + 4.06262i 0.358858 + 0.148644i
\(748\) −9.17805 + 6.83389i −0.335583 + 0.249872i
\(749\) −5.31324 2.20081i −0.194141 0.0804160i
\(750\) 0 0
\(751\) −22.5603 −0.823236 −0.411618 0.911357i \(-0.635036\pi\)
−0.411618 + 0.911357i \(0.635036\pi\)
\(752\) 8.65668 + 2.59022i 0.315677 + 0.0944555i
\(753\) −2.18198 + 2.18198i −0.0795159 + 0.0795159i
\(754\) 6.10178 22.1305i 0.222214 0.805945i
\(755\) 0 0
\(756\) −7.31577 + 5.44725i −0.266072 + 0.198115i
\(757\) 9.21573 22.2487i 0.334951 0.808644i −0.663233 0.748413i \(-0.730816\pi\)
0.998184 0.0602313i \(-0.0191838\pi\)
\(758\) 1.85855 + 14.9522i 0.0675054 + 0.543087i
\(759\) 4.65324 + 4.65324i 0.168902 + 0.168902i
\(760\) 0 0
\(761\) −8.29763 + 8.29763i −0.300789 + 0.300789i −0.841322 0.540534i \(-0.818222\pi\)
0.540534 + 0.841322i \(0.318222\pi\)
\(762\) −25.1838 19.6153i −0.912311 0.710586i
\(763\) −8.27972 3.42957i −0.299746 0.124159i
\(764\) −11.0005 + 18.4322i −0.397983 + 0.666855i
\(765\) 0 0
\(766\) 0.426137 0.241937i 0.0153970 0.00874154i
\(767\) −7.70657 7.70657i −0.278268 0.278268i
\(768\) 3.98727 20.8703i 0.143878 0.753091i
\(769\) 22.7180i 0.819233i −0.912258 0.409616i \(-0.865663\pi\)
0.912258 0.409616i \(-0.134337\pi\)
\(770\) 0 0
\(771\) 4.23900 10.2338i 0.152664 0.368563i
\(772\) 9.26267 + 36.6838i 0.333371 + 1.32028i
\(773\) 1.94650 4.69925i 0.0700106 0.169020i −0.885001 0.465589i \(-0.845842\pi\)
0.955011 + 0.296569i \(0.0958424\pi\)
\(774\) 2.49341 + 20.0597i 0.0896237 + 0.721030i
\(775\) 0 0
\(776\) 8.09930 + 0.175810i 0.290748 + 0.00631120i
\(777\) 1.01426 0.0363862
\(778\) 14.7479 1.83315i 0.528737 0.0657217i
\(779\) 0.558509 0.231342i 0.0200106 0.00828868i
\(780\) 0 0
\(781\) 0.611936 1.47735i 0.0218968 0.0528636i
\(782\) −23.1693 40.8093i −0.828531 1.45934i
\(783\) 15.4334 + 15.4334i 0.551545 + 0.551545i
\(784\) −12.0447 22.3303i −0.430169 0.797510i
\(785\) 0 0
\(786\) −5.59221 + 20.2823i −0.199468 + 0.723447i
\(787\) 29.8282 12.3552i 1.06326 0.440417i 0.218653 0.975803i \(-0.429834\pi\)
0.844608 + 0.535386i \(0.179834\pi\)
\(788\) −9.16314 12.3063i −0.326423 0.438394i
\(789\) 3.17673 + 7.66930i 0.113095 + 0.273034i
\(790\) 0 0
\(791\) −11.7916 + 11.7916i −0.419260 + 0.419260i
\(792\) −1.17198 3.01272i −0.0416444 0.107052i
\(793\) −26.0884 −0.926428
\(794\) 2.50825 + 20.1791i 0.0890144 + 0.716128i
\(795\) 0 0
\(796\) −41.8384 + 10.5642i −1.48292 + 0.374438i
\(797\) 14.4591 5.98915i 0.512167 0.212147i −0.111605 0.993753i \(-0.535599\pi\)
0.623772 + 0.781606i \(0.285599\pi\)
\(798\) 0.302306 1.09643i 0.0107015 0.0388133i
\(799\) 13.9824 0.494662
\(800\) 0 0
\(801\) −13.3895 −0.473096
\(802\) 13.6659 49.5647i 0.482559 1.75019i
