Properties

Label 80.18.a.l.1.4
Level $80$
Weight $18$
Character 80.1
Self dual yes
Analytic conductor $146.578$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [80,18,Mod(1,80)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("80.1"); S:= CuspForms(chi, 18); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(80, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 18, names="a")
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,15384] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.577669876\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 2573495x^{3} + 1741012708x^{2} - 129847160472x - 10015787544672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{32}\cdot 3^{4}\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(848.005\) of defining polynomial
Character \(\chi\) \(=\) 80.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+15641.7 q^{3} +390625. q^{5} -2.95100e7 q^{7} +1.15523e8 q^{9} -5.55492e8 q^{11} +5.05164e9 q^{13} +6.11004e9 q^{15} +2.65821e10 q^{17} -6.99046e10 q^{19} -4.61586e11 q^{21} +2.17498e11 q^{23} +1.52588e11 q^{25} -2.13002e11 q^{27} -2.64418e12 q^{29} +5.06233e12 q^{31} -8.68884e12 q^{33} -1.15273e13 q^{35} -1.35581e13 q^{37} +7.90162e13 q^{39} +6.27018e13 q^{41} +1.30526e13 q^{43} +4.51260e13 q^{45} -1.38441e14 q^{47} +6.38209e14 q^{49} +4.15789e14 q^{51} +4.87513e14 q^{53} -2.16989e14 q^{55} -1.09343e15 q^{57} -1.22412e14 q^{59} -8.94475e14 q^{61} -3.40907e15 q^{63} +1.97330e15 q^{65} +4.14519e15 q^{67} +3.40203e15 q^{69} +6.78083e15 q^{71} +1.00658e16 q^{73} +2.38673e15 q^{75} +1.63926e16 q^{77} +1.92777e16 q^{79} -1.82503e16 q^{81} -1.95626e16 q^{83} +1.03836e16 q^{85} -4.13594e16 q^{87} +5.91887e16 q^{89} -1.49074e17 q^{91} +7.91834e16 q^{93} -2.73065e16 q^{95} -1.03756e17 q^{97} -6.41719e16 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 15384 q^{3} + 1953125 q^{5} - 312868 q^{7} + 410286417 q^{9} - 757119716 q^{11} + 2827963478 q^{13} + 6009375000 q^{15} + 24776563114 q^{17} - 811272116 q^{19} + 332870780352 q^{21} + 73100431588 q^{23}+ \cdots - 35\!\cdots\!44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 15641.7 1.37643 0.688214 0.725508i \(-0.258395\pi\)
0.688214 + 0.725508i \(0.258395\pi\)
\(4\) 0 0
\(5\) 390625. 0.447214
\(6\) 0 0
\(7\) −2.95100e7 −1.93480 −0.967399 0.253257i \(-0.918498\pi\)
−0.967399 + 0.253257i \(0.918498\pi\)
\(8\) 0 0
\(9\) 1.15523e8 0.894552
\(10\) 0 0
\(11\) −5.55492e8 −0.781340 −0.390670 0.920531i \(-0.627757\pi\)
−0.390670 + 0.920531i \(0.627757\pi\)
\(12\) 0 0
\(13\) 5.05164e9 1.71757 0.858784 0.512339i \(-0.171221\pi\)
0.858784 + 0.512339i \(0.171221\pi\)
\(14\) 0 0
\(15\) 6.11004e9 0.615557
\(16\) 0 0
\(17\) 2.65821e10 0.924216 0.462108 0.886824i \(-0.347093\pi\)
