Properties

Label 80.7.p.a.17.1
Level $80$
Weight $7$
Character 80.17
Analytic conductor $18.404$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [80,7,Mod(17,80)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(80, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("80.17"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 80.p (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,46] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4043266896\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 17.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 80.17
Dual form 80.7.p.a.33.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(23.0000 - 23.0000i) q^{3} +(-75.0000 + 100.000i) q^{5} +(247.000 + 247.000i) q^{7} -329.000i q^{9} -1402.00 q^{11} +(-2703.00 + 2703.00i) q^{13} +(575.000 + 4025.00i) q^{15} +(2593.00 + 2593.00i) q^{17} -1720.00i q^{19} +11362.0 q^{21} +(-2137.00 + 2137.00i) q^{23} +(-4375.00 - 15000.0i) q^{25} +(9200.00 + 9200.00i) q^{27} +30520.0i q^{29} +37838.0 q^{31} +(-32246.0 + 32246.0i) q^{33} +(-43225.0 + 6175.00i) q^{35} +(37113.0 + 37113.0i) q^{37} +124338. i q^{39} -35438.0 q^{41} +(-39177.0 + 39177.0i) q^{43} +(32900.0 + 24675.0i) q^{45} +(-95193.0 - 95193.0i) q^{47} +4369.00i q^{49} +119278. q^{51} +(36017.0 - 36017.0i) q^{53} +(105150. - 140200. i) q^{55} +(-39560.0 - 39560.0i) q^{57} +35960.0i q^{59} +83322.0 q^{61} +(81263.0 - 81263.0i) q^{63} +(-67575.0 - 473025. i) q^{65} +(-60833.0 - 60833.0i) q^{67} +98302.0i q^{69} +40318.0 q^{71} +(-129023. + 129023. i) q^{73} +(-445625. - 244375. i) q^{75} +(-346294. - 346294. i) q^{77} -524640. i q^{79} +663041. q^{81} +(114423. - 114423. i) q^{83} +(-453775. + 64825.0i) q^{85} +(701960. + 701960. i) q^{87} +187280. i q^{89} -1.33528e6 q^{91} +(870274. - 870274. i) q^{93} +(172000. + 129000. i) q^{95} +(532833. + 532833. i) q^{97} +461258. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 46 q^{3} - 150 q^{5} + 494 q^{7} - 2804 q^{11} - 5406 q^{13} + 1150 q^{15} + 5186 q^{17} + 22724 q^{21} - 4274 q^{23} - 8750 q^{25} + 18400 q^{27} + 75676 q^{31} - 64492 q^{33} - 86450 q^{35} + 74226 q^{37}+ \cdots + 1065666 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 23.0000 23.0000i 0.851852 0.851852i −0.138509 0.990361i \(-0.544231\pi\)
0.990361 + 0.138509i \(0.0442311\pi\)
\(4\) 0 0
\(5\) −75.0000 + 100.000i −0.600000 + 0.800000i
\(6\) 0 0
\(7\) 247.000 + 247.000i 0.720117 + 0.720117i 0.968629 0.248512i \(-0.0799416\pi\)
−0.248512 + 0.968629i \(0.579942\pi\)
\(8\) 0 0
\(9\) 329.000i 0.451303i
\(10\) 0 0
\(11\) −1402.00 −1.05334 −0.526672 0.850069i \(-0.676560\pi\)
−0.526672 + 0.850069i \(0.676560\pi\)
\(12\) 0 0
\(13\) −2703.00 + 2703.00i −1.23031 + 1.23031i −0.266471 + 0.963843i \(0.585858\pi\)
−0.963843 + 0.266471i \(0.914142\pi\)
\(14\) 0 0
\(15\) 575.000 + 4025.00i 0.170370 + 1.19259i
\(16\) 0 0
\(17\) 2593.00 + 2593.00i 0.527783 + 0.527783i 0.919911 0.392127i \(-0.128261\pi\)
−0.392127 + 0.919911i \(0.628261\pi\)
\(18\) 0 0
\(19\) 1720.00i 0.250765i −0.992108 0.125383i \(-0.959984\pi\)
0.992108 0.125383i \(-0.0400159\pi\)
\(20\) 0 0
\(21\) 11362.0 1.22687
\(22\) 0 0
\(23\) −2137.00 + 2137.00i −0.175639 + 0.175639i −0.789452 0.613813i \(-0.789635\pi\)
0.613813 + 0.789452i \(0.289635\pi\)
\(24\) 0 0
\(25\) −4375.00 15000.0i −0.280000 0.960000i
\(26\) 0 0
\(27\) 9200.00 + 9200.00i 0.467408 + 0.467408i
\(28\) 0 0
\(29\) 30520.0i 1.25138i 0.780070 + 0.625692i \(0.215183\pi\)
−0.780070 + 0.625692i \(0.784817\pi\)
\(30\) 0 0
\(31\) 37838.0 1.27012 0.635058 0.772465i \(-0.280976\pi\)
0.635058 + 0.772465i \(0.280976\pi\)
\(32\) 0 0
\(33\) −32246.0 + 32246.0i −0.897292 + 0.897292i
\(34\) 0 0
\(35\) −43225.0 + 6175.00i −1.00816 + 0.144023i
\(36\) 0 0
\(37\) 37113.0 + 37113.0i 0.732691 + 0.732691i 0.971152 0.238461i \(-0.0766429\pi\)
−0.238461 + 0.971152i \(0.576643\pi\)
\(38\) 0 0
\(39\) 124338.i 2.09609i
\(40\) 0 0
\(41\) −35438.0 −0.514183 −0.257091 0.966387i \(-0.582764\pi\)
−0.257091 + 0.966387i \(0.582764\pi\)
\(42\) 0 0
\(43\) −39177.0 + 39177.0i −0.492749 + 0.492749i −0.909171 0.416422i \(-0.863284\pi\)
0.416422 + 0.909171i \(0.363284\pi\)
\(44\) 0 0
\(45\) 32900.0 + 24675.0i 0.361043 + 0.270782i
\(46\) 0 0
\(47\) −95193.0 95193.0i −0.916878 0.916878i 0.0799233 0.996801i \(-0.474532\pi\)
−0.996801 + 0.0799233i \(0.974532\pi\)
\(48\) 0 0
\(49\) 4369.00i 0.0371359i
\(50\) 0 0
\(51\) 119278. 0.899187
\(52\) 0 0
\(53\) 36017.0 36017.0i 0.241925 0.241925i −0.575721 0.817646i \(-0.695279\pi\)
0.817646 + 0.575721i \(0.195279\pi\)
\(54\) 0 0
\(55\) 105150. 140200.i 0.632006 0.842675i
\(56\) 0 0
\(57\) −39560.0 39560.0i −0.213615 0.213615i
\(58\) 0 0
\(59\) 35960.0i 0.175091i 0.996161 + 0.0875455i \(0.0279023\pi\)
−0.996161 + 0.0875455i \(0.972098\pi\)
\(60\) 0 0
\(61\) 83322.0 0.367088 0.183544 0.983011i \(-0.441243\pi\)
0.183544 + 0.983011i \(0.441243\pi\)
\(62\) 0 0
\(63\) 81263.0 81263.0i 0.324991 0.324991i
\(64\) 0 0
\(65\) −67575.0 473025.i −0.246063 1.72244i
\(66\) 0 0
\(67\) −60833.0 60833.0i −0.202262 0.202262i 0.598706 0.800969i \(-0.295682\pi\)
−0.800969 + 0.598706i \(0.795682\pi\)
\(68\) 0 0
\(69\) 98302.0i 0.299237i
\(70\) 0 0
\(71\) 40318.0 0.112648 0.0563241 0.998413i \(-0.482062\pi\)
0.0563241 + 0.998413i \(0.482062\pi\)
