Properties

Label 80.3.k
Level $80$
Weight $3$
Character orbit 80.k
Rep. character $\chi_{80}(19,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $44$
Newform subspaces $1$
Sturm bound $36$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 80.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 80 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(36\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(80, [\chi])\).

Total New Old
Modular forms 52 52 0
Cusp forms 44 44 0
Eisenstein series 8 8 0

Trace form

\( 44 q - 4 q^{4} - 2 q^{5} - 4 q^{6} - 20 q^{10} - 4 q^{11} + 4 q^{14} - 32 q^{16} - 36 q^{19} + 40 q^{20} + 32 q^{21} + 16 q^{24} - 56 q^{26} - 4 q^{29} - 160 q^{30} - 192 q^{34} + 212 q^{36} - 8 q^{39}+ \cdots + 484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(80, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
80.3.k.a 80.k 80.k $44$ $2.180$ None 80.3.k.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{4}]$