0.462108 + 0.886824i \(0.347093\pi\)
\(18\) 0 0
\(19\) −6.99046e10 −0.944278 −0.472139 0.881524i \(-0.656518\pi\)
−0.472139 + 0.881524i \(0.656518\pi\)
\(20\) 0 0
\(21\) −4.61586e11 −2.66311
\(22\) 0 0
\(23\) 2.17498e11 0.579119 0.289560 0.957160i \(-0.406491\pi\)
0.289560 + 0.957160i \(0.406491\pi\)
\(24\) 0 0
\(25\) 1.52588e11 0.200000
\(26\) 0 0
\(27\) −2.13002e11 −0.145141
\(28\) 0 0
\(29\) −2.64418e12 −0.981538 −0.490769 0.871290i \(-0.663284\pi\)
−0.490769 + 0.871290i \(0.663284\pi\)
\(30\) 0 0
\(31\) 5.06233e12 1.06605 0.533023 0.846101i \(-0.321056\pi\)
0.533023 + 0.846101i \(0.321056\pi\)
\(32\) 0 0
\(33\) −8.68884e12 −1.07546
\(34\) 0 0
\(35\) −1.15273e13 −0.865268
\(36\) 0 0
\(37\) −1.35581e13 −0.634575 −0.317288 0.948329i \(-0.602772\pi\)
−0.317288 + 0.948329i \(0.602772\pi\)
\(38\) 0 0
\(39\) 7.90162e13 2.36411
\(40\) 0 0
\(41\) 6.27018e13 1.22636 0.613179 0.789944i \(-0.289891\pi\)
0.613179 + 0.789944i \(0.289891\pi\)
\(42\) 0 0
\(43\) 1.30526e13 0.170300 0.0851499 0.996368i \(-0.472863\pi\)
0.0851499 + 0.996368i \(0.472863\pi\)
\(44\) 0 0
\(45\) 4.51260e13 0.400056
\(46\) 0 0
\(47\) −1.38441e14 −0.848074 −0.424037 0.905645i \(-0.639387\pi\)
−0.424037 + 0.905645i \(0.639387\pi\)
\(48\) 0 0
\(49\) 6.38209e14 2.74344
\(50\) 0 0
\(51\) 4.15789e14 1.27212
\(52\) 0 0
\(53\) 4.87513e14 1.07558 0.537788 0.843080i \(-0.319260\pi\)
0.537788 + 0.843080i \(0.319260\pi\)
\(54\) 0 0
\(55\) −2.16989e14 −0.349426
\(56\) 0 0
\(57\) −1.09343e15 −1.29973
\(58\) 0 0
\(59\) −1.22412e14 −0.108538 −0.0542689 0.998526i \(-0.517283\pi\)
−0.0542689 + 0.998526i \(0.517283\pi\)
\(60\) 0 0
\(61\) −8.94475e14 −0.597399 −0.298700 0.954347i \(-0.596553\pi\)
−0.298700 + 0.954347i \(0.596553\pi\)
\(62\) 0 0
\(63\) −3.40907e15 −1.73078
\(64\) 0 0
\(65\) 1.97330e15 0.768119
\(66\) 0 0
\(67\) 4.14519e15 1.24712 0.623561 0.781775i \(-0.285685\pi\)
0.623561 + 0.781775i \(0.285685\pi\)
\(68\) 0 0
\(69\) 3.40203e15 0.797116
\(70\) 0 0
\(71\) 6.78083e15 1.24620 0.623099 0.782143i \(-0.285873\pi\)
0.623099 + 0.782143i \(0.285873\pi\)
\(72\) 0 0
\(73\) 1.00658e16 1.46085 0.730423 0.682995i \(-0.239323\pi\)
0.730423 + 0.682995i \(0.239323\pi\)
\(74\) 0 0
\(75\) 2.38673e15 0.275285
\(76\) 0 0
\(77\) 1.63926e16 1.51174
\(78\) 0 0
\(79\) 1.92777e16 1.42963 0.714815 0.699313i \(-0.246511\pi\)
0.714815 + 0.699313i \(0.246511\pi\)
\(80\) 0 0
\(81\) −1.82503e16 −1.09433
\(82\) 0 0
\(83\) −1.95626e16 −0.953374 −0.476687 0.879073i \(-0.658163\pi\)
−0.476687 + 0.879073i \(0.658163\pi\)
\(84\) 0 0
\(85\) 1.03836e16 0.413322
\(86\) 0 0
\(87\) −4.13594e16 −1.35102
\(88\) 0 0
\(89\) 5.91887e16 1.59376 0.796881 0.604136i \(-0.206482\pi\)
0.796881 + 0.604136i \(0.206482\pi\)
\(90\) 0 0
\(91\) −1.49074e17 −3.32315