\(803\) −9.78546 + 4.05327i −0.345321 + 0.143037i
\(804\) 3.98438 + 15.7797i 0.140518 + 0.556508i
\(805\) 0 0
\(806\) −6.61916 53.2517i −0.233150 1.87571i
\(807\) 8.36087 0.294316
\(808\) −0.878419 + 1.99697i −0.0309027 + 0.0702532i
\(809\) 36.9823 36.9823i 1.30023 1.30023i 0.371991 0.928236i \(-0.378675\pi\)
0.928236 0.371991i \(-0.121325\pi\)
\(810\) 0 0
\(811\) 16.7840 + 40.5201i 0.589365 + 1.42285i 0.884111 + 0.467278i \(0.154765\pi\)
−0.294745 + 0.955576i \(0.595235\pi\)
\(812\) 5.04482 3.75632i 0.177038 0.131821i
\(813\) 19.4350 8.05023i 0.681614 0.282334i
\(814\) −0.327371 + 1.18734i −0.0114744 + 0.0416162i
\(815\) 0 0
\(816\) −3.34663 32.7086i −0.117156 1.14503i
\(817\) −6.10674 6.10674i −0.213648 0.213648i
\(818\) −1.71756 3.02523i −0.0600529 0.105775i
\(819\) −1.60488 + 3.87453i −0.0560791 + 0.135387i
\(820\) 0 0
\(821\) 41.4829 17.1828i 1.44776 0.599682i 0.486095 0.873906i \(-0.338421\pi\)
0.961666 + 0.274223i \(0.0884207\pi\)
\(822\) 3.18986 0.396498i 0.111259 0.0138295i
\(823\) −5.15995 −0.179865 −0.0899323 0.995948i \(-0.528665\pi\)
−0.0899323 + 0.995948i \(0.528665\pi\)
\(824\) −19.8815 + 19.0367i −0.692605 + 0.663176i
\(825\) 0 0
\(826\) −0.368336 2.96329i −0.0128160 0.103106i
\(827\) 1.85424 4.47653i 0.0644782 0.155664i −0.888356 0.459155i \(-0.848152\pi\)
0.952834 + 0.303491i \(0.0981522\pi\)
\(828\) 12.8539 3.24560i 0.446702 0.112792i
\(829\) 7.40324 17.8730i 0.257125 0.620755i −0.741621 0.670819i \(-0.765943\pi\)
0.998746 + 0.0500640i \(0.0159425\pi\)
\(830\) 0 0
\(831\) 14.5085i 0.503295i
\(832\) −11.4556 31.4518i −0.397151 1.09039i
\(833\) −27.7615 27.7615i −0.961879 0.961879i
\(834\) 2.73662 1.55370i 0.0947616 0.0538003i
\(835\) 0 0
\(836\) 1.18596 + 0.707791i 0.0410174 + 0.0244795i
\(837\) 47.1361 + 19.5244i 1.62926 + 0.674863i
\(838\) 36.8036 + 28.6658i 1.27136 + 0.990244i
\(839\) 11.2001 11.2001i 0.386669 0.386669i −0.486828 0.873498i \(-0.661846\pi\)
0.873498 + 0.486828i \(0.161846\pi\)
\(840\) 0 0
\(841\) 9.86351 + 9.86351i 0.340121 + 0.340121i
\(842\) −1.00571 8.09099i −0.0346589 0.278834i
\(843\) 3.45684 8.34556i 0.119060 0.287436i
\(844\) −16.0839 21.6010i −0.553630 0.743537i
\(845\) 0 0
\(846\) −1.04993 + 3.80799i −0.0360974 + 0.130921i
\(847\) −5.81541 + 5.81541i −0.199820 + 0.199820i
\(848\) 2.03911 + 19.9294i 0.0700234 + 0.684379i
\(849\) −34.9307 −1.19882
\(850\) 0 0
\(851\) −4.66656 1.93295i −0.159968 0.0662607i
\(852\) 2.74403 + 3.68530i 0.0940091 + 0.126256i
\(853\) 1.97932 + 0.819862i 0.0677707 + 0.0280715i 0.416311 0.909222i \(-0.363323\pi\)
−0.348541 + 0.937294i \(0.613323\pi\)
\(854\) −5.63915 4.39225i −0.192968 0.150300i
\(855\) 0 0
\(856\) 7.27497 + 18.7013i 0.248653 + 0.639197i