\(72\) 0 0
\(73\) −129023. + 129023.i −0.331664 + 0.331664i −0.853218 0.521554i \(-0.825352\pi\)
0.521554 + 0.853218i \(0.325352\pi\)
\(74\) 0 0
\(75\) −445625. 244375.i −1.05630 0.579259i
\(76\) 0 0
\(77\) −346294. 346294.i −0.758530 0.758530i
\(78\) 0 0
\(79\) 524640.i 1.06409i −0.846715 0.532047i \(-0.821423\pi\)
0.846715 0.532047i \(-0.178577\pi\)
\(80\) 0 0
\(81\) 663041. 1.24763
\(82\) 0 0
\(83\) 114423. 114423.i 0.200115 0.200115i −0.599934 0.800049i \(-0.704807\pi\)
0.800049 + 0.599934i \(0.204807\pi\)
\(84\) 0 0
\(85\) −453775. + 64825.0i −0.738897 + 0.105557i
\(86\) 0 0
\(87\) 701960. + 701960.i 1.06599 + 1.06599i
\(88\) 0 0
\(89\) 187280.i 0.265657i 0.991139 + 0.132829i \(0.0424060\pi\)
−0.991139 + 0.132829i \(0.957594\pi\)
\(90\) 0 0
\(91\) −1.33528e6 −1.77194
\(92\) 0 0
\(93\) 870274. 870274.i 1.08195 1.08195i
\(94\) 0 0
\(95\) 172000. + 129000.i 0.200612 + 0.150459i
\(96\) 0 0
\(97\) 532833. + 532833.i 0.583816 + 0.583816i 0.935950 0.352134i \(-0.114544\pi\)
−0.352134 + 0.935950i \(0.614544\pi\)
\(98\) 0 0
\(99\) 461258.i 0.475377i
\(100\) 0 0
\(101\) −1.70508e6 −1.65493 −0.827466 0.561516i \(-0.810218\pi\)
−0.827466 + 0.561516i \(0.810218\pi\)
\(102\) 0 0
\(103\) 665063. 665063.i 0.608627 0.608627i −0.333960 0.942587i \(-0.608385\pi\)
0.942587 + 0.333960i \(0.108385\pi\)
\(104\) 0 0
\(105\) −852150. + 1.13620e6i −0.736119 + 0.981492i
\(106\) 0 0
\(107\) −309073. 309073.i −0.252296 0.252296i 0.569616 0.821911i \(-0.307092\pi\)
−0.821911 + 0.569616i \(0.807092\pi\)
\(108\) 0 0
\(109\) 362440.i 0.279870i −0.990161 0.139935i \(-0.955311\pi\)
0.990161 0.139935i \(-0.0446894\pi\)
\(110\) 0 0
\(111\) 1.70720e6 1.24829
\(112\) 0 0
\(113\) 722657. 722657.i 0.500838 0.500838i −0.410861 0.911698i \(-0.634772\pi\)
0.911698 + 0.410861i \(0.134772\pi\)
\(114\) 0 0
\(115\) −53425.0 373975.i −0.0351278 0.245895i
\(116\) 0 0
\(117\) 889287. + 889287.i 0.555245 + 0.555245i
\(118\) 0 0
\(119\) 1.28094e6i 0.760131i
\(120\) 0 0
\(121\) 194043. 0.109532
\(122\) 0 0
\(123\) −815074. + 815074.i −0.438008 + 0.438008i
\(124\) 0 0
\(125\) 1.82812e6 + 687500.i 0.936000 + 0.352000i
\(126\) 0 0
\(127\) 1.94641e6 + 1.94641e6i 0.950216 + 0.950216i 0.998818 0.0486019i \(-0.0154766\pi\)
−0.0486019 + 0.998818i \(0.515477\pi\)
\(128\) 0 0
\(129\) 1.80214e6i 0.839498i
\(130\) 0 0
\(131\) −3.75620e6 −1.67084 −0.835420 0.549612i \(-0.814776\pi\)
−0.835420 + 0.549612i \(0.814776\pi\)
\(132\) 0 0
\(133\) 424840. 424840.i 0.180580 0.180580i
\(134\) 0 0
\(135\) −1.61000e6 + 230000.i −0.654372 + 0.0934817i
\(136\) 0 0
\(137\) 1.04283e6 + 1.04283e6i 0.405558 + 0.405558i 0.880186 0.474628i \(-0.157417\pi\)
−0.474628 + 0.880186i \(0.657417\pi\)
\(138\) 0 0
\(139\) 3.24700e6i 1.20903i 0.796593 + 0.604516i \(0.206634\pi\)
−0.796593 + 0.604516i \(0.793366\pi\)
\(140\) 0 0
\(141\) −4.37888e6 −1.56209
\(142\) 0 0
\(143\) 3.78961e6 3.78961e6i 1.29594 1.29594i
\(144\) 0 0
\(145\) −3.05200e6 2.28900e6i −1.00111 0.750830i
\(146\) 0 0
\(147\) 100487. + 100487.i 0.0316343 + 0.0316343i
\(148\) 0 0
\(149\) 5.76420e6i 1.74253i 0.490813 + 0.871265i \(0.336700\pi\)
−0.490813 + 0.871265i \(0.663300\pi\)
\(150\) 0 0
\(151\) −1.03280e6 −0.299976 −0.149988 0.988688i \(-0.547923\pi\)
−0.149988 + 0.988688i \(0.547923\pi\)
\(152\) 0 0
\(153\) 853097. 853097.i 0.238190 0.238190i
\(154\) 0 0
\(155\) −2.83785e6 + 3.78380e6i −0.762069 + 1.01609i
\(156\) 0 0
\(157\) 2.30055e6 + 2.30055e6i 0.594475 + 0.594475i 0.938837 0.344362i \(-0.111905\pi\)
−0.344362 + 0.938837i \(0.611905\pi\)
\(158\) 0 0
\(159\) 1.65678e6i 0.412168i
\(160\) 0 0
\(161\) −1.05568e6 −0.252961
\(162\) 0 0
\(163\) 4.02178e6 4.02178e6i 0.928658 0.928658i −0.0689613 0.997619i \(-0.521968\pi\)
0.997619 + 0.0689613i \(0.0219685\pi\)
\(164\) 0 0
\(165\) −806150. 5.64305e6i −0.179458 1.25621i
\(166\) 0 0
\(167\) 710167. + 710167.i 0.152479 + 0.152479i 0.779224 0.626745i \(-0.215613\pi\)
−0.626745 + 0.779224i \(0.715613\pi\)
\(168\) 0 0
\(169\) 9.78561e6i 2.02735i
\(170\) 0 0
\(171\) −565880. −0.113171
\(172\) 0 0
\(173\) 3.77650e6 3.77650e6i 0.729375 0.729375i −0.241120 0.970495i \(-0.577515\pi\)
0.970495 + 0.241120i \(0.0775148\pi\)
\(174\) 0 0
\(175\) 2.62438e6 4.78562e6i 0.489679 0.892945i
\(176\) 0 0
\(177\) 827080. + 827080.i 0.149152 + 0.149152i
\(178\) 0 0
\(179\) 5.46380e6i 0.952655i −0.879268 0.476328i \(-0.841968\pi\)
0.879268 0.476328i \(-0.158032\pi\)
\(180\) 0 0
\(181\) 9.02436e6 1.52188 0.760941 0.648821i \(-0.224738\pi\)
0.760941 + 0.648821i \(0.224738\pi\)
\(182\) 0 0
\(183\) 1.91641e6 1.91641e6i 0.312705 0.312705i
\(184\) 0 0
\(185\) −6.49478e6 + 927825.i −1.02577 + 0.146538i
\(186\) 0 0
\(187\) −3.63539e6 3.63539e6i −0.555937 0.555937i
\(188\) 0 0
\(189\) 4.54480e6i 0.673177i
\(190\) 0 0
\(191\) 4.02120e6 0.577106 0.288553 0.957464i \(-0.406826\pi\)
0.288553 + 0.957464i \(0.406826\pi\)
\(192\) 0 0
\(193\) −1.05414e6 + 1.05414e6i −0.146632 + 0.146632i −0.776611 0.629980i \(-0.783063\pi\)
0.629980 + 0.776611i \(0.283063\pi\)
\(194\) 0 0
\(195\) −1.24338e7 9.32535e6i −1.67687 1.25765i
\(196\) 0 0
\(197\) −7.29489e6 7.29489e6i −0.954157 0.954157i 0.0448372 0.998994i \(-0.485723\pi\)
−0.998994 + 0.0448372i \(0.985723\pi\)
\(198\) 0 0
\(199\) 1.41170e7i 1.79137i 0.444693 + 0.895683i \(0.353313\pi\)