\(92\) 0 0
\(93\) 7.91834e16 1.46733
\(94\) 0 0
\(95\) −2.73065e16 −0.422294
\(96\) 0 0
\(97\) −1.03756e17 −1.34417 −0.672085 0.740474i \(-0.734601\pi\)
−0.672085 + 0.740474i \(0.734601\pi\)
\(98\) 0 0
\(99\) −6.41719e16 −0.698949
\(100\) 0 0
\(101\) 4.82709e16 0.443562 0.221781 0.975097i \(-0.428813\pi\)
0.221781 + 0.975097i \(0.428813\pi\)
\(102\) 0 0
\(103\) 6.82307e16 0.530717 0.265359 0.964150i \(-0.414510\pi\)
0.265359 + 0.964150i \(0.414510\pi\)
\(104\) 0 0
\(105\) −1.80307e17 −1.19098
\(106\) 0 0
\(107\) 2.80815e16 0.158000 0.0790002 0.996875i \(-0.474827\pi\)
0.0790002 + 0.996875i \(0.474827\pi\)
\(108\) 0 0
\(109\) 1.79201e17 0.861421 0.430710 0.902490i \(-0.358263\pi\)
0.430710 + 0.902490i \(0.358263\pi\)
\(110\) 0 0
\(111\) −2.12071e17 −0.873447
\(112\) 0 0
\(113\) −1.65683e17 −0.586289 −0.293145 0.956068i \(-0.594702\pi\)
−0.293145 + 0.956068i \(0.594702\pi\)
\(114\) 0 0
\(115\) 8.49600e16 0.258990
\(116\) 0 0
\(117\) 5.83578e17 1.53645
\(118\) 0 0
\(119\) −7.84437e17 −1.78817
\(120\) 0 0
\(121\) −1.96876e17 −0.389508
\(122\) 0 0
\(123\) 9.80762e17 1.68799
\(124\) 0 0
\(125\) 5.96046e16 0.0894427
\(126\) 0 0
\(127\) 1.29174e18 1.69373 0.846866 0.531806i \(-0.178487\pi\)
0.846866 + 0.531806i \(0.178487\pi\)
\(128\) 0 0
\(129\) 2.04164e17 0.234405
\(130\) 0 0
\(131\) −1.02415e18 −1.03171 −0.515856 0.856675i \(-0.672526\pi\)
−0.515856 + 0.856675i \(0.672526\pi\)
\(132\) 0 0
\(133\) 2.06288e18 1.82699
\(134\) 0 0
\(135\) −8.32039e16 −0.0649092
\(136\) 0 0
\(137\) 5.34170e17 0.367751 0.183876 0.982950i \(-0.441136\pi\)
0.183876 + 0.982950i \(0.441136\pi\)
\(138\) 0 0
\(139\) 1.18809e18 0.723140 0.361570 0.932345i \(-0.382241\pi\)
0.361570 + 0.932345i \(0.382241\pi\)
\(140\) 0 0
\(141\) −2.16546e18 −1.16731
\(142\) 0 0
\(143\) −2.80615e18 −1.34200
\(144\) 0 0
\(145\) −1.03288e18 −0.438957
\(146\) 0 0
\(147\) 9.98267e18 3.77615
\(148\) 0 0
\(149\) 4.52594e18 1.52625 0.763125 0.646251i \(-0.223664\pi\)
0.763125 + 0.646251i \(0.223664\pi\)
\(150\) 0 0
\(151\) 3.16614e18 0.953293 0.476647 0.879095i \(-0.341852\pi\)
0.476647 + 0.879095i \(0.341852\pi\)
\(152\) 0 0
\(153\) 3.07083e18 0.826759
\(154\) 0 0
\(155\) 1.97747e18 0.476750
\(156\) 0 0
\(157\) −7.10229e18 −1.53551 −0.767753 0.640746i \(-0.778625\pi\)
−0.767753 + 0.640746i \(0.778625\pi\)
\(158\) 0 0
\(159\) 7.62553e18 1.48045
\(160\) 0 0
\(161\) −6.41835e18 −1.12048
\(162\) 0 0
\(163\) 3.33159e17 0.0523670 0.0261835 0.999657i \(-0.491665\pi\)
0.0261835 + 0.999657i \(0.491665\pi\)
\(164\) 0 0
\(165\) −3.39408e18 −0.480959
\(166\) 0 0
\(167\) 1.26039e19 1.61218 0.806092 0.591791i \(-0.201579\pi\)
0.806092 + 0.591791i \(0.201579\pi\)
\(168\) 0 0
\(169\) 1.68686e19 1.95004
\(170\) 0 0