\(857\) 15.5286i 0.530448i −0.964187 0.265224i \(-0.914554\pi\)
0.964187 0.265224i \(-0.0854460\pi\)
\(858\) 5.73039 + 4.46331i 0.195632 + 0.152375i
\(859\) 14.0088 + 33.8203i 0.477974 + 1.15393i 0.960557 + 0.278082i \(0.0896987\pi\)
−0.482583 + 0.875850i \(0.660301\pi\)
\(860\) 0 0
\(861\) 0.804774 + 0.333348i 0.0274266 + 0.0113605i
\(862\) 15.7493 + 4.34238i 0.536425 + 0.147902i
\(863\) −13.2837 + 13.2837i −0.452182 + 0.452182i −0.896078 0.443896i \(-0.853596\pi\)
0.443896 + 0.896078i \(0.353596\pi\)
\(864\) 31.3820 + 5.29239i 1.06764 + 0.180051i
\(865\) 0 0
\(866\) −8.46766 + 4.80747i −0.287743 + 0.163364i
\(867\) −10.8310 26.1483i −0.367840 0.888043i
\(868\) 7.53469 12.6250i 0.255744 0.428521i
\(869\) 14.5534 6.02822i 0.493691 0.204494i
\(870\) 0 0
\(871\) 18.1296 + 18.1296i 0.614298 + 0.614298i
\(872\) 11.3367 + 29.1426i 0.383910 + 0.986892i
\(873\) 3.54148i 0.119861i
\(874\) −3.48046 + 4.46852i −0.117728 + 0.151150i
\(875\) 0 0
\(876\) 4.40854 30.1127i 0.148951 1.01741i
\(877\) 1.17244 + 2.83052i 0.0395905 + 0.0955799i 0.942438 0.334381i \(-0.108527\pi\)
−0.902847 + 0.429961i \(0.858527\pi\)
\(878\) −12.3173 21.6951i −0.415688 0.732175i
\(879\) 25.9527i 0.875362i
\(880\) 0 0
\(881\) 32.6206i 1.09902i −0.835488 0.549508i \(-0.814815\pi\)
0.835488 0.549508i \(-0.185185\pi\)
\(882\) 9.64522 5.47602i 0.324771 0.184387i
\(883\) −5.81184 14.0310i −0.195584 0.472181i 0.795413 0.606068i \(-0.207254\pi\)
−0.990997 + 0.133887i \(0.957254\pi\)
\(884\) −30.9343 41.5454i −1.04043 1.39732i
\(885\) 0 0
\(886\) 12.3315 + 9.60485i 0.414286 + 0.322681i
\(887\) 26.0808i 0.875708i −0.899046 0.437854i \(-0.855739\pi\)
0.899046 0.437854i \(-0.144261\pi\)
\(888\) −2.44752 2.55613i −0.0821334 0.0857782i
\(889\) −9.74267 9.74267i −0.326759 0.326759i
\(890\) 0 0
\(891\) −3.21250 + 1.33066i −0.107623 + 0.0445788i
\(892\) −51.2528 + 12.9413i −1.71607 + 0.433308i
\(893\) −0.645829 1.55917i −0.0216118 0.0521756i
\(894\) 17.2253 + 30.3400i 0.576101 + 1.01472i
\(895\) 0 0
\(896\) 2.81904 8.72712i 0.0941775 0.291553i
\(897\) −21.0633 + 21.0633i −0.703285 + 0.703285i
\(898\) 8.84753 32.0890i 0.295246 1.07082i
\(899\) −32.5042 13.4637i −1.08408 0.449039i
\(900\) 0 0
\(901\) 11.8633 + 28.6406i 0.395224 + 0.954156i
\(902\) −0.649991 + 0.834515i −0.0216423 + 0.0277863i
\(903\) 12.4442i 0.414119i
\(904\) 58.1717 + 1.26272i 1.93476 + 0.0419974i
\(905\) 0 0
\(906\) −12.3957 + 15.9146i −0.411818 + 0.528727i
\(907\) −22.6408 9.37811i −0.751774 0.311395i −0.0263091 0.999654i \(-0.508375\pi\)
−0.725465 + 0.688259i \(0.758375\pi\)
\(908\) 6.74955 46.1031i 0.223992 1.52998i
\(909\) −0.881114 0.364969i −0.0292247 0.0121053i
\(910\) 0 0