−0.444693 + 0.895683i \(0.646687\pi\)
\(200\) 0 0
\(201\) −2.79832e6 −0.344595
\(202\) 0 0
\(203\) −7.53844e6 + 7.53844e6i −0.901142 + 0.901142i
\(204\) 0 0
\(205\) 2.65785e6 3.54380e6i 0.308510 0.411346i
\(206\) 0 0
\(207\) 703073. + 703073.i 0.0792664 + 0.0792664i
\(208\) 0 0
\(209\) 2.41144e6i 0.264142i
\(210\) 0 0
\(211\) 1.23188e7 1.31136 0.655681 0.755038i \(-0.272382\pi\)
0.655681 + 0.755038i \(0.272382\pi\)
\(212\) 0 0
\(213\) 927314. 927314.i 0.0959595 0.0959595i
\(214\) 0 0
\(215\) −979425. 6.85598e6i −0.0985498 0.689849i
\(216\) 0 0
\(217\) 9.34599e6 + 9.34599e6i 0.914631 + 0.914631i
\(218\) 0 0
\(219\) 5.93506e6i 0.565057i
\(220\) 0 0
\(221\) −1.40178e7 −1.29868
\(222\) 0 0
\(223\) −328857. + 328857.i −0.0296546 + 0.0296546i −0.721779 0.692124i \(-0.756675\pi\)
0.692124 + 0.721779i \(0.256675\pi\)
\(224\) 0 0
\(225\) −4.93500e6 + 1.43938e6i −0.433251 + 0.126365i
\(226\) 0 0
\(227\) 7.95085e6 + 7.95085e6i 0.679729 + 0.679729i 0.959939 0.280210i \(-0.0904040\pi\)
−0.280210 + 0.959939i \(0.590404\pi\)
\(228\) 0 0
\(229\) 2.28695e7i 1.90436i 0.305532 + 0.952182i \(0.401166\pi\)
−0.305532 + 0.952182i \(0.598834\pi\)
\(230\) 0 0
\(231\) −1.59295e7 −1.29231
\(232\) 0 0
\(233\) 8.59050e6 8.59050e6i 0.679126 0.679126i −0.280676 0.959803i \(-0.590559\pi\)
0.959803 + 0.280676i \(0.0905587\pi\)
\(234\) 0 0
\(235\) 1.66588e7 2.37982e6i 1.28363 0.183376i
\(236\) 0 0
\(237\) −1.20667e7 1.20667e7i −0.906451 0.906451i
\(238\) 0 0
\(239\) 9.66576e6i 0.708015i −0.935243 0.354007i \(-0.884819\pi\)
0.935243 0.354007i \(-0.115181\pi\)
\(240\) 0 0
\(241\) 1.85926e7 1.32828 0.664141 0.747608i \(-0.268798\pi\)
0.664141 + 0.747608i \(0.268798\pi\)
\(242\) 0 0
\(243\) 8.54314e6 8.54314e6i 0.595386 0.595386i
\(244\) 0 0
\(245\) −436900. 327675.i −0.0297087 0.0222815i
\(246\) 0 0
\(247\) 4.64916e6 + 4.64916e6i 0.308520 + 0.308520i
\(248\) 0 0
\(249\) 5.26346e6i 0.340936i
\(250\) 0 0
\(251\) −1.19350e7 −0.754747 −0.377373 0.926061i \(-0.623173\pi\)
−0.377373 + 0.926061i \(0.623173\pi\)
\(252\) 0 0
\(253\) 2.99607e6 2.99607e6i 0.185008 0.185008i
\(254\) 0 0
\(255\) −8.94585e6 + 1.19278e7i −0.539512 + 0.719349i
\(256\) 0 0
\(257\) 1.54304e7 + 1.54304e7i 0.909031 + 0.909031i 0.996194 0.0871630i \(-0.0277801\pi\)
−0.0871630 + 0.996194i \(0.527780\pi\)
\(258\) 0 0
\(259\) 1.83338e7i 1.05525i
\(260\) 0 0
\(261\) 1.00411e7 0.564753
\(262\) 0 0
\(263\) −1.27108e7 + 1.27108e7i −0.698723 + 0.698723i −0.964135 0.265412i \(-0.914492\pi\)
0.265412 + 0.964135i \(0.414492\pi\)
\(264\) 0 0
\(265\) 900425. + 6.30298e6i 0.0483849 + 0.338694i
\(266\) 0 0
\(267\) 4.30744e6 + 4.30744e6i 0.226300 + 0.226300i
\(268\) 0 0
\(269\) 2.54188e6i 0.130586i 0.997866 + 0.0652932i \(0.0207983\pi\)
−0.997866 + 0.0652932i \(0.979202\pi\)
\(270\) 0 0
\(271\) −6.13384e6 −0.308194 −0.154097 0.988056i \(-0.549247\pi\)
−0.154097 + 0.988056i \(0.549247\pi\)
\(272\) 0 0
\(273\) −3.07115e7 + 3.07115e7i −1.50943 + 1.50943i
\(274\) 0 0
\(275\) 6.13375e6 + 2.10300e7i 0.294936 + 1.01121i
\(276\) 0 0
\(277\) −3.00513e6 3.00513e6i −0.141392 0.141392i 0.632868 0.774260i \(-0.281878\pi\)
−0.774260 + 0.632868i \(0.781878\pi\)
\(278\) 0 0
\(279\) 1.24487e7i 0.573207i
\(280\) 0 0
\(281\) −6.49352e6 −0.292658 −0.146329 0.989236i \(-0.546746\pi\)
−0.146329 + 0.989236i \(0.546746\pi\)
\(282\) 0 0
\(283\) 2.71607e7 2.71607e7i 1.19834 1.19834i 0.223680 0.974663i \(-0.428193\pi\)
0.974663 0.223680i \(-0.0718071\pi\)
\(284\) 0 0
\(285\) 6.92300e6 989000.i 0.299061 0.0427230i
\(286\) 0 0
\(287\) −8.75319e6 8.75319e6i −0.370272 0.370272i
\(288\) 0 0
\(289\) 1.06903e7i 0.442889i
\(290\) 0 0
\(291\) 2.45103e7 0.994649
\(292\) 0 0
\(293\) −4.78734e6 + 4.78734e6i −0.190323 + 0.190323i −0.795836 0.605513i \(-0.792968\pi\)
0.605513 + 0.795836i \(0.292968\pi\)
\(294\) 0 0
\(295\) −3.59600e6 2.69700e6i −0.140073 0.105055i
\(296\) 0 0
\(297\) −1.28984e7 1.28984e7i −0.492342 0.492342i
\(298\) 0 0
\(299\) 1.15526e7i 0.432182i
\(300\) 0 0
\(301\) −1.93534e7 −0.709674
\(302\) 0 0
\(303\) −3.92168e7 + 3.92168e7i −1.40976 + 1.40976i
\(304\) 0 0
\(305\) −6.24915e6 + 8.33220e6i −0.220253 + 0.293670i
\(306\) 0 0
\(307\) −9.72339e6 9.72339e6i −0.336049 0.336049i 0.518829 0.854878i \(-0.326368\pi\)
−0.854878 + 0.518829i \(0.826368\pi\)
\(308\) 0 0
\(309\) 3.05929e7i 1.03692i
\(310\) 0 0
\(311\) −7.03344e6 −0.233823 −0.116911 0.993142i \(-0.537299\pi\)
−0.116911 + 0.993142i \(0.537299\pi\)
\(312\) 0 0
\(313\) 2.98895e7 2.98895e7i 0.974734 0.974734i −0.0249545 0.999689i \(-0.507944\pi\)
0.999689 + 0.0249545i \(0.00794407\pi\)
\(314\) 0 0
\(315\) 2.03158e6 + 1.42210e7i 0.0649982 + 0.454987i
\(316\) 0 0
\(317\) 2.11266e7 + 2.11266e7i 0.663212 + 0.663212i 0.956136 0.292924i \(-0.0946282\pi\)
−0.292924 + 0.956136i \(0.594628\pi\)
\(318\) 0 0
\(319\) 4.27890e7i 1.31814i
\(320\) 0 0
\(321\) −1.42174e7 −0.429837
\(322\) 0 0
\(323\) 4.45996e6 4.45996e6i 0.132350 0.132350i
\(324\) 0 0
\(325\) 5.23706e7 + 2.87194e7i 1.52559 + 0.836614i
\(326\) 0 0
\(327\) −8.33612e6 8.33612e6i −0.238408 0.238408i
\(328\) 0 0
\(329\) 4.70253e7i 1.32052i
\(330\) 0 0
\(331\) 4.23279e7 1.16719 0.583596 0.812044i \(-0.301645\pi\)
0.583596 + 0.812044i \(0.301645\pi\)
\(332\) 0 0
\(333\) 1.22102e7 1.22102e7i 0.330666 0.330666i
\(334\) 0 0
\(335\) 1.06458e7 1.52082e6i 0.283167 0.0404524i