\(171\) −8.07556e18 −0.844706
\(172\) 0 0
\(173\) −1.16500e19 −1.10391 −0.551957 0.833872i \(-0.686119\pi\)
−0.551957 + 0.833872i \(0.686119\pi\)
\(174\) 0 0
\(175\) −4.50287e18 −0.386960
\(176\) 0 0
\(177\) −1.91473e18 −0.149394
\(178\) 0 0
\(179\) −7.59523e18 −0.538629 −0.269315 0.963052i \(-0.586797\pi\)
−0.269315 + 0.963052i \(0.586797\pi\)
\(180\) 0 0
\(181\) 2.11303e19 1.36344 0.681722 0.731612i \(-0.261231\pi\)
0.681722 + 0.731612i \(0.261231\pi\)
\(182\) 0 0
\(183\) −1.39911e19 −0.822276
\(184\) 0 0
\(185\) −5.29612e18 −0.283791
\(186\) 0 0
\(187\) −1.47661e19 −0.722127
\(188\) 0 0
\(189\) 6.28568e18 0.280819
\(190\) 0 0
\(191\) 3.67685e19 1.50208 0.751039 0.660258i \(-0.229553\pi\)
0.751039 + 0.660258i \(0.229553\pi\)
\(192\) 0 0
\(193\) −6.98109e17 −0.0261027 −0.0130514 0.999915i \(-0.504154\pi\)
−0.0130514 + 0.999915i \(0.504154\pi\)
\(194\) 0 0
\(195\) 3.08657e19 1.05726
\(196\) 0 0
\(197\) 3.61885e19 1.13660 0.568300 0.822821i \(-0.307601\pi\)
0.568300 + 0.822821i \(0.307601\pi\)
\(198\) 0 0
\(199\) −5.37339e19 −1.54881 −0.774404 0.632692i \(-0.781950\pi\)
−0.774404 + 0.632692i \(0.781950\pi\)
\(200\) 0 0
\(201\) 6.48379e19 1.71657
\(202\) 0 0
\(203\) 7.80296e19 1.89908
\(204\) 0 0
\(205\) 2.44929e19 0.548444
\(206\) 0 0
\(207\) 2.51259e19 0.518052
\(208\) 0 0
\(209\) 3.88314e19 0.737802
\(210\) 0 0
\(211\) −5.33853e19 −0.935451 −0.467726 0.883874i \(-0.654926\pi\)
−0.467726 + 0.883874i \(0.654926\pi\)
\(212\) 0 0
\(213\) 1.06064e20 1.71530
\(214\) 0 0
\(215\) 5.09866e18 0.0761604
\(216\) 0 0
\(217\) −1.49389e20 −2.06258
\(218\) 0 0
\(219\) 1.57446e20 2.01075
\(220\) 0 0
\(221\) 1.34283e20 1.58740
\(222\) 0 0
\(223\) −5.66288e19 −0.620078 −0.310039 0.950724i \(-0.600342\pi\)
−0.310039 + 0.950724i \(0.600342\pi\)
\(224\) 0 0
\(225\) 1.76273e19 0.178910
\(226\) 0 0
\(227\) −1.08803e20 −1.02429 −0.512144 0.858900i \(-0.671148\pi\)
−0.512144 + 0.858900i \(0.671148\pi\)
\(228\) 0 0
\(229\) 5.69405e19 0.497530 0.248765 0.968564i \(-0.419975\pi\)
0.248765 + 0.968564i \(0.419975\pi\)
\(230\) 0 0
\(231\) 2.56408e20 2.08079
\(232\) 0 0
\(233\) 2.80449e19 0.211509 0.105754 0.994392i \(-0.466274\pi\)
0.105754 + 0.994392i \(0.466274\pi\)
\(234\) 0 0
\(235\) −5.40786e19 −0.379270
\(236\) 0 0
\(237\) 3.01535e20 1.96778
\(238\) 0 0
\(239\) 1.04425e20 0.634485 0.317243 0.948344i \(-0.397243\pi\)
0.317243 + 0.948344i \(0.397243\pi\)
\(240\) 0 0
\(241\) −2.71252e20 −1.53542 −0.767710 0.640797i \(-0.778604\pi\)
−0.767710 + 0.640797i \(0.778604\pi\)
\(242\) 0 0
\(243\) −2.57959e20 −1.36112
\(244\) 0 0
\(245\) 2.49300e20 1.22690
\(246\) 0 0
\(247\) −3.53133e20 −1.62186
\(248\) 0 0
\(249\) −3.05993e20 −1.31225
\(250\) 0 0
\(251\) −1.57255e20 −0.630053 −0.315026 0.949083i \(-0.602013\pi\)