\(911\) 19.6911 0.652395 0.326198 0.945302i \(-0.394233\pi\)
0.326198 + 0.945302i \(0.394233\pi\)
\(912\) −3.49274 + 1.88395i −0.115656 + 0.0623837i
\(913\) 5.61184 5.61184i 0.185725 0.185725i
\(914\) 13.4029 + 3.69542i 0.443329 + 0.122234i
\(915\) 0 0
\(916\) −21.2814 3.11563i −0.703158 0.102943i
\(917\) −3.47519 + 8.38984i −0.114761 + 0.277057i
\(918\) 48.8711 6.07465i 1.61299 0.200493i
\(919\) 14.8097 + 14.8097i 0.488526 + 0.488526i 0.907841 0.419315i \(-0.137730\pi\)
−0.419315 + 0.907841i \(0.637730\pi\)
\(920\) 0 0
\(921\) 30.8092 30.8092i 1.01520 1.01520i
\(922\) −19.4556 + 24.9787i −0.640735 + 0.822631i
\(923\) 6.68735 + 2.76999i 0.220117 + 0.0911753i
\(924\) 0.487208 + 1.92954i 0.0160280 + 0.0634771i
\(925\) 0 0
\(926\) −10.0862 17.7654i −0.331454 0.583808i
\(927\) −8.50865 8.50865i −0.279461 0.279461i
\(928\) −21.6405 3.64953i −0.710383 0.119802i
\(929\) 2.48749i 0.0816119i −0.999167 0.0408059i \(-0.987007\pi\)
0.999167 0.0408059i \(-0.0129925\pi\)
\(930\) 0 0
\(931\) −1.81340 + 4.37794i −0.0594318 + 0.143481i
\(932\) −17.3354 + 29.0469i −0.567840 + 0.951464i
\(933\) 6.99181 16.8797i 0.228902 0.552618i
\(934\) −2.00839 + 0.249642i −0.0657166 + 0.00816854i
\(935\) 0 0
\(936\) 13.6374 5.30506i 0.445752 0.173401i
\(937\) 29.6925 0.970013 0.485006 0.874511i \(-0.338817\pi\)
0.485006 + 0.874511i \(0.338817\pi\)
\(938\) 0.866504 + 6.97110i 0.0282924 + 0.227614i
\(939\) −15.2658 + 6.32331i −0.498181 + 0.206353i
\(940\) 0 0
\(941\) 15.1479 36.5702i 0.493807 1.19215i −0.458962 0.888456i \(-0.651778\pi\)
0.952768 0.303698i \(-0.0982215\pi\)
\(942\) 24.0320 13.6440i 0.783006 0.444547i
\(943\) −3.06745 3.06745i −0.0998899 0.0998899i
\(944\) −6.57927 + 8.07906i −0.214137 + 0.262951i
\(945\) 0 0
\(946\) 14.5679 + 4.01663i 0.473642 + 0.130592i
\(947\) −35.1138 + 14.5446i −1.14104 + 0.472636i −0.871521 0.490358i \(-0.836866\pi\)
−0.269523 + 0.962994i \(0.586866\pi\)
\(948\) −6.55660 + 44.7851i −0.212949 + 1.45455i
\(949\) −18.3475 44.2948i −0.595586 1.43787i
\(950\) 0 0
\(951\) 20.1442 20.1442i 0.653222 0.653222i
\(952\) 0.307983 14.1883i 0.00998178 0.459846i
\(953\) −34.9734 −1.13290 −0.566450 0.824096i \(-0.691684\pi\)
−0.566450 + 0.824096i \(0.691684\pi\)
\(954\) −8.69084 + 1.08027i −0.281376 + 0.0349749i
\(955\) 0 0
\(956\) −16.8021 + 28.1534i −0.543420 + 0.910547i
\(957\) 4.39969 1.82241i 0.142222 0.0589102i
\(958\) 43.3867 + 11.9625i 1.40176 + 0.386491i
\(959\) 1.38743 0.0448025
\(960\) 0 0
\(961\) −51.2404 −1.65292
\(962\) −5.37461 1.48188i −0.173284 0.0477777i
\(963\) −8.10441 + 3.35696i −0.261161 + 0.108176i
\(964\) 2.05039 3.43560i 0.0660385 0.110653i
\(965\) 0 0
\(966\) −8.09917 + 1.00672i −0.260587 + 0.0323908i
