Properties

Label 800.2.bb.b.643.12
Level $800$
Weight $2$
Character 800.643
Analytic conductor $6.388$
Analytic rank $0$
Dimension $88$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [800,2,Mod(107,800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("800.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(800, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 5, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.bb (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 643.12
Character \(\chi\) \(=\) 800.643
Dual form 800.2.bb.b.107.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.178125 + 1.40295i) q^{2} +(-2.54622 + 1.05468i) q^{3} +(-1.93654 + 0.499802i) q^{4} +(-1.93321 - 3.38436i) q^{6} +3.70855 q^{7} +(-1.04614 - 2.62785i) q^{8} +(3.24959 - 3.24959i) q^{9} +(1.62306 + 3.91841i) q^{11} +(4.40374 - 3.31504i) q^{12} +(2.41888 - 1.00193i) q^{13} +(0.660586 + 5.20291i) q^{14} +(3.50040 - 1.93578i) q^{16} +(2.57998 + 2.57998i) q^{17} +(5.13785 + 3.98018i) q^{18} +(-0.820706 + 1.98136i) q^{19} +(-9.44280 + 3.91133i) q^{21} +(-5.20824 + 2.97504i) q^{22} +5.30550 q^{23} +(5.43526 + 5.58774i) q^{24} +(1.83653 + 3.21510i) q^{26} +(-1.68286 + 4.06279i) q^{27} +(-7.18176 + 1.85354i) q^{28} +(2.00240 - 4.83422i) q^{29} +1.44002i q^{31} +(3.33931 + 4.56607i) q^{32} +(-8.26535 - 8.26535i) q^{33} +(-3.16003 + 4.07914i) q^{34} +(-4.66882 + 7.91712i) q^{36} +(-8.58562 - 3.55628i) q^{37} +(-2.92594 - 0.798480i) q^{38} +(-5.10230 + 5.10230i) q^{39} +(1.63341 + 1.63341i) q^{41} +(-7.16941 - 12.5511i) q^{42} +(-2.43161 + 5.87042i) q^{43} +(-5.10156 - 6.77697i) q^{44} +(0.945044 + 7.44336i) q^{46} +(2.96683 - 2.96683i) q^{47} +(-6.87117 + 8.62072i) q^{48} +6.75333 q^{49} +(-9.29026 - 3.84815i) q^{51} +(-4.18350 + 3.14925i) q^{52} +(-2.41336 - 0.999648i) q^{53} +(-5.99965 - 1.63729i) q^{54} +(-3.87968 - 9.74550i) q^{56} -5.91057i q^{57} +(7.13886 + 1.94817i) q^{58} +(2.10156 + 5.07362i) q^{59} +(-6.83341 - 2.83049i) q^{61} +(-2.02027 + 0.256503i) q^{62} +(12.0513 - 12.0513i) q^{63} +(-5.81116 + 5.49822i) q^{64} +(10.1236 - 13.0682i) q^{66} +(3.49753 + 8.44379i) q^{67} +(-6.28572 - 3.70676i) q^{68} +(-13.5090 + 5.59561i) q^{69} +(-2.44190 - 2.44190i) q^{71} +(-11.9390 - 5.13988i) q^{72} +7.04282i q^{73} +(3.45997 - 12.6787i) q^{74} +(0.599045 - 4.24718i) q^{76} +(6.01920 + 14.5316i) q^{77} +(-8.06712 - 6.24942i) q^{78} -0.203871i q^{79} +1.66719i q^{81} +(-2.00064 + 2.58255i) q^{82} +(2.40680 + 5.81053i) q^{83} +(16.3315 - 12.2940i) q^{84} +(-8.66905 - 2.36576i) q^{86} +14.4209i q^{87} +(8.59904 - 8.36438i) q^{88} +(-1.94360 - 1.94360i) q^{89} +(8.97054 - 3.71572i) q^{91} +(-10.2743 + 2.65170i) q^{92} +(-1.51876 - 3.66661i) q^{93} +(4.69079 + 3.63385i) q^{94} +(-13.3184 - 8.10434i) q^{96} +(-3.62241 + 3.62241i) q^{97} +(1.20294 + 9.47459i) q^{98} +(18.0075 + 7.45896i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{2} + 4 q^{3} - 8 q^{6} + 8 q^{7} - 8 q^{8} - 8 q^{11} + 20 q^{12} + 4 q^{13} - 16 q^{14} - 8 q^{16} + 12 q^{18} - 16 q^{19} - 8 q^{21} + 20 q^{22} + 8 q^{23} + 32 q^{24} - 8 q^{26} - 8 q^{27}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.178125 + 1.40295i 0.125954 + 0.992036i
\(3\) −2.54622 + 1.05468i −1.47006 + 0.608920i −0.966874 0.255256i \(-0.917840\pi\)
−0.503190 + 0.864176i \(0.667840\pi\)
\(4\) −1.93654 + 0.499802i −0.968271 + 0.249901i
\(5\) 0 0
\(6\) −1.93321 3.38436i −0.789231 1.38166i
\(7\) 3.70855 1.40170 0.700850 0.713309i \(-0.252804\pi\)
0.700850 + 0.713309i \(0.252804\pi\)
\(8\) −1.04614 2.62785i −0.369868 0.929084i
\(9\) 3.24959 3.24959i 1.08320 1.08320i
\(10\) 0 0
\(11\) 1.62306 + 3.91841i 0.489371 + 1.18145i 0.955037 + 0.296486i \(0.0958148\pi\)
−0.465666 + 0.884961i \(0.654185\pi\)
\(12\) 4.40374 3.31504i 1.27125 0.956970i
\(13\) 2.41888 1.00193i 0.670877 0.277886i −0.0211303 0.999777i \(-0.506726\pi\)
0.692008 + 0.721890i \(0.256726\pi\)
\(14\) 0.660586 + 5.20291i 0.176549 + 1.39054i
\(15\) 0 0
\(16\) 3.50040 1.93578i 0.875099 0.483944i
\(17\) 2.57998 + 2.57998i 0.625737 + 0.625737i 0.946993 0.321256i \(-0.104105\pi\)
−0.321256 + 0.946993i \(0.604105\pi\)
\(18\) 5.13785 + 3.98018i 1.21100 + 0.938137i
\(19\) −0.820706 + 1.98136i −0.188283 + 0.454555i −0.989629 0.143646i \(-0.954117\pi\)
0.801346 + 0.598201i \(0.204117\pi\)
\(20\) 0 0
\(21\) −9.44280 + 3.91133i −2.06059 + 0.853523i
\(22\) −5.20824 + 2.97504i −1.11040 + 0.634281i
\(23\) 5.30550 1.10627 0.553137 0.833091i \(-0.313431\pi\)
0.553137 + 0.833091i \(0.313431\pi\)
\(24\) 5.43526 + 5.58774i 1.10947 + 1.14059i
\(25\) 0 0
\(26\) 1.83653 + 3.21510i 0.360173 + 0.630534i
\(27\) −1.68286 + 4.06279i −0.323867 + 0.781883i
\(28\) −7.18176 + 1.85354i −1.35723 + 0.350286i
\(29\) 2.00240 4.83422i 0.371837 0.897693i −0.621603 0.783333i \(-0.713518\pi\)
0.993439 0.114360i \(-0.0364818\pi\)
\(30\) 0 0
\(31\) 1.44002i 0.258635i 0.991603 + 0.129317i \(0.0412786\pi\)
−0.991603 + 0.129317i \(0.958721\pi\)
\(32\) 3.33931 + 4.56607i 0.590312 + 0.807175i
\(33\) −8.26535 8.26535i −1.43881 1.43881i
\(34\) −3.16003 + 4.07914i −0.541940 + 0.699568i
\(35\) 0 0
\(36\) −4.66882 + 7.91712i −0.778136 + 1.31952i
\(37\) −8.58562 3.55628i −1.41147 0.584649i −0.458766 0.888557i \(-0.651708\pi\)
−0.952701 + 0.303908i \(0.901708\pi\)
\(38\) −2.92594 0.798480i −0.474650 0.129531i
\(39\) −5.10230 + 5.10230i −0.817021 + 0.817021i
\(40\) 0 0
\(41\) 1.63341 + 1.63341i 0.255096 + 0.255096i 0.823056 0.567960i \(-0.192267\pi\)
−0.567960 + 0.823056i \(0.692267\pi\)
\(42\) −7.16941 12.5511i −1.10626 1.93667i
\(43\) −2.43161 + 5.87042i −0.370817 + 0.895231i 0.622796 + 0.782385i \(0.285997\pi\)
−0.993612 + 0.112847i \(0.964003\pi\)
\(44\) −5.10156 6.77697i −0.769089 1.02167i
\(45\) 0 0
\(46\) 0.945044 + 7.44336i 0.139339 + 1.09746i
\(47\) 2.96683 2.96683i 0.432757 0.432757i −0.456808 0.889565i \(-0.651007\pi\)
0.889565 + 0.456808i \(0.151007\pi\)
\(48\) −6.87117 + 8.62072i −0.991768 + 1.24429i
\(49\) 6.75333 0.964762
\(50\) 0 0
\(51\) −9.29026 3.84815i −1.30090 0.538849i
\(52\) −4.18350 + 3.14925i −0.580147 + 0.436722i
\(53\) −2.41336 0.999648i −0.331501 0.137312i 0.210724 0.977546i \(-0.432418\pi\)
−0.542225 + 0.840233i \(0.682418\pi\)
\(54\) −5.99965 1.63729i −0.816449 0.222806i
\(55\) 0 0
\(56\) −3.87968 9.74550i −0.518444 1.30230i
\(57\) 5.91057i 0.782874i
\(58\) 7.13886 + 1.94817i 0.937378 + 0.255808i
\(59\) 2.10156 + 5.07362i 0.273600 + 0.660529i 0.999632 0.0271319i \(-0.00863741\pi\)
−0.726032 + 0.687661i \(0.758637\pi\)
\(60\) 0 0
\(61\) −6.83341 2.83049i −0.874928 0.362407i −0.100401 0.994947i \(-0.532012\pi\)
−0.774528 + 0.632540i \(0.782012\pi\)
\(62\) −2.02027 + 0.256503i −0.256575 + 0.0325760i
\(63\) 12.0513 12.0513i 1.51832 1.51832i
\(64\) −5.81116 + 5.49822i −0.726395 + 0.687277i
\(65\) 0 0
\(66\) 10.1236 13.0682i 1.24613 1.60858i