\(336\) 0 0
\(337\) −1.46217e7 1.46217e7i −0.382040 0.382040i 0.489797 0.871837i \(-0.337071\pi\)
−0.871837 + 0.489797i \(0.837071\pi\)
\(338\) 0 0
\(339\) 3.32422e7i 0.853279i
\(340\) 0 0
\(341\) −5.30489e7 −1.33787
\(342\) 0 0
\(343\) 2.79802e7 2.79802e7i 0.693374 0.693374i
\(344\) 0 0
\(345\) −9.83020e6 7.37265e6i −0.239389 0.179542i
\(346\) 0 0
\(347\) −4.59792e7 4.59792e7i −1.10046 1.10046i −0.994355 0.106100i \(-0.966164\pi\)
−0.106100 0.994355i \(-0.533836\pi\)
\(348\) 0 0
\(349\) 5.03359e7i 1.18414i −0.805888 0.592068i \(-0.798312\pi\)
0.805888 0.592068i \(-0.201688\pi\)
\(350\) 0 0
\(351\) −4.97352e7 −1.15012
\(352\) 0 0
\(353\) −1.59140e7 + 1.59140e7i −0.361789 + 0.361789i −0.864471 0.502683i \(-0.832346\pi\)
0.502683 + 0.864471i \(0.332346\pi\)
\(354\) 0 0
\(355\) −3.02385e6 + 4.03180e6i −0.0675889 + 0.0901185i
\(356\) 0 0
\(357\) 2.94617e7 + 2.94617e7i 0.647519 + 0.647519i
\(358\) 0 0
\(359\) 4.47023e7i 0.966155i 0.875578 + 0.483077i \(0.160481\pi\)
−0.875578 + 0.483077i \(0.839519\pi\)
\(360\) 0 0
\(361\) 4.40875e7 0.937117
\(362\) 0 0
\(363\) 4.46299e6 4.46299e6i 0.0933052 0.0933052i
\(364\) 0 0
\(365\) −3.22558e6 2.25790e7i −0.0663328 0.464330i
\(366\) 0 0
\(367\) 2.70624e7 + 2.70624e7i 0.547480 + 0.547480i 0.925711 0.378231i \(-0.123468\pi\)
−0.378231 + 0.925711i \(0.623468\pi\)
\(368\) 0 0
\(369\) 1.16591e7i 0.232052i
\(370\) 0 0
\(371\) 1.77924e7 0.348428
\(372\) 0 0
\(373\) −3.82355e7 + 3.82355e7i −0.736784 + 0.736784i −0.971954 0.235170i \(-0.924435\pi\)
0.235170 + 0.971954i \(0.424435\pi\)
\(374\) 0 0
\(375\) 5.78594e7 2.62344e7i 1.09719 0.497481i
\(376\) 0 0
\(377\) −8.24956e7 8.24956e7i −1.53960 1.53960i
\(378\) 0 0
\(379\) 2.50612e6i 0.0460346i −0.999735 0.0230173i \(-0.992673\pi\)
0.999735 0.0230173i \(-0.00732728\pi\)
\(380\) 0 0
\(381\) 8.95347e7 1.61889
\(382\) 0 0
\(383\) −4.72095e7 + 4.72095e7i −0.840297 + 0.840297i −0.988897 0.148600i \(-0.952523\pi\)
0.148600 + 0.988897i \(0.452523\pi\)
\(384\) 0 0
\(385\) 6.06014e7 8.65735e6i 1.06194 0.151706i
\(386\) 0 0
\(387\) 1.28892e7 + 1.28892e7i 0.222379 + 0.222379i
\(388\) 0 0
\(389\) 1.00159e8i 1.70153i 0.525547 + 0.850765i \(0.323861\pi\)
−0.525547 + 0.850765i \(0.676139\pi\)
\(390\) 0 0
\(391\) −1.10825e7 −0.185399
\(392\) 0 0
\(393\) −8.63926e7 + 8.63926e7i −1.42331 + 1.42331i
\(394\) 0 0
\(395\) 5.24640e7 + 3.93480e7i 0.851275 + 0.638457i
\(396\) 0 0
\(397\) −7.26282e7 7.26282e7i −1.16074 1.16074i −0.984314 0.176423i \(-0.943547\pi\)
−0.176423 0.984314i \(-0.556453\pi\)
\(398\) 0 0
\(399\) 1.95426e7i 0.307655i
\(400\) 0 0
\(401\) 5.26293e7 0.816196 0.408098 0.912938i \(-0.366192\pi\)
0.408098 + 0.912938i \(0.366192\pi\)
\(402\) 0 0
\(403\) −1.02276e8 + 1.02276e8i −1.56264 + 1.56264i
\(404\) 0 0
\(405\) −4.97281e7 + 6.63041e7i −0.748577 + 0.998103i
\(406\) 0 0
\(407\) −5.20324e7 5.20324e7i −0.771775 0.771775i
\(408\) 0 0
\(409\) 1.10687e8i 1.61781i 0.587939 + 0.808906i \(0.299940\pi\)
−0.587939 + 0.808906i \(0.700060\pi\)
\(410\) 0 0
\(411\) 4.79703e7 0.690951
\(412\) 0 0
\(413\) −8.88212e6 + 8.88212e6i −0.126086 + 0.126086i
\(414\) 0 0
\(415\) 2.86058e6 + 2.00240e7i 0.0400229 + 0.280161i
\(416\) 0 0
\(417\) 7.46810e7 + 7.46810e7i 1.02992 + 1.02992i
\(418\) 0 0
\(419\) 9.92484e6i 0.134922i 0.997722 + 0.0674608i \(0.0214898\pi\)
−0.997722 + 0.0674608i \(0.978510\pi\)
\(420\) 0 0
\(421\) 3.46957e7 0.464975 0.232488 0.972599i \(-0.425314\pi\)
0.232488 + 0.972599i \(0.425314\pi\)
\(422\) 0 0
\(423\) −3.13185e7 + 3.13185e7i −0.413790 + 0.413790i
\(424\) 0 0
\(425\) 2.75506e7 5.02394e7i 0.358893 0.654451i
\(426\) 0 0
\(427\) 2.05805e7 + 2.05805e7i 0.264346 + 0.264346i
\(428\) 0 0
\(429\) 1.74322e8i 2.20790i
\(430\) 0 0
\(431\) 2.72975e7 0.340951 0.170475 0.985362i \(-0.445470\pi\)
0.170475 + 0.985362i \(0.445470\pi\)
\(432\) 0 0
\(433\) 4.50017e7 4.50017e7i 0.554326 0.554326i −0.373360 0.927686i \(-0.621795\pi\)
0.927686 + 0.373360i \(0.121795\pi\)
\(434\) 0 0
\(435\) −1.22843e8 + 1.75490e7i −1.49239 + 0.213199i
\(436\) 0 0
\(437\) 3.67564e6 + 3.67564e6i 0.0440442 + 0.0440442i
\(438\) 0 0
\(439\) 4.79986e7i 0.567330i −0.958924 0.283665i \(-0.908450\pi\)
0.958924 0.283665i \(-0.0915503\pi\)
\(440\) 0 0
\(441\) 1.43740e6 0.0167595
\(442\) 0 0
\(443\) 3.36631e7 3.36631e7i 0.387206 0.387206i −0.486483 0.873690i \(-0.661721\pi\)
0.873690 + 0.486483i \(0.161721\pi\)
\(444\) 0 0
\(445\) −1.87280e7 1.40460e7i −0.212526 0.159394i
\(446\) 0 0
\(447\) 1.32577e8 + 1.32577e8i 1.48438 + 1.48438i
\(448\) 0 0
\(449\) 8.64789e7i 0.955369i 0.878532 + 0.477684i \(0.158524\pi\)
−0.878532 + 0.477684i \(0.841476\pi\)
\(450\) 0 0
\(451\) 4.96841e7 0.541611
\(452\) 0 0
\(453\) −2.37544e7 + 2.37544e7i −0.255535 + 0.255535i
\(454\) 0 0
\(455\) 1.00146e8 1.33528e8i 1.06316 1.41755i
\(456\) 0 0
\(457\) −3.72501e6 3.72501e6i −0.0390282 0.0390282i 0.687323 0.726352i \(-0.258786\pi\)
−0.726352 + 0.687323i \(0.758786\pi\)
\(458\) 0 0
\(459\) 4.77112e7i 0.493381i
\(460\) 0 0
\(461\) 4.07112e7 0.415538 0.207769 0.978178i \(-0.433380\pi\)
0.207769 + 0.978178i \(0.433380\pi\)
\(462\) 0 0
\(463\) 2.69113e7 2.69113e7i 0.271139 0.271139i −0.558420 0.829559i \(-0.688592\pi\)
0.829559 + 0.558420i \(0.188592\pi\)
\(464\) 0 0
\(465\) 2.17568e7 + 1.52298e8i 0.216390 + 1.51473i