\(967\) 11.5019 0.369876 0.184938 0.982750i \(-0.440792\pi\)
0.184938 + 0.982750i \(0.440792\pi\)
\(968\) 28.6893 + 0.622752i 0.922109 + 0.0200160i
\(969\) −4.34225 + 4.34225i −0.139493 + 0.139493i
\(970\) 0 0
\(971\) −12.3780 29.8832i −0.397230 0.958998i −0.988320 0.152393i \(-0.951302\pi\)
0.591090 0.806606i \(-0.298698\pi\)
\(972\) −3.44246 + 23.5139i −0.110417 + 0.754207i
\(973\) 1.25491 0.519799i 0.0402305 0.0166640i
\(974\) −13.1936 3.63772i −0.422751 0.116560i
\(975\) 0 0
\(976\) 2.53856 + 24.8108i 0.0812574 + 0.794176i
\(977\) −13.9126 13.9126i −0.445104 0.445104i 0.448619 0.893723i \(-0.351916\pi\)
−0.893723 + 0.448619i \(0.851916\pi\)
\(978\) −8.46690 + 4.80704i −0.270742 + 0.153712i
\(979\) −3.83053 + 9.24771i −0.122424 + 0.295558i
\(980\) 0 0
\(981\) −12.6293 + 5.23121i −0.403221 + 0.167020i
\(982\) −4.29514 34.5548i −0.137063 1.10269i
\(983\) 29.1931 0.931115 0.465557 0.885018i \(-0.345854\pi\)
0.465557 + 0.885018i \(0.345854\pi\)
\(984\) −1.10191 2.83261i −0.0351276 0.0903002i
\(985\) 0 0
\(986\) −33.7006 + 4.18897i −1.07325 + 0.133404i
\(987\) 0.930596 2.24666i 0.0296212 0.0715119i
\(988\) −3.20388 + 5.36838i −0.101929 + 0.170791i
\(989\) −23.7160 + 57.2556i −0.754126 + 1.82062i
\(990\) 0 0
\(991\) 16.1180i 0.512006i 0.966676 + 0.256003i \(0.0824057\pi\)
−0.966676 + 0.256003i \(0.917594\pi\)
\(992\) −49.9998 + 11.4767i −1.58749 + 0.364386i
\(993\) −22.0736 22.0736i −0.700485 0.700485i
\(994\) 0.979148 + 1.72463i 0.0310567 + 0.0547019i
\(995\) 0 0
\(996\) 5.58278 + 22.1100i 0.176897 + 0.700582i
\(997\) 4.69692 + 1.94553i 0.148753 + 0.0616154i 0.455818 0.890073i \(-0.349347\pi\)
−0.307065 + 0.951689i \(0.599347\pi\)
\(998\) −17.8366 + 22.9001i −0.564606 + 0.724890i
\(999\) 3.74816 3.74816i 0.118586 0.118586i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.bb.b.643.22 88
5.2 odd 4 800.2.v.b.707.10 88
5.3 odd 4 160.2.u.a.67.13 yes 88
5.4 even 2 160.2.ba.a.3.1 yes 88
20.3 even 4 640.2.u.a.47.16 88
20.19 odd 2 640.2.ba.a.303.7 88
32.11 odd 8 800.2.v.b.43.10 88
160.43 even 8 160.2.ba.a.107.1 yes 88
160.53 odd 8 640.2.ba.a.207.7 88
160.107 even 8 inner 800.2.bb.b.107.22 88
160.139 odd 8 160.2.u.a.43.13 88
160.149 even 8 640.2.u.a.463.16 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.2.u.a.43.13 88 160.139 odd 8
160.2.u.a.67.13 yes 88 5.3 odd 4
160.2.ba.a.3.1 yes 88 5.4 even 2
160.2.ba.a.107.1 yes 88 160.43 even 8
640.2.u.a.47.16 88 20.3 even 4
640.2.u.a.463.16 88 160.149 even 8
640.2.ba.a.207.7 88 160.53 odd 8
640.2.ba.a.303.7 88 20.19 odd 2
800.2.v.b.43.10 88 32.11 odd 8
800.2.v.b.707.10 88 5.2 odd 4
800.2.bb.b.107.22 88 160.107 even 8 inner
800.2.bb.b.643.22 88 1.1 even 1 trivial