\(67\) 3.49753 + 8.44379i 0.427291 + 1.03157i 0.980143 + 0.198293i \(0.0635397\pi\)
−0.552852 + 0.833280i \(0.686460\pi\)
\(68\) −6.28572 3.70676i −0.762256 0.449511i
\(69\) −13.5090 + 5.59561i −1.62629 + 0.673632i
\(70\) 0 0
\(71\) −2.44190 2.44190i −0.289800 0.289800i 0.547201 0.837001i \(-0.315693\pi\)
−0.837001 + 0.547201i \(0.815693\pi\)
\(72\) −11.9390 5.13988i −1.40702 0.605741i
\(73\) 7.04282i 0.824300i 0.911116 + 0.412150i \(0.135222\pi\)
−0.911116 + 0.412150i \(0.864778\pi\)
\(74\) 3.45997 12.6787i 0.402214 1.47387i
\(75\) 0 0
\(76\) 0.599045 4.24718i 0.0687152 0.487185i
\(77\) 6.01920 + 14.5316i 0.685951 + 1.65603i
\(78\) −8.06712 6.24942i −0.913422 0.707608i
\(79\) 0.203871i 0.0229372i −0.999934 0.0114686i \(-0.996349\pi\)
0.999934 0.0114686i \(-0.00365066\pi\)
\(80\) 0 0
\(81\) 1.66719i 0.185243i
\(82\) −2.00064 + 2.58255i −0.220934 + 0.285195i
\(83\) 2.40680 + 5.81053i 0.264181 + 0.637789i 0.999189 0.0402696i \(-0.0128217\pi\)
−0.735008 + 0.678058i \(0.762822\pi\)
\(84\) 16.3315 12.2940i 1.78191 1.34138i
\(85\) 0 0
\(86\) −8.66905 2.36576i −0.934807 0.255106i
\(87\) 14.4209i 1.54608i
\(88\) 8.59904 8.36438i 0.916661 0.891646i
\(89\) −1.94360 1.94360i −0.206021 0.206021i 0.596553 0.802574i \(-0.296537\pi\)
−0.802574 + 0.596553i \(0.796537\pi\)
\(90\) 0 0
\(91\) 8.97054 3.71572i 0.940368 0.389513i
\(92\) −10.2743 + 2.65170i −1.07117 + 0.276459i
\(93\) −1.51876 3.66661i −0.157488 0.380209i
\(94\) 4.69079 + 3.63385i 0.483818 + 0.374803i
\(95\) 0 0
\(96\) −13.3184 8.10434i −1.35930 0.827146i
\(97\) −3.62241 + 3.62241i −0.367800 + 0.367800i −0.866674 0.498874i \(-0.833747\pi\)
0.498874 + 0.866674i \(0.333747\pi\)
\(98\) 1.20294 + 9.47459i 0.121515 + 0.957079i
\(99\) 18.0075 + 7.45896i 1.80982 + 0.749653i
\(100\) 0 0
\(101\) 0.775088 + 1.87123i 0.0771241 + 0.186194i 0.957739 0.287639i \(-0.0928702\pi\)
−0.880615 + 0.473833i \(0.842870\pi\)
\(102\) 3.74394 13.7192i 0.370705 1.35841i
\(103\) 3.85297i 0.379645i 0.981818 + 0.189822i \(0.0607912\pi\)
−0.981818 + 0.189822i \(0.939209\pi\)
\(104\) −5.16343 5.30829i −0.506316 0.520520i
\(105\) 0 0
\(106\) 0.972577 3.56390i 0.0944650 0.346156i
\(107\) 17.3854 + 7.20128i 1.68071 + 0.696174i 0.999360 0.0357808i \(-0.0113918\pi\)
0.681353 + 0.731955i \(0.261392\pi\)
\(108\) 1.22834 8.70885i 0.118197 0.838010i
\(109\) 0.773533 + 0.320408i 0.0740910 + 0.0306895i 0.419421 0.907792i \(-0.362233\pi\)
−0.345330 + 0.938481i \(0.612233\pi\)
\(110\) 0 0
\(111\) 25.6117 2.43095
\(112\) 12.9814 7.17892i 1.22663 0.678344i
\(113\) 10.6418 10.6418i 1.00110 1.00110i 0.00110032 0.999999i \(-0.499650\pi\)
0.999999 0.00110032i \(-0.000350244\pi\)
\(114\) 8.29224 1.05282i 0.776640 0.0986058i
\(115\) 0 0
\(116\) −1.46158 + 10.3625i −0.135704 + 0.962133i
\(117\) 4.60450 11.1162i 0.425686 1.02770i
\(118\) −6.74370 + 3.85213i −0.620808 + 0.354617i
\(119\) 9.56798 + 9.56798i 0.877095 + 0.877095i
\(120\) 0 0
\(121\) −4.94147 + 4.94147i −0.449225 + 0.449225i
\(122\) 2.75384 10.0911i 0.249321 0.913607i
\(123\) −5.88176 2.43631i −0.530341 0.219674i
\(124\) −0.719724 2.78865i −0.0646331 0.250429i
\(125\) 0 0
\(126\) 19.0540 + 14.7607i 1.69746 + 1.31499i
\(127\) −12.9680 12.9680i −1.15073 1.15073i −0.986407 0.164320i \(-0.947457\pi\)
−0.164320 0.986407i \(-0.552543\pi\)
\(128\) −8.74884 7.17340i −0.773296 0.634045i
\(129\) 17.5120i 1.54184i
\(130\) 0 0
\(131\) −8.35611 + 20.1734i −0.730076 + 1.76256i −0.0877325 + 0.996144i \(0.527962\pi\)
−0.642344 + 0.766416i \(0.722038\pi\)
\(132\) 20.1372 + 11.8752i 1.75272 + 1.03360i
\(133\) −3.04363 + 7.34797i −0.263916 + 0.637150i
\(134\) −11.2232 + 6.41091i −0.969538 + 0.553819i
\(135\) 0 0
\(136\) 4.08076 9.47883i 0.349922 0.812803i
\(137\) 1.88186 0.160778 0.0803892 0.996764i \(-0.474384\pi\)
0.0803892 + 0.996764i \(0.474384\pi\)
\(138\) −10.2567 17.9557i −0.873105 1.52849i
\(139\) −0.549075 + 0.227434i −0.0465719 + 0.0192907i −0.405848 0.913941i \(-0.633024\pi\)
0.359276 + 0.933231i \(0.383024\pi\)
\(140\) 0 0
\(141\) −4.42516 + 10.6833i −0.372666 + 0.899695i
\(142\) 2.99090 3.86083i 0.250991 0.323994i
\(143\) 7.85198 + 7.85198i 0.656616 + 0.656616i
\(144\) 5.08437 17.6653i 0.423698 1.47211i
\(145\) 0 0
\(146\) −9.88074 + 1.25450i −0.817736 + 0.103824i
\(147\) −17.1955 + 7.12261i −1.41826 + 0.587463i
\(148\) 18.4039 + 2.59578i 1.51279 + 0.213372i
\(149\) −3.54082 8.54830i −0.290076 0.700304i 0.709917 0.704286i \(-0.248733\pi\)
−0.999992 + 0.00398147i \(0.998733\pi\)
\(150\) 0 0
\(151\) 7.95693 7.95693i 0.647526 0.647526i −0.304869 0.952394i \(-0.598613\pi\)
0.952394 + 0.304869i \(0.0986126\pi\)
\(152\) 6.06529 + 0.0839008i 0.491960 + 0.00680525i
\(153\) 16.7677 1.35559
\(154\) −19.3150 + 11.0331i −1.55645 + 0.889072i
\(155\) 0 0
\(156\) 7.33068 12.4310i 0.586924 0.995273i
\(157\) 11.4649 4.74892i 0.914999 0.379005i 0.125031 0.992153i \(-0.460097\pi\)
0.789968 + 0.613148i \(0.210097\pi\)
\(158\) 0.286021 0.0363145i 0.0227546 0.00288903i
\(159\) 7.19928 0.570940
\(160\) 0 0
\(161\) 19.6757 1.55066
\(162\) −2.33899 + 0.296969i −0.183768 + 0.0233321i
\(163\) −11.2235 + 4.64892i −0.879091 + 0.364131i −0.776144 0.630555i \(-0.782827\pi\)
−0.102947 + 0.994687i \(0.532827\pi\)
\(164\) −3.97955 2.34679i −0.310751 0.183253i
\(165\) 0 0
\(166\) −7.72318 + 4.41163i −0.599435 + 0.342409i
\(167\) −17.1661 −1.32835 −0.664175 0.747578i \(-0.731217\pi\)
−0.664175 + 0.747578i \(0.731217\pi\)
\(168\) 20.1569 + 20.7224i 1.55514 + 1.59877i
\(169\) −4.34527 + 4.34527i −0.334251 + 0.334251i
\(170\) 0 0
\(171\) 3.77165 + 9.10556i 0.288425 + 0.696320i
\(172\) 1.77487 12.5836i 0.135332 0.959494i
\(173\) −5.63214 + 2.33291i −0.428204 + 0.177368i −0.586368 0.810045i \(-0.699443\pi\)
0.158164 + 0.987413i \(0.449443\pi\)
\(174\) −20.2318 + 2.56873i −1.53377 + 0.194735i
\(175\) 0 0
\(176\) 13.2665 + 10.5741i 1.00000 + 0.797054i
\(177\) −10.7021 10.7021i −0.804419 0.804419i
\(178\) 2.38057 3.07298i 0.178432 0.230330i
\(179\) 3.97779 9.60324i 0.297314 0.717780i −0.702666 0.711520i \(-0.748007\pi\)
0.999980 0.00626044i \(-0.00199277\pi\)
\(180\) 0 0
\(181\) 22.2181 9.20303i 1.65146 0.684056i 0.654079 0.756427i \(-0.273057\pi\)
0.997378 + 0.0723710i \(0.0230566\pi\)
\(182\) 6.81085 + 11.9234i 0.504854 + 0.883819i
\(183\) 20.3847 1.50688
\(184\) −5.55032 13.9420i −0.409175 1.02782i
\(185\) 0 0
\(186\) 4.87354 2.78386i 0.357345 0.204122i
\(187\) −5.92197 + 14.2969i −0.433057 + 1.04549i
\(188\) −4.26257 + 7.22823i −0.310880 + 0.527173i
\(189\) −6.24097 + 15.0670i −0.453964 + 1.09597i
\(190\) 0 0
\(191\) 8.62257i 0.623907i −0.950097 0.311954i \(-0.899017\pi\)
0.950097 0.311954i \(-0.100983\pi\)
\(192\) 8.99766 20.1286i 0.649350 1.45266i
\(193\) −13.1126 13.1126i −0.943862 0.943862i 0.0546439 0.998506i \(-0.482598\pi\)
−0.998506 + 0.0546439i \(0.982598\pi\)
\(194\) −5.72731 4.43683i −0.411197 0.318546i
\(195\) 0 0
\(196\) −13.0781 + 3.37533i −0.934151 + 0.241095i