\(466\) 0 0
\(467\) −1.38966e8 1.38966e8i −1.36446 1.36446i −0.868146 0.496310i \(-0.834688\pi\)
−0.496310 0.868146i \(-0.665312\pi\)
\(468\) 0 0
\(469\) 3.00515e7i 0.291305i
\(470\) 0 0
\(471\) 1.05825e8 1.01281
\(472\) 0 0
\(473\) 5.49262e7 5.49262e7i 0.519034 0.519034i
\(474\) 0 0
\(475\) −2.58000e7 + 7.52500e6i −0.240735 + 0.0702143i
\(476\) 0 0
\(477\) −1.18496e7 1.18496e7i −0.109181 0.109181i
\(478\) 0 0
\(479\) 3.19942e7i 0.291115i 0.989350 + 0.145558i \(0.0464977\pi\)
−0.989350 + 0.145558i \(0.953502\pi\)
\(480\) 0 0
\(481\) −2.00633e8 −1.80288
\(482\) 0 0
\(483\) −2.42806e7 + 2.42806e7i −0.215485 + 0.215485i
\(484\) 0 0
\(485\) −9.32458e7 + 1.33208e7i −0.817342 + 0.116763i
\(486\) 0 0
\(487\) 7.96441e7 + 7.96441e7i 0.689551 + 0.689551i 0.962133 0.272581i \(-0.0878774\pi\)
−0.272581 + 0.962133i \(0.587877\pi\)
\(488\) 0 0
\(489\) 1.85002e8i 1.58216i
\(490\) 0 0
\(491\) −1.53965e8 −1.30070 −0.650350 0.759634i \(-0.725378\pi\)
−0.650350 + 0.759634i \(0.725378\pi\)
\(492\) 0 0
\(493\) −7.91384e7 + 7.91384e7i −0.660460 + 0.660460i
\(494\) 0 0
\(495\) −4.61258e7 3.45944e7i −0.380302 0.285226i
\(496\) 0 0
\(497\) 9.95855e6 + 9.95855e6i 0.0811198 + 0.0811198i
\(498\) 0 0
\(499\) 1.02698e8i 0.826537i 0.910609 + 0.413268i \(0.135613\pi\)
−0.910609 + 0.413268i \(0.864387\pi\)
\(500\) 0 0
\(501\) 3.26677e7 0.259780
\(502\) 0 0
\(503\) −8.43625e7 + 8.43625e7i −0.662896 + 0.662896i −0.956062 0.293166i \(-0.905291\pi\)
0.293166 + 0.956062i \(0.405291\pi\)
\(504\) 0 0
\(505\) 1.27881e8 1.70508e8i 0.992959 1.32395i
\(506\) 0 0
\(507\) −2.25069e8 2.25069e8i −1.72700 1.72700i
\(508\) 0 0
\(509\) 4.03774e7i 0.306186i 0.988212 + 0.153093i \(0.0489234\pi\)
−0.988212 + 0.153093i \(0.951077\pi\)
\(510\) 0 0
\(511\) −6.37374e7 −0.477674
\(512\) 0 0
\(513\) 1.58240e7 1.58240e7i 0.117210 0.117210i
\(514\) 0 0
\(515\) 1.66266e7 + 1.16386e8i 0.121725 + 0.852078i
\(516\) 0 0
\(517\) 1.33461e8 + 1.33461e8i 0.965787 + 0.965787i
\(518\) 0 0
\(519\) 1.73719e8i 1.24264i
\(520\) 0 0
\(521\) −3.68161e7 −0.260330 −0.130165 0.991492i \(-0.541551\pi\)
−0.130165 + 0.991492i \(0.541551\pi\)
\(522\) 0 0
\(523\) 1.60054e8 1.60054e8i 1.11882 1.11882i 0.126907 0.991915i \(-0.459495\pi\)
0.991915 0.126907i \(-0.0405050\pi\)
\(524\) 0 0
\(525\) −4.97088e7 1.70430e8i −0.343522 1.17779i
\(526\) 0 0
\(527\) 9.81139e7 + 9.81139e7i 0.670346 + 0.670346i
\(528\) 0 0
\(529\) 1.38902e8i 0.938302i
\(530\) 0 0
\(531\) 1.18308e7 0.0790191
\(532\) 0 0
\(533\) 9.57889e7 9.57889e7i 0.632606 0.632606i
\(534\) 0 0
\(535\) 5.40878e7 7.72682e6i 0.353214 0.0504591i
\(536\) 0 0
\(537\) −1.25667e8 1.25667e8i −0.811521 0.811521i
\(538\) 0 0
\(539\) 6.12534e6i 0.0391168i
\(540\) 0 0
\(541\) 1.30022e7 0.0821155 0.0410577 0.999157i \(-0.486927\pi\)
0.0410577 + 0.999157i \(0.486927\pi\)
\(542\) 0 0
\(543\) 2.07560e8 2.07560e8i 1.29642 1.29642i
\(544\) 0 0
\(545\) 3.62440e7 + 2.71830e7i 0.223896 + 0.167922i
\(546\) 0 0
\(547\) −7.28319e7 7.28319e7i −0.444999 0.444999i 0.448689 0.893688i \(-0.351891\pi\)
−0.893688 + 0.448689i \(0.851891\pi\)
\(548\) 0 0
\(549\) 2.74129e7i 0.165668i
\(550\) 0 0
\(551\) 5.24944e7 0.313804
\(552\) 0 0
\(553\) 1.29586e8 1.29586e8i 0.766272 0.766272i
\(554\) 0 0
\(555\) −1.28040e8 + 1.70720e8i −0.748973 + 0.998631i
\(556\) 0 0
\(557\) −4.55401e7 4.55401e7i −0.263529 0.263529i 0.562957 0.826486i \(-0.309664\pi\)
−0.826486 + 0.562957i \(0.809664\pi\)
\(558\) 0 0
\(559\) 2.11791e8i 1.21247i
\(560\) 0 0
\(561\) −1.67228e8 −0.947152
\(562\) 0 0
\(563\) 1.85012e8 1.85012e8i 1.03675 1.03675i 0.0374524 0.999298i \(-0.488076\pi\)
0.999298 0.0374524i \(-0.0119243\pi\)
\(564\) 0 0
\(565\) 1.80664e7 + 1.26465e8i 0.100168 + 0.701173i
\(566\) 0 0
\(567\) 1.63771e8 + 1.63771e8i 0.898438 + 0.898438i
\(568\) 0 0
\(569\) 7.17210e7i 0.389323i −0.980871 0.194661i \(-0.937639\pi\)
0.980871 0.194661i \(-0.0623608\pi\)
\(570\) 0 0
\(571\) −3.09478e8 −1.66234 −0.831172 0.556015i \(-0.812330\pi\)
−0.831172 + 0.556015i \(0.812330\pi\)
\(572\) 0 0
\(573\) 9.24876e7 9.24876e7i 0.491609 0.491609i
\(574\) 0 0
\(575\) 4.14044e7 + 2.27056e7i 0.217792 + 0.119435i
\(576\) 0 0
\(577\) −2.15868e7 2.15868e7i −0.112373 0.112373i 0.648684 0.761057i \(-0.275319\pi\)
−0.761057 + 0.648684i \(0.775319\pi\)
\(578\) 0 0
\(579\) 4.84906e7i 0.249817i
\(580\) 0 0
\(581\) 5.65250e7 0.288212
\(582\) 0 0
\(583\) −5.04958e7 + 5.04958e7i −0.254830 + 0.254830i
\(584\) 0 0
\(585\) −1.55625e8 + 2.22322e7i −0.777342 + 0.111049i
\(586\) 0 0
\(587\) 2.30927e8 + 2.30927e8i 1.14172 + 1.14172i 0.988135 + 0.153588i \(0.0490830\pi\)
0.153588 + 0.988135i \(0.450917\pi\)
\(588\) 0 0
\(589\) 6.50814e7i 0.318501i
\(590\) 0 0
\(591\) −3.35565e8 −1.62560
\(592\) 0 0
\(593\) −2.66433e7 + 2.66433e7i −0.127768 + 0.127768i −0.768099 0.640331i \(-0.778797\pi\)
0.640331 + 0.768099i \(0.278797\pi\)
\(594\) 0 0
\(595\) −1.28094e8 9.60706e7i −0.608105 0.456079i
\(596\) 0 0
\(597\) 3.24692e8 + 3.24692e8i 1.52598 + 1.52598i
\(598\) 0 0
\(599\) 3.14489e8i 1.46327i 0.681695 + 0.731637i \(0.261243\pi\)
−0.681695 + 0.731637i \(0.738757\pi\)
\(600\) 0 0
\(601\) −2.50382e8 −1.15340 −0.576700 0.816956i \(-0.695660\pi\)
−0.576700 + 0.816956i \(0.695660\pi\)
\(602\) 0 0
\(603\) −2.00141e7 + 2.00141e7i −0.0912816 + 0.0912816i
\(604\) 0 0
