Properties

Label 80.7.h.a
Level $80$
Weight $7$
Character orbit 80.h
Self dual yes
Analytic conductor $18.404$
Analytic rank $0$
Dimension $2$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [80,7,Mod(79,80)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(80, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("80.79"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 80.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4043266896\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 7 \beta q^{3} + 125 q^{5} - 99 \beta q^{7} + 251 q^{9} - 875 \beta q^{15} + 13860 q^{21} + 4221 \beta q^{23} + 15625 q^{25} + 3346 \beta q^{27} + 44858 q^{29} - 12375 \beta q^{35} + 74338 q^{41} - 35343 \beta q^{43} + \cdots + 511058 q^{89} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 250 q^{5} + 502 q^{9} + 27720 q^{21} + 31250 q^{25} + 89716 q^{29} + 148676 q^{41} + 62750 q^{45} + 156742 q^{49} - 904684 q^{61} - 1181880 q^{69} - 1302838 q^{81} + 1022116 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
1.61803
−0.618034
0 −31.3050 0 125.000 0 −442.741 0 251.000 0
79.2 0 31.3050 0 125.000 0 442.741 0 251.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
4.b odd 2 1 inner
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.7.h.a 2
3.b odd 2 1 720.7.j.a 2
4.b odd 2 1 inner 80.7.h.a 2
5.b even 2 1 inner 80.7.h.a 2
5.c odd 4 2 400.7.b.b 2
8.b even 2 1 320.7.h.c 2
8.d odd 2 1 320.7.h.c 2
12.b even 2 1 720.7.j.a 2
15.d odd 2 1 720.7.j.a 2
20.d odd 2 1 CM 80.7.h.a 2
20.e even 4 2 400.7.b.b 2
40.e odd 2 1 320.7.h.c 2
40.f even 2 1 320.7.h.c 2
60.h even 2 1 720.7.j.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
80.7.h.a 2 1.a even 1 1 trivial
80.7.h.a 2 4.b odd 2 1 inner
80.7.h.a 2 5.b even 2 1 inner
80.7.h.a 2 20.d odd 2 1 CM
320.7.h.c 2 8.b even 2 1
320.7.h.c 2 8.d odd 2 1
320.7.h.c 2 40.e odd 2 1
320.7.h.c 2 40.f even 2 1
400.7.b.b 2 5.c odd 4 2
400.7.b.b 2 20.e even 4 2
720.7.j.a 2 3.b odd 2 1
720.7.j.a 2 12.b even 2 1
720.7.j.a 2 15.d odd 2 1
720.7.j.a 2 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 980 \) acting on \(S_{7}^{\mathrm{new}}(80, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 980 \) Copy content Toggle raw display
$5$ \( (T - 125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 196020 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 356336820 \) Copy content Toggle raw display
$29$ \( (T - 44858)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( (T - 74338)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 24982552980 \) Copy content Toggle raw display
$47$ \( T^{2} - 42417576180 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T + 452342)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 361831900500 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 26980388820 \) Copy content Toggle raw display
$89$ \( (T - 511058)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less