\(197\) 10.3876 + 4.30267i 0.740083 + 0.306552i 0.720688 0.693260i \(-0.243826\pi\)
0.0193947 + 0.999812i \(0.493826\pi\)
\(198\) −7.25696 + 26.5923i −0.515729 + 1.88983i
\(199\) 1.56365 1.56365i 0.110844 0.110844i −0.649510 0.760353i \(-0.725026\pi\)
0.760353 + 0.649510i \(0.225026\pi\)
\(200\) 0 0
\(201\) −17.8110 17.8110i −1.25629 1.25629i
\(202\) −2.48718 + 1.42072i −0.174997 + 0.0999617i
\(203\) 7.42600 17.9280i 0.521203 1.25830i
\(204\) 19.9143 + 2.80882i 1.39428 + 0.196657i
\(205\) 0 0
\(206\) −5.40553 + 0.686312i −0.376621 + 0.0478176i
\(207\) 17.2407 17.2407i 1.19831 1.19831i
\(208\) 6.52753 8.18958i 0.452603 0.567845i
\(209\) −9.09585 −0.629173
\(210\) 0 0
\(211\) −4.96614 2.05704i −0.341883 0.141613i 0.205134 0.978734i \(-0.434237\pi\)
−0.547017 + 0.837121i \(0.684237\pi\)
\(212\) 5.17321 + 0.729657i 0.355298 + 0.0501131i
\(213\) 8.79305 + 3.64220i 0.602490 + 0.249559i
\(214\) −7.00626 + 25.6736i −0.478938 + 1.75501i
\(215\) 0 0
\(216\) 12.4369 + 0.172039i 0.846223 + 0.0117058i
\(217\) 5.34037i 0.362528i
\(218\) −0.311731 + 1.14230i −0.0211131 + 0.0773664i
\(219\) −7.42793 17.9326i −0.501933 1.21177i
\(220\) 0 0
\(221\) 8.82564 + 3.65570i 0.593677 + 0.245909i
\(222\) 4.56208 + 35.9319i 0.306187 + 2.41159i
\(223\) −17.0444 + 17.0444i −1.14138 + 1.14138i −0.153181 + 0.988198i \(0.548952\pi\)
−0.988198 + 0.153181i \(0.951048\pi\)
\(224\) 12.3840 + 16.9335i 0.827440 + 1.13142i
\(225\) 0 0
\(226\) 16.8256 + 13.0344i 1.11922 + 0.867035i
\(227\) −9.95905 24.0433i −0.661005 1.59581i −0.796231 0.604993i \(-0.793176\pi\)
0.135225 0.990815i \(-0.456824\pi\)
\(228\) 2.95412 + 11.4461i 0.195641 + 0.758035i
\(229\) −15.6688 + 6.49021i −1.03542 + 0.428885i −0.834666 0.550756i \(-0.814339\pi\)
−0.200755 + 0.979642i \(0.564339\pi\)
\(230\) 0 0
\(231\) −30.6525 30.6525i −2.01678 2.01678i
\(232\) −14.7984 0.204706i −0.971563 0.0134396i
\(233\) 22.4264i 1.46920i 0.678500 + 0.734600i \(0.262630\pi\)
−0.678500 + 0.734600i \(0.737370\pi\)
\(234\) 16.4157 + 4.47980i 1.07313 + 0.292854i
\(235\) 0 0
\(236\) −6.60557 8.77492i −0.429986 0.571199i
\(237\) 0.215019 + 0.519101i 0.0139670 + 0.0337192i
\(238\) −11.7191 + 15.1277i −0.759637 + 0.980584i
\(239\) 5.46064i 0.353219i 0.984281 + 0.176610i \(0.0565130\pi\)
−0.984281 + 0.176610i \(0.943487\pi\)
\(240\) 0 0
\(241\) 25.7625i 1.65951i 0.558127 + 0.829755i \(0.311520\pi\)
−0.558127 + 0.829755i \(0.688480\pi\)
\(242\) −7.81284 6.05244i −0.502229 0.389066i
\(243\) −6.80694 16.4334i −0.436665 1.05420i
\(244\) 14.6479 + 2.06601i 0.937734 + 0.132263i
\(245\) 0 0
\(246\) 2.37033 8.68579i 0.151127 0.553786i
\(247\) 5.61497i 0.357272i
\(248\) 3.78415 1.50647i 0.240293 0.0956607i
\(249\) −12.2565 12.2565i −0.776725 0.776725i
\(250\) 0 0
\(251\) 7.97245 3.30230i 0.503217 0.208439i −0.116610 0.993178i \(-0.537203\pi\)
0.619827 + 0.784739i \(0.287203\pi\)
\(252\) −17.3145 + 29.3610i −1.09071 + 1.84957i
\(253\) 8.61115 + 20.7891i 0.541378 + 1.30700i
\(254\) 15.8836 20.5035i 0.996625 1.28650i
\(255\) 0 0
\(256\) 8.50554 13.5520i 0.531596 0.846998i
\(257\) 15.1455 15.1455i 0.944747 0.944747i −0.0538042 0.998552i \(-0.517135\pi\)
0.998552 + 0.0538042i \(0.0171347\pi\)
\(258\) 24.5685 3.11933i 1.52957 0.194201i
\(259\) −31.8402 13.1886i −1.97845 0.819502i
\(260\) 0 0
\(261\) −9.20226 22.2162i −0.569606 1.37515i
\(262\) −29.7908 8.12981i −1.84048 0.502261i
\(263\) 6.87330i 0.423826i −0.977289 0.211913i \(-0.932031\pi\)
0.977289 0.211913i \(-0.0679693\pi\)
\(264\) −13.0733 + 30.3668i −0.804608 + 1.86895i
\(265\) 0 0
\(266\) −10.8510 2.96120i −0.665317 0.181563i
\(267\) 6.99873 + 2.89897i 0.428315 + 0.177414i
\(268\) −10.9933 14.6037i −0.671525 0.892062i
\(269\) 20.3252 + 8.41897i 1.23925 + 0.513314i 0.903480 0.428631i \(-0.141004\pi\)
0.335769 + 0.941944i \(0.391004\pi\)
\(270\) 0 0
\(271\) 12.4734 0.757703 0.378851 0.925457i \(-0.376319\pi\)
0.378851 + 0.925457i \(0.376319\pi\)
\(272\) 14.0252 + 4.03669i 0.850403 + 0.244760i
\(273\) −18.9221 + 18.9221i −1.14522 + 1.14522i
\(274\) 0.335207 + 2.64016i 0.0202506 + 0.159498i
\(275\) 0 0
\(276\) 23.3641 17.5880i 1.40635 1.05867i
\(277\) 8.98606 21.6943i 0.539920 1.30348i −0.384858 0.922976i \(-0.625750\pi\)
0.924778 0.380507i \(-0.124250\pi\)
\(278\) −0.416883 0.729813i −0.0250030 0.0437713i
\(279\) 4.67946 + 4.67946i 0.280152 + 0.280152i
\(280\) 0 0
\(281\) 5.32879 5.32879i 0.317889 0.317889i −0.530067 0.847956i \(-0.677833\pi\)
0.847956 + 0.530067i \(0.177833\pi\)
\(282\) −15.7764 4.30532i −0.939469 0.256378i
\(283\) −10.2587 4.24930i −0.609818 0.252595i 0.0563329 0.998412i \(-0.482059\pi\)
−0.666151 + 0.745817i \(0.732059\pi\)
\(284\) 5.94931 + 3.50838i 0.353026 + 0.208184i
\(285\) 0 0
\(286\) −9.61731 + 12.4146i −0.568684 + 0.734090i
\(287\) 6.05759 + 6.05759i 0.357568 + 0.357568i
\(288\) 25.6892 + 3.98648i 1.51375 + 0.234906i
\(289\) 3.68741i 0.216906i
\(290\) 0 0
\(291\) 5.40299 13.0440i 0.316729 0.764651i
\(292\) −3.52002 13.6387i −0.205993 0.798146i
\(293\) 4.25127 10.2635i 0.248362 0.599598i −0.749704 0.661774i \(-0.769804\pi\)
0.998065 + 0.0621758i \(0.0198040\pi\)
\(294\) −13.0556 22.8557i −0.761420 1.33297i
\(295\) 0 0
\(296\) −0.363559 + 26.2821i −0.0211314 + 1.52762i
\(297\) −18.6511 −1.08224
\(298\) 11.3621 6.49027i 0.658191 0.375971i
\(299\) 12.8334 5.31576i 0.742174 0.307418i
\(300\) 0 0
\(301\) −9.01774 + 21.7708i −0.519774 + 1.25485i
\(302\) 12.5805 + 9.74585i 0.723927 + 0.560811i
\(303\) −3.94710 3.94710i −0.226755 0.226755i
\(304\) 0.962673 + 8.52425i 0.0552131 + 0.488899i
\(305\) 0 0
\(306\) 2.98676 + 23.5243i 0.170742 + 1.34480i
\(307\) 0.897767 0.371867i 0.0512383 0.0212236i −0.356917 0.934136i \(-0.616172\pi\)
0.408155 + 0.912912i \(0.366172\pi\)
\(308\) −18.9194 25.1327i −1.07803 1.43207i
\(309\) −4.06366 9.81054i −0.231173 0.558102i
\(310\) 0 0
\(311\) −6.73409 + 6.73409i −0.381855 + 0.381855i −0.871770 0.489915i \(-0.837028\pi\)
0.489915 + 0.871770i \(0.337028\pi\)
\(312\) 18.7458 + 8.07032i 1.06127 + 0.456892i
\(313\) 7.44365 0.420740 0.210370 0.977622i \(-0.432533\pi\)
0.210370 + 0.977622i \(0.432533\pi\)
\(314\) 8.70469 + 15.2388i 0.491234 + 0.859975i
\(315\) 0 0
\(316\) 0.101895 + 0.394804i 0.00573204 + 0.0222095i
\(317\) 5.47419 2.26749i 0.307461 0.127355i −0.223618 0.974677i \(-0.571787\pi\)
0.531079 + 0.847322i \(0.321787\pi\)
\(318\) 1.28237 + 10.1002i 0.0719119 + 0.566393i
\(319\) 22.1925 1.24254
\(320\) 0 0
\(321\) −51.8623 −2.89467
\(322\) 3.50474 + 27.6040i 0.195312 + 1.53831i
\(323\) −7.22927 + 2.99446i −0.402248 + 0.166616i
\(324\) −0.833265 3.22858i −0.0462925 0.179366i
\(325\) 0 0
\(326\) −8.52139 14.9179i −0.471956 0.826226i
\(327\) −2.30752 −0.127606
\(328\) 2.58357 6.00114i 0.142654 0.331358i
\(329\) 11.0026 11.0026i 0.606596 0.606596i
\(330\) 0 0
\(331\) −6.91960 16.7054i −0.380336 0.918212i −0.991900 0.127018i \(-0.959460\pi\)