\(605\) −1.45532e7 + 1.94043e7i −0.0657193 + 0.0876258i
\(606\) 0 0
\(607\) −9.40326e7 9.40326e7i −0.420448 0.420448i 0.464910 0.885358i \(-0.346087\pi\)
−0.885358 + 0.464910i \(0.846087\pi\)
\(608\) 0 0
\(609\) 3.46768e8i 1.53528i
\(610\) 0 0
\(611\) 5.14613e8 2.25610
\(612\) 0 0
\(613\) −1.72963e8 + 1.72963e8i −0.750880 + 0.750880i −0.974644 0.223763i \(-0.928166\pi\)
0.223763 + 0.974644i \(0.428166\pi\)
\(614\) 0 0
\(615\) −2.03768e7 1.42638e8i −0.0876015 0.613211i
\(616\) 0 0
\(617\) 1.31974e8 + 1.31974e8i 0.561868 + 0.561868i 0.929838 0.367970i \(-0.119947\pi\)
−0.367970 + 0.929838i \(0.619947\pi\)
\(618\) 0 0
\(619\) 4.22584e8i 1.78173i 0.454271 + 0.890863i \(0.349900\pi\)
−0.454271 + 0.890863i \(0.650100\pi\)
\(620\) 0 0
\(621\) −3.93208e7 −0.164190
\(622\) 0 0
\(623\) −4.62582e7 + 4.62582e7i −0.191304 + 0.191304i
\(624\) 0 0
\(625\) −2.05859e8 + 1.31250e8i −0.843200 + 0.537600i
\(626\) 0 0
\(627\) 5.54631e7 + 5.54631e7i 0.225010 + 0.225010i
\(628\) 0 0
\(629\) 1.92468e8i 0.773404i
\(630\) 0 0
\(631\) −2.95144e8 −1.17475 −0.587376 0.809314i \(-0.699839\pi\)
−0.587376 + 0.809314i \(0.699839\pi\)
\(632\) 0 0
\(633\) 2.83333e8 2.83333e8i 1.11709 1.11709i
\(634\) 0 0
\(635\) −3.40621e8 + 4.86602e7i −1.33030 + 0.190043i
\(636\) 0 0
\(637\) −1.18094e7 1.18094e7i −0.0456888 0.0456888i
\(638\) 0 0
\(639\) 1.32646e7i 0.0508385i
\(640\) 0 0
\(641\) 3.85293e8 1.46291 0.731453 0.681891i \(-0.238842\pi\)
0.731453 + 0.681891i \(0.238842\pi\)
\(642\) 0 0
\(643\) −1.75998e8 + 1.75998e8i −0.662024 + 0.662024i −0.955857 0.293833i \(-0.905069\pi\)
0.293833 + 0.955857i \(0.405069\pi\)
\(644\) 0 0
\(645\) −1.80214e8 1.35161e8i −0.671599 0.503699i
\(646\) 0 0
\(647\) 1.00835e8 + 1.00835e8i 0.372304 + 0.372304i 0.868316 0.496012i \(-0.165203\pi\)
−0.496012 + 0.868316i \(0.665203\pi\)
\(648\) 0 0
\(649\) 5.04159e7i 0.184431i
\(650\) 0 0
\(651\) 4.29915e8 1.55826
\(652\) 0 0
\(653\) 1.92563e8 1.92563e8i 0.691566 0.691566i −0.271010 0.962576i \(-0.587358\pi\)
0.962576 + 0.271010i \(0.0873577\pi\)
\(654\) 0 0
\(655\) 2.81715e8 3.75620e8i 1.00250 1.33667i
\(656\) 0 0
\(657\) 4.24486e7 + 4.24486e7i 0.149681 + 0.149681i
\(658\) 0 0
\(659\) 1.31172e8i 0.458337i −0.973387 0.229168i \(-0.926399\pi\)
0.973387 0.229168i \(-0.0736007\pi\)
\(660\) 0 0
\(661\) −1.97154e8 −0.682656 −0.341328 0.939944i \(-0.610877\pi\)
−0.341328 + 0.939944i \(0.610877\pi\)
\(662\) 0 0
\(663\) −3.22408e8 + 3.22408e8i −1.10628 + 1.10628i
\(664\) 0 0
\(665\) 1.06210e7 + 7.43470e7i 0.0361161 + 0.252812i
\(666\) 0 0
\(667\) −6.52212e7 6.52212e7i −0.219792 0.219792i
\(668\) 0 0
\(669\) 1.51274e7i 0.0505227i
\(670\) 0 0
\(671\) −1.16817e8 −0.386670
\(672\) 0 0
\(673\) −1.93253e8 + 1.93253e8i −0.633987 + 0.633987i −0.949066 0.315079i \(-0.897969\pi\)
0.315079 + 0.949066i \(0.397969\pi\)
\(674\) 0 0
\(675\) 9.77500e7 1.78250e8i 0.317838 0.579586i
\(676\) 0 0
\(677\) −2.07906e8 2.07906e8i −0.670042 0.670042i 0.287684 0.957725i \(-0.407115\pi\)
−0.957725 + 0.287684i \(0.907115\pi\)
\(678\) 0 0
\(679\) 2.63220e8i 0.840831i
\(680\) 0 0
\(681\) 3.65739e8 1.15806
\(682\) 0 0
\(683\) 3.57632e8 3.57632e8i 1.12247 1.12247i 0.131099 0.991369i \(-0.458149\pi\)
0.991369 0.131099i \(-0.0418506\pi\)
\(684\) 0 0
\(685\) −1.82496e8 + 2.60708e7i −0.567781 + 0.0811116i
\(686\) 0 0
\(687\) 5.25998e8 + 5.25998e8i 1.62224 + 1.62224i
\(688\) 0 0
\(689\) 1.94708e8i 0.595286i
\(690\) 0 0
\(691\) 1.76748e8 0.535698 0.267849 0.963461i \(-0.413687\pi\)
0.267849 + 0.963461i \(0.413687\pi\)
\(692\) 0 0
\(693\) −1.13931e8 + 1.13931e8i −0.342327 + 0.342327i
\(694\) 0 0
\(695\) −3.24700e8 2.43525e8i −0.967226 0.725419i
\(696\) 0 0
\(697\) −9.18907e7 9.18907e7i −0.271377 0.271377i
\(698\) 0 0
\(699\) 3.95163e8i 1.15703i
\(700\) 0 0
\(701\) −3.12897e8 −0.908338 −0.454169 0.890916i \(-0.650064\pi\)
−0.454169 + 0.890916i \(0.650064\pi\)
\(702\) 0 0
\(703\) 6.38344e7 6.38344e7i 0.183734 0.183734i
\(704\) 0 0
\(705\) 3.28416e8 4.37888e8i 0.937253 1.24967i
\(706\) 0 0
\(707\) −4.21154e8 4.21154e8i −1.19174 1.19174i
\(708\) 0 0
\(709\) 1.07924e8i 0.302817i 0.988471 + 0.151408i \(0.0483809\pi\)
−0.988471 + 0.151408i \(0.951619\pi\)
\(710\) 0 0
\(711\) −1.72607e8 −0.480229
\(712\) 0 0
\(713\) −8.08598e7 + 8.08598e7i −0.223082 + 0.223082i
\(714\) 0 0
\(715\) 9.47402e7 + 6.63181e8i 0.259189 + 1.81432i
\(716\) 0 0
\(717\) −2.22312e8 2.22312e8i −0.603124 0.603124i
\(718\) 0 0
\(719\) 1.83233e8i 0.492967i −0.969147 0.246484i \(-0.920725\pi\)
0.969147 0.246484i \(-0.0792752\pi\)
\(720\) 0 0
\(721\) 3.28541e8 0.876565
\(722\) 0 0
\(723\) 4.27631e8 4.27631e8i 1.13150 1.13150i
\(724\) 0 0
\(725\) 4.57800e8 1.33525e8i 1.20133 0.350387i
\(726\) 0 0
\(727\) −2.98719e8 2.98719e8i −0.777428 0.777428i 0.201965 0.979393i \(-0.435267\pi\)
−0.979393 + 0.201965i \(0.935267\pi\)
\(728\) 0 0
\(729\) 9.03723e7i 0.233267i
\(730\) 0 0
\(731\) −2.03172e8 −0.520130
\(732\) 0 0
\(733\) 4.34598e8 4.34598e8i 1.10351 1.10351i 0.109524 0.993984i \(-0.465067\pi\)
0.993984 0.109524i \(-0.0349325\pi\)
\(734\) 0 0
\(735\) −1.75852e7 + 2.51218e6i −0.0442880 + 0.00632685i
\(736\) 0 0
\(737\) 8.52879e7 + 8.52879e7i 0.213052 + 0.213052i
\(738\) 0 0
\(739\) 5.77645e8i 1.43129i 0.698463 + 0.715646i \(0.253867\pi\)
−0.698463 + 0.715646i \(0.746133\pi\)
\(740\) 0 0