0.611565 0.791195i \(-0.290540\pi\)
\(332\) −7.56499 10.0494i −0.415183 0.551533i
\(333\) −39.4562 + 16.3433i −2.16219 + 0.895607i
\(334\) −3.05771 24.0831i −0.167310 1.31777i
\(335\) 0 0
\(336\) −25.4821 + 31.9704i −1.39016 + 1.74413i
\(337\) 5.47917 + 5.47917i 0.298470 + 0.298470i 0.840414 0.541945i \(-0.182312\pi\)
−0.541945 + 0.840414i \(0.682312\pi\)
\(338\) −6.87020 5.32220i −0.373690 0.289489i
\(339\) −15.8728 + 38.3202i −0.862090 + 2.08127i
\(340\) 0 0
\(341\) −5.64258 + 2.33724i −0.305563 + 0.126568i
\(342\) −12.1028 + 6.91337i −0.654446 + 0.373832i
\(343\) −0.914780 −0.0493935
\(344\) 17.9704 + 0.248583i 0.968899 + 0.0134027i
\(345\) 0 0
\(346\) −4.27619 7.48607i −0.229889 0.402454i
\(347\) 6.97500 16.8391i 0.374438 0.903973i −0.618549 0.785746i \(-0.712279\pi\)
0.992987 0.118226i \(-0.0377209\pi\)
\(348\) −7.20760 27.9267i −0.386368 1.49703i
\(349\) 1.95879 4.72895i 0.104852 0.253135i −0.862743 0.505643i \(-0.831255\pi\)
0.967595 + 0.252508i \(0.0812554\pi\)
\(350\) 0 0
\(351\) 11.5135i 0.614546i
\(352\) −12.4719 + 20.4958i −0.664753 + 1.09243i
\(353\) −0.763353 0.763353i −0.0406292 0.0406292i 0.686500 0.727130i \(-0.259146\pi\)
−0.727130 + 0.686500i \(0.759146\pi\)
\(354\) 13.1082 16.9208i 0.696694 0.899333i
\(355\) 0 0
\(356\) 4.73529 + 2.79245i 0.250970 + 0.148000i
\(357\) −34.4534 14.2711i −1.82347 0.755305i
\(358\) 14.1814 + 3.87007i 0.749512 + 0.204540i
\(359\) −13.3030 + 13.3030i −0.702107 + 0.702107i −0.964862 0.262756i \(-0.915369\pi\)
0.262756 + 0.964862i \(0.415369\pi\)
\(360\) 0 0
\(361\) 10.1828 + 10.1828i 0.535937 + 0.535937i
\(362\) 16.8690 + 29.5316i 0.886615 + 1.55215i
\(363\) 7.37042 17.7938i 0.386847 0.933931i
\(364\) −15.5147 + 11.6791i −0.813192 + 0.612154i
\(365\) 0 0
\(366\) 3.63102 + 28.5987i 0.189797 + 1.49488i
\(367\) −8.06357 + 8.06357i −0.420915 + 0.420915i −0.885519 0.464604i \(-0.846197\pi\)
0.464604 + 0.885519i \(0.346197\pi\)
\(368\) 18.5714 10.2703i 0.968099 0.535374i
\(369\) 10.6158 0.552638
\(370\) 0 0
\(371\) −8.95008 3.70724i −0.464665 0.192471i
\(372\) 4.77372 + 6.34146i 0.247506 + 0.328790i
\(373\) −16.0127 6.63267i −0.829105 0.343427i −0.0725569 0.997364i \(-0.523116\pi\)
−0.756549 + 0.653938i \(0.773116\pi\)
\(374\) −21.1127 5.76159i −1.09171 0.297925i
\(375\) 0 0
\(376\) −10.9001 4.69265i −0.562131 0.242005i
\(377\) 13.6997i 0.705570i
\(378\) −22.2500 6.07196i −1.14442 0.312308i
\(379\) −9.60968 23.1998i −0.493616 1.19170i −0.952867 0.303388i \(-0.901882\pi\)
0.459251 0.888307i \(-0.348118\pi\)
\(380\) 0 0
\(381\) 46.6967 + 19.3424i 2.39234 + 0.990941i
\(382\) 12.0970 1.53590i 0.618938 0.0785833i
\(383\) 6.46368 6.46368i 0.330278 0.330278i −0.522414 0.852692i \(-0.674968\pi\)
0.852692 + 0.522414i \(0.174968\pi\)
\(384\) 29.8422 + 9.03786i 1.52288 + 0.461211i
\(385\) 0 0
\(386\) 16.0606 20.7319i 0.817462 1.05523i
\(387\) 11.1747 + 26.9782i 0.568043 + 1.37138i
\(388\) 5.20447 8.82545i 0.264217 0.448044i
\(389\) 24.1362 9.99755i 1.22375 0.506896i 0.325153 0.945661i \(-0.394584\pi\)
0.898602 + 0.438766i \(0.144584\pi\)
\(390\) 0 0
\(391\) 13.6881 + 13.6881i 0.692236 + 0.692236i
\(392\) −7.06496 17.7467i −0.356835 0.896345i
\(393\) 60.1791i 3.03563i
\(394\) −4.18614 + 15.3396i −0.210895 + 0.772800i
\(395\) 0 0
\(396\) −38.6003 5.44440i −1.93974 0.273591i
\(397\) 10.7897 + 26.0485i 0.541517 + 1.30734i 0.923652 + 0.383232i \(0.125189\pi\)
−0.382135 + 0.924106i \(0.624811\pi\)
\(398\) 2.47224 + 1.91519i 0.123922 + 0.0960000i
\(399\) 21.9196i 1.09735i
\(400\) 0 0
\(401\) 34.5054i 1.72312i −0.507659 0.861558i \(-0.669489\pi\)
0.507659 0.861558i \(-0.330511\pi\)
\(402\) 21.8154 28.1605i 1.08805 1.40452i
\(403\) 1.44280 + 3.48323i 0.0718711 + 0.173512i
\(404\) −2.43623 3.23632i −0.121207 0.161013i
\(405\) 0 0
\(406\) 26.4748 + 7.22490i 1.31392 + 0.358566i
\(407\) 39.4141i 1.95368i
\(408\) −0.393397 + 28.4391i −0.0194760 + 1.40795i
\(409\) 13.2323 + 13.2323i 0.654297 + 0.654297i 0.954025 0.299728i \(-0.0968959\pi\)
−0.299728 + 0.954025i \(0.596896\pi\)
\(410\) 0 0
\(411\) −4.79164 + 1.98476i −0.236354 + 0.0979012i
\(412\) −1.92572 7.46145i −0.0948736 0.367599i
\(413\) 7.79375 + 18.8158i 0.383505 + 0.925864i
\(414\) 27.2588 + 21.1168i 1.33970 + 1.03784i
\(415\) 0 0
\(416\) 12.6523 + 7.69903i 0.620330 + 0.377476i
\(417\) 1.15820 1.15820i 0.0567172 0.0567172i
\(418\) −1.62020 12.7610i −0.0792466 0.624162i
\(419\) −23.2713 9.63930i −1.13688 0.470911i −0.266765 0.963761i \(-0.585955\pi\)
−0.870114 + 0.492851i \(0.835955\pi\)
\(420\) 0 0
\(421\) −9.47180 22.8669i −0.461627 1.11447i −0.967729 0.251993i \(-0.918914\pi\)
0.506102 0.862474i \(-0.331086\pi\)
\(422\) 2.00133 7.33366i 0.0974234 0.356997i
\(423\) 19.2820i 0.937522i
\(424\) −0.102194 + 7.38773i −0.00496298 + 0.358780i
\(425\) 0 0
\(426\) −3.54356 + 12.9850i −0.171686 + 0.629124i
\(427\) −25.3420 10.4970i −1.22639 0.507986i
\(428\) −37.2668 5.25632i −1.80136 0.254074i
\(429\) −28.2743 11.7116i −1.36509 0.565440i
\(430\) 0 0
\(431\) 6.73695 0.324508 0.162254 0.986749i \(-0.448124\pi\)
0.162254 + 0.986749i \(0.448124\pi\)
\(432\) 1.97396 + 17.4790i 0.0949723 + 0.840959i
\(433\) 24.2565 24.2565i 1.16569 1.16569i 0.182486 0.983208i \(-0.441586\pi\)
0.983208 0.182486i \(-0.0584144\pi\)
\(434\) −7.49228 + 0.951255i −0.359641 + 0.0456617i
\(435\) 0 0
\(436\) −1.65812 0.233870i −0.0794096 0.0112004i
\(437\) −4.35426 + 10.5121i −0.208292 + 0.502862i
\(438\) 23.8355 13.6153i 1.13890 0.650563i
\(439\) 11.7908 + 11.7908i 0.562745 + 0.562745i 0.930086 0.367341i \(-0.119732\pi\)
−0.367341 + 0.930086i \(0.619732\pi\)
\(440\) 0 0
\(441\) 21.9455 21.9455i 1.04503 1.04503i
\(442\) −3.55670 + 13.0331i −0.169175 + 0.619922i
\(443\) 17.3149 + 7.17207i 0.822656 + 0.340755i 0.753991 0.656885i \(-0.228126\pi\)
0.0686646 + 0.997640i \(0.478126\pi\)
\(444\) −49.5981 + 12.8008i −2.35382 + 0.607497i
\(445\) 0 0
\(446\) −26.9485 20.8764i −1.27605 0.988528i
\(447\) 18.0315 + 18.0315i 0.852859 + 0.852859i
\(448\) −21.5510 + 20.3904i −1.01819 + 0.963356i
\(449\) 34.5622i 1.63109i 0.578693 + 0.815546i \(0.303563\pi\)
−0.578693 + 0.815546i \(0.696437\pi\)
\(450\) 0 0
\(451\) −3.74926 + 9.05151i −0.176546 + 0.426219i
\(452\) −15.2896 + 25.9272i −0.719160 + 1.21951i
\(453\) −11.8681 + 28.6522i −0.557612 + 1.34620i
\(454\) 31.9576 18.2548i 1.49984 0.856739i
\(455\) 0 0
\(456\) −15.5321 + 6.18331i −0.727356 + 0.289560i
\(457\) −39.6621 −1.85532 −0.927658 0.373430i \(-0.878182\pi\)
−0.927658 + 0.373430i \(0.878182\pi\)
\(458\) −11.8965 20.8264i −0.555885 0.973155i
\(459\) −14.8236 + 6.14016i −0.691909 + 0.286598i
\(460\) 0 0
\(461\) −5.87134 + 14.1747i −0.273456 + 0.660180i −0.999626 0.0273342i \(-0.991298\pi\)
0.726171 + 0.687514i \(0.241298\pi\)
\(462\) 37.5439 48.4639i 1.74670 2.25474i
\(463\) 19.2066 + 19.2066i 0.892605 + 0.892605i 0.994768 0.102163i \(-0.0325764\pi\)
−0.102163 + 0.994768i \(0.532576\pi\)
\(464\) −2.34878 20.7979i −0.109039 0.965518i
\(465\) 0 0
\(466\) −31.4631 + 3.99470i −1.45750 + 0.185051i
\(467\) −13.7733 + 5.70508i −0.637352 + 0.264000i −0.677873 0.735179i \(-0.737098\pi\)
0.0405215 + 0.999179i \(0.487098\pi\)
\(468\) −3.36089 + 23.8284i −0.155357 + 1.10147i
\(469\) 12.9708 + 31.3142i 0.598934 + 1.44595i
\(470\) 0 0
\(471\) −24.1836 + 24.1836i −1.11432 + 1.11432i
\(472\) 11.1342 10.8303i 0.512492 0.498506i
\(473\) −26.9494 −1.23913
\(474\) −0.689973 + 0.394125i −0.0316915 + 0.0181028i
\(475\) 0 0
\(476\) −23.3109 13.7467i −1.06845 0.630079i
\(477\) −11.0909 + 4.59400i −0.507817 + 0.210345i
\(478\) −7.66100 + 0.972677i −0.350406 + 0.0444892i
\(479\) −9.35639 −0.427504 −0.213752 0.976888i \(-0.568568\pi\)
−0.213752 + 0.976888i \(0.568568\pi\)
\(480\) 0 0
\(481\) −24.3308 −1.10939
\(482\) −36.1436 + 4.58896i −1.64629 + 0.209021i
\(483\) −50.0988 + 20.7516i −2.27957 + 0.944230i
\(484\) 7.09962 12.0391i 0.322710 0.547233i
\(485\) 0 0
\(486\) 21.8428 12.4770i 0.990808 0.565968i
\(487\) 5.49190 0.248862 0.124431 0.992228i \(-0.460289\pi\)
0.124431 + 0.992228i \(0.460289\pi\)
\(488\) −0.289361 + 20.9183i −0.0130988 + 0.946925i
\(489\) 23.6744 23.6744i 1.07059 1.07059i
\(490\) 0 0
\(491\) −3.70433 8.94304i −0.167174 0.403594i 0.817985 0.575240i \(-0.195091\pi\)
−0.985159 + 0.171646i \(0.945091\pi\)
\(492\) 12.6080 + 1.77829i 0.568410 + 0.0801717i
\(493\) 17.6384 7.30605i 0.794392 0.329048i
\(494\) −7.87753 + 1.00017i −0.354427 + 0.0449997i
\(495\) 0 0
\(496\) 2.78755 + 5.04063i 0.125165 + 0.226331i
\(497\) −9.05590 9.05590i −0.406213 0.406213i
\(498\) 15.0121 19.3785i 0.672708 0.868370i
\(499\) 3.58828 8.66289i 0.160634 0.387804i −0.822986 0.568062i \(-0.807693\pi\)
0.983619 + 0.180258i \(0.0576933\pi\)
\(500\) 0 0
\(501\) 43.7086 18.1047i 1.95276 0.808859i
\(502\) 6.05305 + 10.5967i 0.270161 + 0.472955i
\(503\) 0.633548 0.0282485 0.0141243 0.999900i \(-0.495504\pi\)
0.0141243 + 0.999900i \(0.495504\pi\)
\(504\) −44.2762 19.0615i −1.97222 0.849067i
\(505\) 0 0
\(506\) −27.6323 + 15.7841i −1.22841 + 0.701688i
\(507\) 6.48116 15.6469i 0.287838 0.694903i
\(508\) 31.5946 + 18.6317i 1.40178 + 0.826648i
\(509\) −7.69272 + 18.5719i −0.340974 + 0.823183i 0.656644 + 0.754201i \(0.271975\pi\)
−0.997618 + 0.0689828i \(0.978025\pi\)
\(510\) 0 0
\(511\) 26.1187i 1.15542i
\(512\) 20.5278 + 9.51891i 0.907209 + 0.420680i
\(513\) −6.66871 6.66871i −0.294431 0.294431i
\(514\) 23.9461 + 18.5505i 1.05622 + 0.818229i
\(515\) 0 0
\(516\) 8.75253 + 33.9127i 0.385309 + 1.49292i
\(517\) 16.4406 + 6.80993i 0.723058 + 0.299501i
\(518\) 12.8315 47.0195i 0.563783 2.06592i
\(519\) 11.8802 11.8802i 0.521484 0.521484i
\(520\) 0 0
\(521\) −1.28598 1.28598i −0.0563400 0.0563400i 0.678375 0.734715i \(-0.262684\pi\)
−0.734715 + 0.678375i \(0.762684\pi\)
\(522\) 29.5291 16.8676i 1.29245 0.738274i
\(523\) −1.71691 + 4.14499i −0.0750754 + 0.181248i −0.956962 0.290214i \(-0.906274\pi\)
0.881886 + 0.471462i \(0.156274\pi\)
\(524\) 6.09924 43.2431i 0.266447 1.88908i
\(525\) 0 0
\(526\) 9.64290 1.22431i 0.420450 0.0533823i
\(527\) −3.71522 + 3.71522i −0.161837 + 0.161837i
\(528\) −44.9319 12.9321i −1.95541 0.562799i
\(529\) 5.14833 0.223841
\(530\) 0 0
\(531\) 23.3164 + 9.65797i 1.01185 + 0.419120i
\(532\) 2.22159 15.7509i 0.0963180 0.682887i
\(533\) 5.58760 + 2.31446i 0.242026 + 0.100250i
\(534\) −2.82046 + 10.3353i −0.122053 + 0.447250i
\(535\) 0 0
\(536\) 18.5301 18.0244i 0.800376 0.778535i
\(537\) 28.6473i 1.23622i
\(538\) −8.19097 + 30.0149i −0.353138 + 1.29403i
\(539\) 10.9611 + 26.4624i 0.472127 + 1.13981i
\(540\) 0 0
\(541\) −19.1096 7.91546i −0.821587 0.340312i −0.0680201 0.997684i \(-0.521668\pi\)
−0.753567 + 0.657372i \(0.771668\pi\)
\(542\) 2.22182 + 17.4995i 0.0954354 + 0.751669i
\(543\) −46.8659 + 46.8659i −2.01121 + 2.01121i
\(544\) −3.16503 + 20.3957i −0.135700 + 0.874459i
\(545\) 0 0
\(546\) −29.9173 23.1763i −1.28034 0.991854i
\(547\) 7.69432 + 18.5757i 0.328985 + 0.794241i 0.998668 + 0.0515935i \(0.0164300\pi\)
−0.669683 + 0.742647i \(0.733570\pi\)
\(548\) −3.64431 + 0.940558i −0.155677 + 0.0401787i
\(549\) −31.4037 + 13.0078i −1.34028 + 0.555161i
\(550\) 0 0
\(551\) 7.93496 + 7.93496i 0.338041 + 0.338041i
\(552\) 28.8368 + 29.6458i 1.22737 + 1.26181i
\(553\) 0.756064i 0.0321511i
\(554\) 32.0366 + 8.74270i 1.36111 + 0.371442i
\(555\) 0 0
\(556\) 0.949635 0.714865i 0.0402735 0.0303170i
\(557\) −8.02477 19.3735i −0.340021 0.820882i −0.997713 0.0675954i \(-0.978467\pi\)
0.657692 0.753287i \(-0.271533\pi\)
\(558\) −5.73153 + 7.39859i −0.242635 + 0.313207i
\(559\) 16.6362i 0.703635i
\(560\) 0 0
\(561\) 42.6489i 1.80064i
\(562\) 8.42522 + 6.52683i 0.355396 + 0.275318i
\(563\) 15.8057 + 38.1583i 0.666129 + 1.60818i 0.788030 + 0.615636i \(0.211101\pi\)
−0.121901 + 0.992542i \(0.538899\pi\)
\(564\) 3.22999 22.9003i 0.136007 0.964279i
\(565\) 0 0
\(566\) 4.13422 15.1494i 0.173774 0.636776i
\(567\) 6.18286i 0.259656i
\(568\) −3.86236 + 8.97152i −0.162061 + 0.376436i
\(569\) −15.6674 15.6674i −0.656811 0.656811i 0.297813 0.954624i \(-0.403743\pi\)
−0.954624 + 0.297813i \(0.903743\pi\)
\(570\) 0 0
\(571\) 23.0913 9.56473i 0.966340 0.400271i 0.156992 0.987600i \(-0.449820\pi\)
0.809349 + 0.587329i \(0.199820\pi\)
\(572\) −19.1301 11.2813i −0.799871 0.471693i
\(573\) 9.09406 + 21.9550i 0.379910 + 0.917183i
\(574\) −7.41949 + 9.57751i −0.309683 + 0.399757i
\(575\) 0 0
\(576\) −1.01694 + 36.7508i −0.0423724 + 1.53128i
\(577\) −27.8886 + 27.8886i −1.16102 + 1.16102i −0.176762 + 0.984254i \(0.556562\pi\)
−0.984254 + 0.176762i \(0.943438\pi\)
\(578\) 5.17325 0.656821i 0.215179 0.0273201i
\(579\) 47.2171 + 19.5579i 1.96227 + 0.812800i
\(580\) 0 0
\(581\) 8.92574 + 21.5486i 0.370302 + 0.893988i
\(582\) 19.2625 + 5.25667i 0.798455 + 0.217896i
\(583\) 11.0791i 0.458848i
\(584\) 18.5075 7.36781i 0.765844 0.304882i
\(585\) 0 0
\(586\) 15.1564 + 4.13613i 0.626105 + 0.170862i
\(587\) −33.2273 13.7632i −1.37144 0.568067i −0.429258 0.903182i \(-0.641225\pi\)
−0.942177 + 0.335114i \(0.891225\pi\)
\(588\) 29.7399 22.3876i 1.22645 0.923248i
\(589\) −2.85319 1.18183i −0.117564 0.0486965i
\(590\) 0 0
\(591\) −30.9870 −1.27463
\(592\) −36.9372 + 4.17145i −1.51811 + 0.171446i
\(593\) 15.2714 15.2714i 0.627123 0.627123i −0.320220 0.947343i \(-0.603757\pi\)
0.947343 + 0.320220i \(0.103757\pi\)
\(594\) −3.32223 26.1665i −0.136313 1.07363i
\(595\) 0 0
\(596\) 11.1294 + 14.7844i 0.455879 + 0.605595i
\(597\) −2.33225 + 5.63054i −0.0954525 + 0.230443i
\(598\) 9.74370 + 17.0577i 0.398450 + 0.697543i
\(599\) 5.68644 + 5.68644i 0.232342 + 0.232342i 0.813669 0.581328i \(-0.197467\pi\)
−0.581328 + 0.813669i \(0.697467\pi\)
\(600\) 0 0
\(601\) 0.490584 0.490584i 0.0200113 0.0200113i −0.697030 0.717042i \(-0.745496\pi\)
0.717042 + 0.697030i \(0.245496\pi\)