\(741\) 2.13861e8 0.525627
\(742\) 0 0
\(743\) −9.71697e7 + 9.71697e7i −0.236900 + 0.236900i −0.815565 0.578665i \(-0.803574\pi\)
0.578665 + 0.815565i \(0.303574\pi\)
\(744\) 0 0
\(745\) −5.76420e8 4.32315e8i −1.39402 1.04552i
\(746\) 0 0
\(747\) −3.76452e7 3.76452e7i −0.0903124 0.0903124i
\(748\) 0 0
\(749\) 1.52682e8i 0.363365i
\(750\) 0 0
\(751\) −6.96310e8 −1.64393 −0.821963 0.569540i \(-0.807121\pi\)
−0.821963 + 0.569540i \(0.807121\pi\)
\(752\) 0 0
\(753\) −2.74505e8 + 2.74505e8i −0.642933 + 0.642933i
\(754\) 0 0
\(755\) 7.74602e7 1.03280e8i 0.179985 0.239981i
\(756\) 0 0
\(757\) −2.26996e8 2.26996e8i −0.523276 0.523276i 0.395283 0.918559i \(-0.370646\pi\)
−0.918559 + 0.395283i \(0.870646\pi\)
\(758\) 0 0
\(759\) 1.37819e8i 0.315199i
\(760\) 0 0
\(761\) −3.36900e8 −0.764447 −0.382224 0.924070i \(-0.624842\pi\)
−0.382224 + 0.924070i \(0.624842\pi\)
\(762\) 0 0
\(763\) 8.95227e7 8.95227e7i 0.201539 0.201539i
\(764\) 0 0
\(765\) 2.13274e7 + 1.49292e8i 0.0476381 + 0.333466i
\(766\) 0 0
\(767\) −9.71999e7 9.71999e7i −0.215417 0.215417i
\(768\) 0 0
\(769\) 2.53257e8i 0.556907i −0.960450 0.278454i \(-0.910178\pi\)
0.960450 0.278454i \(-0.0898219\pi\)
\(770\) 0 0
\(771\) 7.09800e8 1.54872
\(772\) 0 0
\(773\) 9.22029e7 9.22029e7i 0.199621 0.199621i −0.600217 0.799838i \(-0.704919\pi\)
0.799838 + 0.600217i \(0.204919\pi\)
\(774\) 0 0
\(775\) −1.65541e8 5.67570e8i −0.355632 1.21931i
\(776\) 0 0
\(777\) 4.21678e8 + 4.21678e8i 0.898913 + 0.898913i
\(778\) 0 0
\(779\) 6.09534e7i 0.128939i
\(780\) 0 0
\(781\) −5.65258e7 −0.118657
\(782\) 0 0
\(783\) −2.80784e8 + 2.80784e8i −0.584907 + 0.584907i
\(784\) 0 0
\(785\) −4.02597e8 + 5.75138e7i −0.832264 + 0.118895i
\(786\) 0 0
\(787\) −1.88154e8 1.88154e8i −0.386003 0.386003i 0.487256 0.873259i \(-0.337998\pi\)
−0.873259 + 0.487256i \(0.837998\pi\)
\(788\) 0 0
\(789\) 5.84696e8i 1.19042i
\(790\) 0 0
\(791\) 3.56993e8 0.721323
\(792\) 0 0
\(793\) −2.25219e8 + 2.25219e8i −0.451634 + 0.451634i
\(794\) 0 0
\(795\) 1.65678e8 + 1.24259e8i 0.329734 + 0.247301i
\(796\) 0 0
\(797\) −4.42167e7 4.42167e7i −0.0873397 0.0873397i 0.662087 0.749427i \(-0.269671\pi\)
−0.749427 + 0.662087i \(0.769671\pi\)
\(798\) 0 0
\(799\) 4.93671e8i 0.967826i
\(800\) 0 0
\(801\) 6.16151e7 0.119892
\(802\) 0 0
\(803\) 1.80890e8 1.80890e8i 0.349356 0.349356i
\(804\) 0 0
\(805\) 7.91758e7 1.05568e8i 0.151777 0.202369i
\(806\) 0 0
\(807\) 5.84632e7 + 5.84632e7i 0.111240 + 0.111240i
\(808\) 0 0
\(809\) 1.04607e9i 1.97568i −0.155470 0.987841i \(-0.549689\pi\)
0.155470 0.987841i \(-0.450311\pi\)
\(810\) 0 0
\(811\) 6.48376e8 1.21553 0.607763 0.794118i \(-0.292067\pi\)
0.607763 + 0.794118i \(0.292067\pi\)
\(812\) 0 0
\(813\) −1.41078e8 + 1.41078e8i −0.262536 + 0.262536i
\(814\) 0 0
\(815\) 1.00545e8 + 7.03812e8i 0.185732 + 1.30012i
\(816\) 0 0
\(817\) 6.73844e7 + 6.73844e7i 0.123564 + 0.123564i
\(818\) 0 0
\(819\) 4.39308e8i 0.799682i
\(820\) 0 0
\(821\) −2.19206e8 −0.396117 −0.198058 0.980190i \(-0.563464\pi\)
−0.198058 + 0.980190i \(0.563464\pi\)
\(822\) 0 0
\(823\) −5.40313e8 + 5.40313e8i −0.969272 + 0.969272i −0.999542 0.0302695i \(-0.990363\pi\)
0.0302695 + 0.999542i \(0.490363\pi\)
\(824\) 0 0
\(825\) 6.24766e8 + 3.42614e8i 1.11264 + 0.610159i
\(826\) 0 0
\(827\) 2.57157e6 + 2.57157e6i 0.00454654 + 0.00454654i 0.709376 0.704830i \(-0.248977\pi\)
−0.704830 + 0.709376i \(0.748977\pi\)
\(828\) 0 0
\(829\) 4.66597e8i 0.818989i −0.912313 0.409494i \(-0.865705\pi\)
0.912313 0.409494i \(-0.134295\pi\)
\(830\) 0 0
\(831\) −1.38236e8 −0.240889
\(832\) 0 0
\(833\) −1.13288e7 + 1.13288e7i −0.0195997 + 0.0195997i
\(834\) 0 0
\(835\) −1.24279e8 + 1.77542e7i −0.213471 + 0.0304959i
\(836\) 0 0
\(837\) 3.48110e8 + 3.48110e8i 0.593663 + 0.593663i
\(838\) 0 0
\(839\) 5.23913e8i 0.887102i −0.896249 0.443551i \(-0.853718\pi\)
0.896249 0.443551i \(-0.146282\pi\)
\(840\) 0 0
\(841\) −3.36647e8 −0.565961
\(842\) 0 0
\(843\) −1.49351e8 + 1.49351e8i −0.249302 + 0.249302i
\(844\) 0 0
\(845\) 9.78561e8 + 7.33921e8i 1.62188 + 1.21641i
\(846\) 0 0
\(847\) 4.79286e7 + 4.79286e7i 0.0788760 + 0.0788760i
\(848\) 0 0
\(849\) 1.24939e9i 2.04162i
\(850\) 0 0
\(851\) −1.58621e8 −0.257378
\(852\) 0 0
\(853\) −1.57695e8 + 1.57695e8i −0.254080 + 0.254080i −0.822641 0.568561i \(-0.807500\pi\)
0.568561 + 0.822641i \(0.307500\pi\)
\(854\) 0 0
\(855\) 4.24410e7 5.65880e7i 0.0679027 0.0905370i
\(856\) 0 0
\(857\) −3.71033e8 3.71033e8i −0.589481 0.589481i 0.348010 0.937491i \(-0.386857\pi\)
−0.937491 + 0.348010i \(0.886857\pi\)
\(858\) 0 0
\(859\) 9.20945e8i 1.45296i −0.687186 0.726481i \(-0.741154\pi\)
0.687186 0.726481i \(-0.258846\pi\)
\(860\) 0 0
\(861\) −4.02647e8 −0.630833
\(862\) 0 0
\(863\) 3.54269e8 3.54269e8i 0.551189 0.551189i −0.375595 0.926784i \(-0.622562\pi\)
0.926784 + 0.375595i \(0.122562\pi\)
\(864\) 0 0
\(865\) 9.44124e7 + 6.60887e8i 0.145875 + 1.02112i
\(866\) 0 0
\(867\) −2.45876e8 2.45876e8i −0.377276 0.377276i
\(868\) 0 0
\(869\) 7.35545e8i 1.12086i
\(870\) 0 0
\(871\) 3.28863e8 0.497692
\(872\) 0 0
\(873\) 1.75302e8 1.75302e8i 0.263478 0.263478i
\(874\) 0 0
\(875\) 2.81734e8 + 6.21359e8i 0.420548 + 0.927510i
\(876\) 0 0
\(877\) 5.40230e8 + 5.40230e8i 0.800903 + 0.800903i 0.983237 0.182333i \(-0.0583650\pi\)
−0.182333 + 0.983237i \(0.558365\pi\)