\(602\) −32.1496 8.77353i −1.31032 0.357582i
\(603\) 38.8044 + 16.0733i 1.58024 + 0.654555i
\(604\) −11.4320 + 19.3858i −0.465163 + 0.788798i
\(605\) 0 0
\(606\) 4.83450 6.24066i 0.196388 0.253509i
\(607\) −5.39237 5.39237i −0.218870 0.218870i 0.589152 0.808022i \(-0.299462\pi\)
−0.808022 + 0.589152i \(0.799462\pi\)
\(608\) −11.7876 + 2.86897i −0.478051 + 0.116352i
\(609\) 53.4807i 2.16715i
\(610\) 0 0
\(611\) 4.20385 10.1490i 0.170070 0.410584i
\(612\) −32.4715 + 8.38055i −1.31258 + 0.338764i
\(613\) 13.9134 33.5899i 0.561956 1.35668i −0.346244 0.938145i \(-0.612543\pi\)
0.908200 0.418537i \(-0.137457\pi\)
\(614\) 0.681627 + 1.19328i 0.0275082 + 0.0481570i
\(615\) 0 0
\(616\) 31.8900 31.0197i 1.28488 1.24982i
\(617\) 9.87023 0.397360 0.198680 0.980064i \(-0.436334\pi\)
0.198680 + 0.980064i \(0.436334\pi\)
\(618\) 13.0399 7.44862i 0.524540 0.299627i
\(619\) −28.4293 + 11.7758i −1.14267 + 0.473309i −0.872069 0.489383i \(-0.837222\pi\)
−0.270599 + 0.962692i \(0.587222\pi\)
\(620\) 0 0
\(621\) −8.92842 + 21.5551i −0.358285 + 0.864977i
\(622\) −10.6471 8.24809i −0.426910 0.330718i
\(623\) −7.20795 7.20795i −0.288780 0.288780i
\(624\) −7.98316 + 27.7370i −0.319582 + 1.11037i
\(625\) 0 0
\(626\) 1.32590 + 10.4431i 0.0529937 + 0.417389i
\(627\) 23.1601 9.59321i 0.924924 0.383116i
\(628\) −19.8288 + 14.9267i −0.791254 + 0.595639i
\(629\) −12.9756 31.3259i −0.517371 1.24904i
\(630\) 0 0
\(631\) 3.97486 3.97486i 0.158236 0.158236i −0.623548 0.781785i \(-0.714310\pi\)
0.781785 + 0.623548i \(0.214310\pi\)
\(632\) −0.535741 + 0.213278i −0.0213106 + 0.00848376i
\(633\) 14.8144 0.588821
\(634\) 4.15626 + 7.27613i 0.165066 + 0.288972i
\(635\) 0 0
\(636\) −13.9417 + 3.59821i −0.552825 + 0.142678i
\(637\) 16.3355 6.76639i 0.647237 0.268094i
\(638\) 3.95305 + 31.1350i 0.156503 + 1.23265i
\(639\) −15.8703 −0.627821
\(640\) 0 0
\(641\) −22.0503 −0.870935 −0.435468 0.900204i \(-0.643417\pi\)
−0.435468 + 0.900204i \(0.643417\pi\)
\(642\) −9.23798 72.7602i −0.364594 2.87162i
\(643\) 23.3820 9.68514i 0.922096 0.381945i 0.129422 0.991590i \(-0.458688\pi\)
0.792675 + 0.609645i \(0.208688\pi\)
\(644\) −38.1028 + 9.83396i −1.50146 + 0.387512i
\(645\) 0 0
\(646\) −5.48880 9.60893i −0.215954 0.378058i
\(647\) 3.30587 0.129967 0.0649836 0.997886i \(-0.479300\pi\)
0.0649836 + 0.997886i \(0.479300\pi\)
\(648\) 4.38112 1.74412i 0.172107 0.0685156i
\(649\) −16.4696 + 16.4696i −0.646488 + 0.646488i
\(650\) 0 0
\(651\) −5.63239 13.5978i −0.220751 0.532939i
\(652\) 19.4112 14.6124i 0.760202 0.572264i
\(653\) 32.7223 13.5540i 1.28052 0.530410i 0.364376 0.931252i \(-0.381282\pi\)
0.916147 + 0.400842i \(0.131282\pi\)
\(654\) −0.411027 3.23733i −0.0160724 0.126590i
\(655\) 0 0
\(656\) 8.87951 + 2.55567i 0.346687 + 0.0997821i
\(657\) 22.8863 + 22.8863i 0.892879 + 0.892879i
\(658\) 17.3960 + 13.4763i 0.678168 + 0.525362i
\(659\) 10.1544 24.5149i 0.395559 0.954964i −0.593147 0.805094i \(-0.702115\pi\)
0.988706 0.149870i \(-0.0478854\pi\)
\(660\) 0 0
\(661\) −29.1101 + 12.0578i −1.13225 + 0.468994i −0.868545 0.495610i \(-0.834945\pi\)
−0.263705 + 0.964603i \(0.584945\pi\)
\(662\) 22.2043 12.6835i 0.862995 0.492959i
\(663\) −26.3276 −1.02248
\(664\) 12.7513 12.4034i 0.494847 0.481344i
\(665\) 0 0
\(666\) −29.9570 52.4439i −1.16081 2.03216i
\(667\) 10.6237 25.6480i 0.411353 0.993094i
\(668\) 33.2428 8.57963i 1.28620 0.331956i
\(669\) 25.4225 61.3753i 0.982891 2.37291i
\(670\) 0 0
\(671\) 31.3702i 1.21103i
\(672\) −49.3918 30.0554i −1.90533 1.15941i
\(673\) −12.1579 12.1579i −0.468654 0.468654i 0.432824 0.901478i \(-0.357517\pi\)
−0.901478 + 0.432824i \(0.857517\pi\)
\(674\) −6.71103 + 8.66299i −0.258499 + 0.333686i
\(675\) 0 0
\(676\) 6.24302 10.5866i 0.240116 0.407176i
\(677\) 38.8974 + 16.1118i 1.49495 + 0.619228i 0.972387 0.233375i \(-0.0749768\pi\)
0.522561 + 0.852602i \(0.324977\pi\)
\(678\) −56.5888 15.4429i −2.17328 0.593081i
\(679\) −13.4339 + 13.4339i −0.515546 + 0.515546i
\(680\) 0 0
\(681\) 50.7160 + 50.7160i 1.94344 + 1.94344i
\(682\) −4.28411 7.49995i −0.164047 0.287188i
\(683\) −10.9032 + 26.3227i −0.417200 + 1.00721i 0.565955 + 0.824436i \(0.308508\pi\)
−0.983155 + 0.182774i \(0.941492\pi\)
\(684\) −11.8549 15.7482i −0.453285 0.602149i
\(685\) 0 0
\(686\) −0.162945 1.28339i −0.00622128 0.0490001i
\(687\) 33.0511 33.0511i 1.26098 1.26098i
\(688\) 2.85223 + 25.2559i 0.108740 + 0.962871i
\(689\) −6.83923 −0.260554
\(690\) 0 0
\(691\) 19.5933 + 8.11580i 0.745363 + 0.308740i 0.722848 0.691007i \(-0.242833\pi\)
0.0225151 + 0.999747i \(0.492833\pi\)
\(692\) 9.74090 7.33274i 0.370293 0.278749i
\(693\) 66.7817 + 27.6619i 2.53683 + 1.05079i
\(694\) 24.8669 + 6.78611i 0.943935 + 0.257597i
\(695\) 0 0
\(696\) 37.8960 15.0864i 1.43644 0.571847i
\(697\) 8.42834i 0.319246i
\(698\) 6.98339 + 1.90575i 0.264325 + 0.0721336i
\(699\) −23.6527 57.1026i −0.894626 2.15982i
\(700\) 0 0
\(701\) 17.3571 + 7.18953i 0.655567 + 0.271545i 0.685572 0.728005i \(-0.259552\pi\)
−0.0300049 + 0.999550i \(0.509552\pi\)
\(702\) −16.1529 + 2.05085i −0.609652 + 0.0774043i
\(703\) 14.0925 14.0925i 0.531511 0.531511i
\(704\) −30.9762 13.8466i −1.16746 0.521863i
\(705\) 0 0
\(706\) 0.934975 1.20692i 0.0351882 0.0454230i
\(707\) 2.87445 + 6.93954i 0.108105 + 0.260988i
\(708\) 26.0740 + 15.3762i 0.979922 + 0.577871i
\(709\) 0.650888 0.269607i 0.0244446 0.0101253i −0.370428 0.928861i \(-0.620789\pi\)
0.394872 + 0.918736i \(0.370789\pi\)
\(710\) 0 0
\(711\) −0.662496 0.662496i −0.0248455 0.0248455i
\(712\) −3.07420 + 7.14078i −0.115211 + 0.267612i
\(713\) 7.64001i 0.286121i
\(714\) 13.8846 50.8785i 0.519617 1.90408i
\(715\) 0 0
\(716\) −2.90345 + 20.5852i −0.108507 + 0.769305i
\(717\) −5.75923 13.9040i −0.215082 0.519255i
\(718\) −21.0331 16.2939i −0.784948 0.608083i
\(719\) 41.3849i 1.54340i −0.635989 0.771698i \(-0.719408\pi\)
0.635989 0.771698i \(-0.280592\pi\)
\(720\) 0 0
\(721\) 14.2889i 0.532148i
\(722\) −12.4722 + 16.0998i −0.464166 + 0.599172i
\(723\) −27.1713 65.5972i −1.01051 2.43959i
\(724\) −38.4266 + 28.9267i −1.42811 + 1.07505i
\(725\) 0 0
\(726\) 26.2767 + 7.17082i 0.975218 + 0.266134i
\(727\) 31.9347i 1.18439i −0.805794 0.592196i \(-0.798261\pi\)
0.805794 0.592196i \(-0.201739\pi\)
\(728\) −19.1488 19.6860i −0.709703 0.729613i
\(729\) 31.1273 + 31.1273i 1.15286 + 1.15286i
\(730\) 0 0
\(731\) −21.4191 + 8.87207i −0.792213 + 0.328145i
\(732\) −39.4758 + 10.1883i −1.45907 + 0.376570i
\(733\) −17.7686 42.8973i −0.656299 1.58445i −0.803476 0.595337i \(-0.797019\pi\)
0.147177 0.989110i \(-0.452981\pi\)
\(734\) −12.7491 9.87647i −0.470579 0.364547i
\(735\) 0 0
\(736\) 17.7167 + 24.2253i 0.653046 + 0.892956i
\(737\) −27.4095 + 27.4095i −1.00964 + 1.00964i
\(738\) 1.89095 + 14.8935i 0.0696067 + 0.548237i
\(739\) 26.2226 + 10.8618i 0.964616 + 0.399557i 0.808705 0.588214i \(-0.200169\pi\)