\(878\) 0 0
\(879\) 2.20218e8i 0.324254i
\(880\) 0 0
\(881\) 5.18142e8 0.757742 0.378871 0.925450i \(-0.376312\pi\)
0.378871 + 0.925450i \(0.376312\pi\)
\(882\) 0 0
\(883\) −4.34467e8 + 4.34467e8i −0.631066 + 0.631066i −0.948335 0.317269i \(-0.897234\pi\)
0.317269 + 0.948335i \(0.397234\pi\)
\(884\) 0 0
\(885\) −1.44739e8 + 2.06770e7i −0.208812 + 0.0298303i
\(886\) 0 0
\(887\) 8.33860e8 + 8.33860e8i 1.19487 + 1.19487i 0.975682 + 0.219193i \(0.0703424\pi\)
0.219193 + 0.975682i \(0.429658\pi\)
\(888\) 0 0
\(889\) 9.61525e8i 1.36853i
\(890\) 0 0
\(891\) −9.29583e8 −1.31418
\(892\) 0 0
\(893\) −1.63732e8 + 1.63732e8i −0.229921 + 0.229921i
\(894\) 0 0
\(895\) 5.46380e8 + 4.09785e8i 0.762124 + 0.571593i
\(896\) 0 0
\(897\) −2.65710e8 2.65710e8i −0.368155 0.368155i
\(898\) 0 0
\(899\) 1.15482e9i 1.58940i
\(900\) 0 0
\(901\) 1.86784e8 0.255368
\(902\) 0 0
\(903\) −4.45129e8 + 4.45129e8i −0.604537 + 0.604537i
\(904\) 0 0
\(905\) −6.76827e8 + 9.02436e8i −0.913129 + 1.21751i
\(906\) 0 0
\(907\) 4.28686e8 + 4.28686e8i 0.574536 + 0.574536i 0.933393 0.358856i \(-0.116833\pi\)
−0.358856 + 0.933393i \(0.616833\pi\)
\(908\) 0 0
\(909\) 5.60971e8i 0.746876i
\(910\) 0 0
\(911\) −1.25314e9 −1.65746 −0.828730 0.559649i \(-0.810936\pi\)
−0.828730 + 0.559649i \(0.810936\pi\)
\(912\) 0 0
\(913\) −1.60421e8 + 1.60421e8i −0.210790 + 0.210790i
\(914\) 0 0
\(915\) 4.79102e7 + 3.35371e8i 0.0625409 + 0.437786i
\(916\) 0 0
\(917\) −9.27782e8 9.27782e8i −1.20320 1.20320i
\(918\) 0 0
\(919\) 5.35804e8i 0.690335i −0.938541 0.345167i \(-0.887822\pi\)
0.938541 0.345167i \(-0.112178\pi\)
\(920\) 0 0
\(921\) −4.47276e8 −0.572528
\(922\) 0 0
\(923\) −1.08980e8 + 1.08980e8i −0.138593 + 0.138593i
\(924\) 0 0
\(925\) 3.94326e8 7.19064e8i 0.498230 0.908537i
\(926\) 0 0
\(927\) −2.18806e8 2.18806e8i −0.274675 0.274675i
\(928\) 0 0
\(929\) 6.63938e7i 0.0828095i 0.999142 + 0.0414047i \(0.0131833\pi\)
−0.999142 + 0.0414047i \(0.986817\pi\)
\(930\) 0 0
\(931\) 7.51468e6 0.00931240
\(932\) 0 0
\(933\) −1.61769e8 + 1.61769e8i −0.199182 + 0.199182i
\(934\) 0 0
\(935\) 6.36193e8 9.08846e7i 0.778312 0.111187i
\(936\) 0 0
\(937\) 5.38039e8 + 5.38039e8i 0.654026 + 0.654026i 0.953960 0.299934i \(-0.0969648\pi\)
−0.299934 + 0.953960i \(0.596965\pi\)
\(938\) 0 0
\(939\) 1.37492e9i 1.66066i
\(940\) 0 0
\(941\) 1.17829e9 1.41411 0.707053 0.707160i \(-0.250024\pi\)
0.707053 + 0.707160i \(0.250024\pi\)
\(942\) 0 0
\(943\) 7.57310e7 7.57310e7i 0.0903106 0.0903106i
\(944\) 0 0
\(945\) −4.54480e8 3.40860e8i −0.538542 0.403906i
\(946\) 0 0
\(947\) −9.34402e8 9.34402e8i −1.10023 1.10023i −0.994382 0.105849i \(-0.966244\pi\)
−0.105849 0.994382i \(-0.533756\pi\)
\(948\) 0 0
\(949\) 6.97498e8i 0.816102i
\(950\) 0 0
\(951\) 9.71825e8 1.12992
\(952\) 0 0
\(953\) −5.18005e8 + 5.18005e8i −0.598487 + 0.598487i −0.939910 0.341423i \(-0.889091\pi\)
0.341423 + 0.939910i \(0.389091\pi\)
\(954\) 0 0
\(955\) −3.01590e8 + 4.02120e8i −0.346263 + 0.461685i
\(956\) 0 0
\(957\) −9.84148e8 9.84148e8i −1.12286 1.12286i
\(958\) 0 0
\(959\) 5.15160e8i 0.584098i
\(960\) 0 0
\(961\) 5.44211e8 0.613192
\(962\) 0 0
\(963\) −1.01685e8 + 1.01685e8i −0.113862 + 0.113862i
\(964\) 0 0
\(965\) −2.63536e7 1.84475e8i −0.0293263 0.205284i
\(966\) 0 0
\(967\) 2.61561e8 + 2.61561e8i 0.289264 + 0.289264i 0.836789 0.547525i \(-0.184430\pi\)
−0.547525 + 0.836789i \(0.684430\pi\)
\(968\) 0 0
\(969\) 2.05158e8i 0.225485i
\(970\) 0 0
\(971\) 4.59360e8 0.501759 0.250880 0.968018i \(-0.419280\pi\)
0.250880 + 0.968018i \(0.419280\pi\)
\(972\) 0 0
\(973\) −8.02009e8 + 8.02009e8i −0.870644 + 0.870644i
\(974\) 0 0
\(975\) 1.86507e9 5.43979e8i 2.01225 0.586905i
\(976\) 0 0
\(977\) −8.60529e7 8.60529e7i −0.0922746 0.0922746i 0.659463 0.751737i \(-0.270784\pi\)
−0.751737 + 0.659463i \(0.770784\pi\)
\(978\) 0 0
\(979\) 2.62567e8i 0.279828i
\(980\) 0 0
\(981\) −1.19243e8 −0.126306
\(982\) 0 0
\(983\) 9.00900e8 9.00900e8i 0.948454 0.948454i −0.0502815 0.998735i \(-0.516012\pi\)
0.998735 + 0.0502815i \(0.0160119\pi\)
\(984\) 0 0
\(985\) 1.27661e9 1.82372e8i 1.33582 0.190831i
\(986\) 0 0
\(987\) −1.08158e9 1.08158e9i −1.12489 1.12489i
\(988\) 0 0
\(989\) 1.67442e8i 0.173092i
\(990\) 0 0
\(991\) 2.71537e8 0.279003 0.139501 0.990222i \(-0.455450\pi\)
0.139501 + 0.990222i \(0.455450\pi\)
\(992\) 0 0
\(993\) 9.73541e8 9.73541e8i 0.994275 0.994275i
\(994\) 0 0
\(995\) −1.41170e9 1.05878e9i −1.43309 1.07482i
\(996\) 0 0
\(997\) −3.63500e8 3.63500e8i −0.366791 0.366791i 0.499514 0.866306i \(-0.333512\pi\)
−0.866306 + 0.499514i \(0.833512\pi\)
\(998\) 0 0
\(999\) 6.82879e8i 0.684932i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.7.p.a.17.1 2
4.3 odd 2 10.7.c.a.7.1 yes 2
5.3 odd 4 inner 80.7.p.a.33.1 2
12.11 even 2 90.7.g.a.37.1 2
20.3 even 4 10.7.c.a.3.1 2
20.7 even 4 50.7.c.c.43.1 2
20.19 odd 2 50.7.c.c.7.1 2
60.23 odd 4 90.7.g.a.73.1 2
60.47 odd 4 450.7.g.b.343.1 2
60.59 even 2 450.7.g.b.307.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.7.c.a.3.1 2 20.3 even 4
10.7.c.a.7.1 yes 2 4.3 odd 2
50.7.c.c.7.1 2 20.19 odd 2
50.7.c.c.43.1 2 20.7 even 4
80.7.p.a.17.1 2 1.1 even 1 trivial
80.7.p.a.33.1 2 5.3 odd 4 inner
90.7.g.a.37.1 2 12.11 even 2
90.7.g.a.73.1 2 60.23 odd 4
450.7.g.b.307.1 2 60.59 even 2
450.7.g.b.343.1 2 60.47 odd 4