0.155911 + 0.987771i \(0.450169\pi\)
\(740\) 0 0
\(741\) −5.92200 14.2970i −0.217550 0.525213i
\(742\) 3.60685 13.2169i 0.132412 0.485207i
\(743\) 4.46895i 0.163950i 0.996634 + 0.0819749i \(0.0261227\pi\)
−0.996634 + 0.0819749i \(0.973877\pi\)
\(744\) −8.04644 + 7.82687i −0.294997 + 0.286947i
\(745\) 0 0
\(746\) 6.45305 23.6465i 0.236263 0.865758i
\(747\) 26.7029 + 11.0607i 0.977010 + 0.404691i
\(748\) 4.32253 30.6464i 0.158047 1.12054i
\(749\) 64.4747 + 26.7063i 2.35585 + 0.975827i
\(750\) 0 0
\(751\) −16.8523 −0.614949 −0.307474 0.951556i \(-0.599484\pi\)
−0.307474 + 0.951556i \(0.599484\pi\)
\(752\) 4.64197 16.1282i 0.169275 0.588136i
\(753\) −16.8168 + 16.8168i −0.612837 + 0.612837i
\(754\) 19.2200 2.44026i 0.699951 0.0888691i
\(755\) 0 0
\(756\) 4.55537 32.2972i 0.165677 1.17464i
\(757\) −14.0127 + 33.8297i −0.509302 + 1.22956i 0.434985 + 0.900438i \(0.356754\pi\)
−0.944286 + 0.329125i \(0.893246\pi\)
\(758\) 30.8365 17.6144i 1.12003 0.639783i
\(759\) −43.8518 43.8518i −1.59172 1.59172i
\(760\) 0 0
\(761\) 21.9685 21.9685i 0.796356 0.796356i −0.186163 0.982519i \(-0.559605\pi\)
0.982519 + 0.186163i \(0.0596051\pi\)
\(762\) −18.8186 + 68.9585i −0.681725 + 2.49810i
\(763\) 2.86869 + 1.18825i 0.103853 + 0.0430175i
\(764\) 4.30958 + 16.6980i 0.155915 + 0.604111i
\(765\) 0 0
\(766\) 10.2196 + 7.91688i 0.369248 + 0.286048i
\(767\) 10.1669 + 10.1669i 0.367104 + 0.367104i
\(768\) −7.36403 + 43.4770i −0.265726 + 1.56884i
\(769\) 17.3648i 0.626192i −0.949721 0.313096i \(-0.898634\pi\)
0.949721 0.313096i \(-0.101366\pi\)
\(770\) 0 0
\(771\) −22.5901 + 54.5373i −0.813563 + 1.96411i
\(772\) 31.9467 + 18.8393i 1.14979 + 0.678043i
\(773\) 3.66118 8.83886i 0.131683 0.317912i −0.844261 0.535933i \(-0.819960\pi\)
0.975944 + 0.218021i \(0.0699601\pi\)
\(774\) −35.8586 + 20.4831i −1.28891 + 0.736250i
\(775\) 0 0
\(776\) 13.3087 + 5.72958i 0.477755 + 0.205680i
\(777\) 94.9821 3.40746
\(778\) 18.3253 + 32.0811i 0.656995 + 1.15016i
\(779\) −4.57693 + 1.89583i −0.163985 + 0.0679250i
\(780\) 0 0
\(781\) 5.60502 13.5317i 0.200563 0.484203i
\(782\) −16.7655 + 21.6419i −0.599534 + 0.773913i
\(783\) 16.2707 + 16.2707i 0.581466 + 0.581466i
\(784\) 23.6393 13.0729i 0.844262 0.466891i
\(785\) 0 0
\(786\) 84.4283 10.7194i 3.01146 0.382349i
\(787\) 32.0088 13.2585i 1.14099 0.472614i 0.269488 0.963004i \(-0.413146\pi\)
0.871503 + 0.490390i \(0.163146\pi\)
\(788\) −22.2664 3.14058i −0.793208 0.111878i
\(789\) 7.24913 + 17.5010i 0.258076 + 0.623050i
\(790\) 0 0
\(791\) 39.4658 39.4658i 1.40324 1.40324i
\(792\) 0.762529 55.1241i 0.0270953 1.95875i
\(793\) −19.3652 −0.687677
\(794\) −34.6229 + 19.7773i −1.22872 + 0.701868i
\(795\) 0 0
\(796\) −2.24655 + 3.80958i −0.0796270 + 0.135027i
\(797\) 37.8964 15.6972i 1.34236 0.556023i 0.408203 0.912891i \(-0.366156\pi\)
0.934155 + 0.356868i \(0.116156\pi\)
\(798\) 30.7522 3.90444i 1.08862 0.138216i
\(799\) 15.3087 0.541584
\(800\) 0 0
\(801\) −12.6318 −0.446323
\(802\) 48.4094 6.14628i 1.70939 0.217033i
\(803\) −27.5967 + 11.4309i −0.973867 + 0.403389i
\(804\) 43.3937 + 25.5898i 1.53038 + 0.902482i
\(805\) 0 0
\(806\) −4.62980 + 2.64463i −0.163078 + 0.0931532i
\(807\) −60.6318 −2.13434
\(808\) 4.10645 3.99439i 0.144464 0.140522i
\(809\) −4.54672 + 4.54672i −0.159854 + 0.159854i −0.782502 0.622648i \(-0.786057\pi\)
0.622648 + 0.782502i \(0.286057\pi\)
\(810\) 0 0
\(811\) −8.69312 20.9871i −0.305257 0.736955i −0.999846 0.0175486i \(-0.994414\pi\)
0.694589 0.719407i \(-0.255586\pi\)
\(812\) −5.42034 + 38.4298i −0.190217 + 1.34862i
\(813\) −31.7600 + 13.1554i −1.11387 + 0.461381i
\(814\) 55.2960 7.02064i 1.93812 0.246073i
\(815\) 0 0
\(816\) −39.9688 + 4.51381i −1.39919 + 0.158015i
\(817\) −9.63579 9.63579i −0.337114 0.337114i
\(818\) −16.2073 + 20.9213i −0.566675 + 0.731497i
\(819\) 17.0760 41.2251i 0.596684 1.44052i
\(820\) 0 0
\(821\) 9.76690 4.04558i 0.340867 0.141192i −0.205682 0.978619i \(-0.565941\pi\)
0.546549 + 0.837427i \(0.315941\pi\)
\(822\) −3.63804 6.36890i −0.126891 0.222141i
\(823\) 32.4078 1.12966 0.564832 0.825206i \(-0.308941\pi\)
0.564832 + 0.825206i \(0.308941\pi\)
\(824\) 10.1250 4.03077i 0.352722 0.140419i
\(825\) 0 0
\(826\) −25.0093 + 14.2858i −0.870187 + 0.497067i
\(827\) 6.17678 14.9121i 0.214788 0.518543i −0.779360 0.626577i \(-0.784455\pi\)
0.994147 + 0.108034i \(0.0344554\pi\)
\(828\) −24.7704 + 42.0043i −0.860831 + 1.45975i
\(829\) 2.07649 5.01309i 0.0721194 0.174112i −0.883709 0.468037i \(-0.844962\pi\)
0.955829 + 0.293925i \(0.0949616\pi\)
\(830\) 0 0
\(831\) 64.7159i 2.24497i
\(832\) −8.54767 + 19.1219i −0.296337 + 0.662934i
\(833\) 17.4235 + 17.4235i 0.603687 + 0.603687i
\(834\) 1.83120 + 1.41859i 0.0634092 + 0.0491218i
\(835\) 0 0
\(836\) 17.6145 4.54612i 0.609210 0.157231i
\(837\) −5.85048 2.42335i −0.202222 0.0837632i
\(838\) 9.37826 34.3656i 0.323967 1.18714i
\(839\) −31.8237 + 31.8237i −1.09868 + 1.09868i −0.104110 + 0.994566i \(0.533199\pi\)
−0.994566 + 0.104110i \(0.966801\pi\)
\(840\) 0 0
\(841\) 1.14598 + 1.14598i 0.0395166 + 0.0395166i
\(842\) 30.3940 17.3616i 1.04745 0.598322i
\(843\) −7.94812 + 19.1885i −0.273748 + 0.660885i
\(844\) 10.6453 + 1.50146i 0.366425 + 0.0516825i
\(845\) 0 0
\(846\) 27.0517 3.43461i 0.930055 0.118084i
\(847\) −18.3257 + 18.3257i −0.629678 + 0.629678i
\(848\) −10.3828 + 1.17257i −0.356548 + 0.0402662i
\(849\) 30.6027 1.05028
\(850\) 0 0
\(851\) −45.5510 18.8679i −1.56147 0.646782i
\(852\) −18.8485 2.65849i −0.645739 0.0910784i
\(853\) −42.6825 17.6797i −1.46142 0.605341i −0.496537 0.868015i \(-0.665395\pi\)
−0.964884 + 0.262675i \(0.915395\pi\)
\(854\) 10.2127 37.4234i 0.349473 1.28060i
\(855\) 0 0
\(856\) 0.736187 53.2198i 0.0251624 1.81902i
\(857\) 44.9421i 1.53519i −0.640934 0.767596i \(-0.721453\pi\)
0.640934 0.767596i \(-0.278547\pi\)
\(858\) 11.3944 41.7535i 0.388999 1.42544i
\(859\) −15.0404 36.3106i −0.513170 1.23890i −0.942029 0.335531i \(-0.891084\pi\)
0.428859 0.903372i \(-0.358916\pi\)
\(860\) 0 0
\(861\) −21.8128 9.03516i −0.743378 0.307917i
\(862\) 1.20002 + 9.45161i 0.0408729 + 0.321923i
\(863\) 38.7485 38.7485i 1.31901 1.31901i 0.404455 0.914558i \(-0.367461\pi\)
0.914558 0.404455i \(-0.132539\pi\)
\(864\) −24.1706 + 5.88282i −0.822299 + 0.200138i
\(865\) 0 0
\(866\) 38.3514 + 29.7100i 1.30323 + 1.00959i
\(867\) 3.88904 + 9.38897i 0.132079 + 0.318866i
\(868\) −2.66913 10.3419i −0.0905962 0.351026i
\(869\) 0.798850 0.330894i 0.0270991 0.0112248i
\(870\) 0 0
\(871\) 16.9202 + 16.9202i 0.573320 + 0.573320i
\(872\) 0.0327553 2.36792i 0.00110923 0.0801879i
\(873\) 23.5427i 0.796800i
\(874\) −15.5236 4.23634i −0.525093 0.143296i
\(875\) 0 0
\(876\) 23.3473 + 31.0148i 0.788831 + 1.04789i
\(877\) −6.21828 15.0122i −0.209976 0.506928i 0.783443 0.621464i \(-0.213462\pi\)
−0.993419 + 0.114536i \(0.963462\pi\)
\(878\) −14.4417 + 18.6422i −0.487384 + 0.629143i
\(879\) 30.6168i 1.03268i
\(880\) 0 0
\(881\) 29.0942i 0.980208i 0.871664 + 0.490104i \(0.163041\pi\)
−0.871664 + 0.490104i \(0.836959\pi\)
\(882\) 34.6976 + 26.8795i 1.16833 + 0.905079i
\(883\) −13.2835 32.0692i −0.447025 1.07921i −0.973431 0.228980i \(-0.926461\pi\)
0.526406 0.850233i \(-0.323539\pi\)
\(884\) −18.9183 2.66835i −0.636293 0.0897462i
\(885\) 0 0
\(886\) −6.97784 + 25.5695i −0.234425 + 0.859023i
\(887\) 33.3087i 1.11840i 0.829034 + 0.559199i \(0.188891\pi\)
−0.829034 + 0.559199i \(0.811109\pi\)
\(888\) −26.7935 67.3035i −0.899131 2.25856i
\(889\) −48.0926 48.0926i −1.61297 1.61297i
\(890\) 0 0
\(891\) −6.53274 + 2.70595i −0.218855 + 0.0906527i
\(892\) 24.4884 41.5261i 0.819933 1.39040i
\(893\) 3.44347 + 8.31327i 0.115231 + 0.278193i
\(894\) −22.0854 + 28.5091i −0.738646 + 0.953488i
\(895\) 0 0
\(896\) −32.4455 26.6029i −1.08393 0.888741i
\(897\) −27.0702 + 27.0702i −0.903849 + 0.903849i
\(898\) −48.4891 + 6.15640i −1.61810 + 0.205442i
\(899\) 6.96137 + 2.88349i 0.232175 + 0.0961699i
\(900\) 0 0
\(901\) −3.64736 8.80551i −0.121511 0.293354i
\(902\) −13.3667 3.64772i −0.445061 0.121456i
\(903\) 64.9441i 2.16120i
\(904\) −39.0980 16.8322i −1.30038 0.559831i
\(905\) 0 0
\(906\) −42.3116 11.5467i −1.40571 0.383614i
\(907\) 0.145961 + 0.0604591i 0.00484656 + 0.00200751i 0.385105 0.922873i \(-0.374165\pi\)
−0.380259 + 0.924880i \(0.624165\pi\)
\(908\) 31.3030 + 41.5833i 1.03883 + 1.37999i
\(909\) 8.59943 + 3.56200i 0.285225 + 0.118144i
\(910\) 0 0
\(911\) −7.19740 −0.238461 −0.119230 0.992867i \(-0.538043\pi\)
−0.119230 + 0.992867i \(0.538043\pi\)
\(912\) −11.4415 20.6893i −0.378867 0.685092i
\(913\) −18.8617 + 18.8617i −0.624231 + 0.624231i
\(914\) −7.06483 55.6440i −0.233684 1.84054i
\(915\) 0 0
\(916\) 27.0994 20.3999i 0.895390 0.674030i
\(917\) −30.9890 + 74.8141i −1.02335 + 2.47058i
\(918\) −11.2548 19.7031i −0.371464 0.650300i
\(919\) −18.9346 18.9346i −0.624593 0.624593i 0.322109 0.946703i \(-0.395608\pi\)
−0.946703 + 0.322109i \(0.895608\pi\)
\(920\) 0 0
\(921\) −1.89372 + 1.89372i −0.0624000 + 0.0624000i
\(922\) −20.9322 5.71234i −0.689365 0.188126i
\(923\) −8.35329 3.46004i −0.274952 0.113889i
\(924\) 74.6800 + 44.0396i 2.45679 + 1.44880i
\(925\) 0 0
\(926\) −23.5247 + 30.3670i −0.773069 + 0.997923i
\(927\) 12.5206 + 12.5206i 0.411230 + 0.411230i
\(928\) 28.7601 6.99985i 0.944095 0.229781i
\(929\) 1.41239i 0.0463390i −0.999732 0.0231695i \(-0.992624\pi\)
0.999732 0.0231695i \(-0.00737573\pi\)
\(930\) 0 0
\(931\) −5.54250 + 13.3808i −0.181648 + 0.438537i
\(932\) −11.2087 43.4296i −0.367155 1.42258i
\(933\) 10.0442 24.2488i 0.328832 0.793871i
\(934\) −10.4573 18.3070i −0.342174 0.599024i
\(935\) 0 0
\(936\) −34.0288 0.470718i −1.11226 0.0153859i
\(937\) 12.6258 0.412468 0.206234 0.978503i \(-0.433879\pi\)
0.206234 + 0.978503i \(0.433879\pi\)
\(938\) −41.6218 + 23.7752i −1.35900 + 0.776287i
\(939\) −18.9532 + 7.85068i −0.618515 + 0.256197i
\(940\) 0 0
\(941\) 11.3405 27.3783i 0.369688 0.892507i −0.624113 0.781334i \(-0.714539\pi\)
0.993801 0.111172i \(-0.0354606\pi\)
\(942\) −38.2362 29.6207i −1.24580 0.965096i
\(943\) 8.66607 + 8.66607i 0.282206 + 0.282206i
\(944\) 17.1777 + 13.6915i 0.559087 + 0.445621i
\(945\) 0 0
\(946\) −4.80037 37.8087i −0.156073 1.22927i
\(947\) −29.7484 + 12.3222i −0.966694 + 0.400418i −0.809480 0.587147i \(-0.800251\pi\)
−0.157213 + 0.987565i \(0.550251\pi\)
\(948\) −0.675840 0.897794i −0.0219503 0.0291590i
\(949\) 7.05644 + 17.0358i 0.229062 + 0.553004i
\(950\) 0 0
\(951\) −11.5471 + 11.5471i −0.374439 + 0.374439i
\(952\) 15.1337 35.1527i 0.490486 1.13931i
\(953\) 60.5106 1.96013 0.980066 0.198673i \(-0.0636632\pi\)
0.980066 + 0.198673i \(0.0636632\pi\)
\(954\) −8.42072 14.7417i −0.272631 0.477279i
\(955\) 0 0
\(956\) −2.72924 10.5748i −0.0882698 0.342012i
\(957\) −56.5071 + 23.4060i −1.82662 + 0.756609i
\(958\) −1.66661 13.1266i −0.0538457 0.424100i
\(959\) 6.97898 0.225363
\(960\) 0 0
\(961\) 28.9264 0.933108
\(962\) −4.33392 34.1349i −0.139731 1.10055i
\(963\) 79.8967 33.0943i 2.57463 1.06645i
\(964\) −12.8762 49.8903i −0.414713 1.60686i
\(965\) 0 0
\(966\) −38.0373 66.5897i −1.22383 2.14249i
\(967\) 18.3324 0.589531 0.294766 0.955570i \(-0.404758\pi\)
0.294766 + 0.955570i \(0.404758\pi\)
\(968\) 18.1549 + 7.81594i 0.583522 + 0.251214i
\(969\) 15.2492 15.2492i 0.489873 0.489873i
\(970\) 0 0
\(971\) 0.992401 + 2.39587i 0.0318477 + 0.0768870i 0.939003 0.343908i \(-0.111751\pi\)
−0.907156 + 0.420796i \(0.861751\pi\)
\(972\) 21.3954 + 28.4219i 0.686257 + 0.911631i
\(973\) −2.03627 + 0.843451i −0.0652798 + 0.0270398i
\(974\) 0.978247 + 7.70487i 0.0313451 + 0.246880i
\(975\) 0 0
\(976\) −29.3988 + 3.32011i −0.941034 + 0.106274i
\(977\) −21.9823 21.9823i −0.703276 0.703276i 0.261836 0.965112i \(-0.415672\pi\)
−0.965112 + 0.261836i \(0.915672\pi\)
\(978\) 37.4310 + 28.9970i 1.19691 + 0.927222i
\(979\) 4.46126 10.7704i 0.142582 0.344224i
\(980\) 0 0
\(981\) 3.55486 1.47247i 0.113498 0.0470124i
\(982\) 11.8868 6.78997i 0.379323 0.216677i
\(983\) −33.0141 −1.05299 −0.526493 0.850180i \(-0.676493\pi\)
−0.526493 + 0.850180i \(0.676493\pi\)
\(984\) −0.249064 + 18.0051i −0.00793985 + 0.573982i
\(985\) 0 0
\(986\) 13.3919 + 23.4444i 0.426484 + 0.746620i
\(987\) −16.4109 + 39.6195i −0.522366 + 1.26110i
\(988\) −2.80637 10.8736i −0.0892826 0.345936i
\(989\) −12.9009 + 31.1455i −0.410225 + 0.990370i
\(990\) 0 0
\(991\) 1.26612i 0.0402198i 0.999798 + 0.0201099i \(0.00640161\pi\)
−0.999798 + 0.0201099i \(0.993598\pi\)
\(992\) −6.57522 + 4.80866i −0.208764 + 0.152675i
\(993\) 35.2377 + 35.2377i 1.11824 + 1.11824i
\(994\) 11.0919 14.3181i 0.351814 0.454142i
\(995\) 0 0
\(996\) 29.8611 + 17.6094i 0.946185 + 0.557976i
\(997\) 9.06030 + 3.75290i 0.286943 + 0.118856i 0.521512 0.853244i \(-0.325368\pi\)
−0.234570 + 0.972099i \(0.575368\pi\)
\(998\) 12.7928 + 3.49111i 0.404948 + 0.110509i
\(999\) 28.8968 28.8968i 0.914255 0.914255i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.bb.b.643.12 88
5.2 odd 4 800.2.v.b.707.1 88
5.3 odd 4 160.2.u.a.67.22 yes 88
5.4 even 2 160.2.ba.a.3.11 yes 88
20.3 even 4 640.2.u.a.47.21 88
20.19 odd 2 640.2.ba.a.303.2 88
32.11 odd 8 800.2.v.b.43.1 88
160.43 even 8 160.2.ba.a.107.11 yes 88
160.53 odd 8 640.2.ba.a.207.2 88
160.107 even 8 inner 800.2.bb.b.107.12 88
160.139 odd 8 160.2.u.a.43.22 88
160.149 even 8 640.2.u.a.463.21 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.2.u.a.43.22 88 160.139 odd 8
160.2.u.a.67.22 yes 88 5.3 odd 4
160.2.ba.a.3.11 yes 88 5.4 even 2
160.2.ba.a.107.11 yes 88 160.43 even 8
640.2.u.a.47.21 88 20.3 even 4
640.2.u.a.463.21 88 160.149 even 8
640.2.ba.a.207.2 88 160.53 odd 8
640.2.ba.a.303.2 88 20.19 odd 2
800.2.v.b.43.1 88 32.11 odd 8
800.2.v.b.707.1 88 5.2 odd 4
800.2.bb.b.107.12 88 160.107 even 8 inner
800.2.bb.b.643.12 88 1.1 even 1 trivial