−0.315026 + 0.949083i \(0.602013\pi\)
\(252\) 0 0
\(253\) −1.20818e20 −0.452489
\(254\) 0 0
\(255\) 1.62418e20 0.568908
\(256\) 0 0
\(257\) 7.56388e19 0.247921 0.123960 0.992287i \(-0.460440\pi\)
0.123960 + 0.992287i \(0.460440\pi\)
\(258\) 0 0
\(259\) 4.00098e20 1.22777
\(260\) 0 0
\(261\) −3.05462e20 −0.878037
\(262\) 0 0
\(263\) 4.38635e20 1.18162 0.590812 0.806809i \(-0.298808\pi\)
0.590812 + 0.806809i \(0.298808\pi\)
\(264\) 0 0
\(265\) 1.90435e20 0.481013
\(266\) 0 0
\(267\) 9.25811e20 2.19370
\(268\) 0 0
\(269\) 2.87224e20 0.638743 0.319371 0.947630i \(-0.396528\pi\)
0.319371 + 0.947630i \(0.396528\pi\)
\(270\) 0 0
\(271\) −2.83260e20 −0.591488 −0.295744 0.955267i \(-0.595567\pi\)
−0.295744 + 0.955267i \(0.595567\pi\)
\(272\) 0 0
\(273\) −2.33177e21 −4.57407
\(274\) 0 0
\(275\) −8.47614e19 −0.156268
\(276\) 0 0
\(277\) −4.79051e20 −0.830431 −0.415215 0.909723i \(-0.636294\pi\)
−0.415215 + 0.909723i \(0.636294\pi\)
\(278\) 0 0
\(279\) 5.84813e20 0.953633
\(280\) 0 0
\(281\) −1.51762e20 −0.232894 −0.116447 0.993197i \(-0.537150\pi\)
−0.116447 + 0.993197i \(0.537150\pi\)
\(282\) 0 0
\(283\) −1.08098e21 −1.56183 −0.780916 0.624637i \(-0.785247\pi\)
−0.780916 + 0.624637i \(0.785247\pi\)
\(284\) 0 0
\(285\) −4.27120e20 −0.581257
\(286\) 0 0
\(287\) −1.85033e21 −2.37275
\(288\) 0 0
\(289\) −1.20632e20 −0.145825
\(290\) 0 0
\(291\) −1.62292e21 −1.85015
\(292\) 0 0
\(293\) 5.64181e20 0.606797 0.303398 0.952864i \(-0.401879\pi\)
0.303398 + 0.952864i \(0.401879\pi\)
\(294\) 0 0
\(295\) −4.78171e19 −0.0485396
\(296\) 0 0
\(297\) 1.18321e20 0.113405
\(298\) 0 0
\(299\) 1.09872e21 0.994676
\(300\) 0 0
\(301\) −3.85181e20 −0.329496
\(302\) 0 0
\(303\) 7.55039e20 0.610530
\(304\) 0 0
\(305\) −3.49404e20 −0.267165
\(306\) 0 0
\(307\) 7.86538e20 0.568910 0.284455 0.958689i \(-0.408187\pi\)
0.284455 + 0.958689i \(0.408187\pi\)
\(308\) 0 0
\(309\) 1.06724e21 0.730494
\(310\) 0 0
\(311\) −1.85897e21 −1.20451 −0.602254 0.798304i \(-0.705731\pi\)
−0.602254 + 0.798304i \(0.705731\pi\)
\(312\) 0 0
\(313\) 1.01811e21 0.624694 0.312347 0.949968i \(-0.398885\pi\)
0.312347 + 0.949968i \(0.398885\pi\)
\(314\) 0 0
\(315\) −1.33167e21 −0.774027
\(316\) 0 0
\(317\) 3.16819e20 0.174505 0.0872523 0.996186i \(-0.472191\pi\)
0.0872523 + 0.996186i \(0.472191\pi\)
\(318\) 0 0
\(319\) 1.46882e21 0.766915
\(320\) 0 0
\(321\) 4.39243e20 0.217476
\(322\) 0 0
\(323\) −1.85821e21 −0.872717
\(324\) 0 0
\(325\) 7.70819e20 0.343513
\(326\) 0 0
\(327\) 2.80301e21 1.18568
\(328\) 0 0
\(329\) 4.08540e21 1.64085
\(330\) 0 0
\(331\) −9.33600e20 −0.356142 −0.178071 0.984018i \(-0.556986\pi\)
−0.178071 + 0.984018i \(0.556986\pi\)
\(332\) 0 0
\(333\) −1.56626e21 −0.567661
\(334\) 0 0
\(335\) 1.61922e21 0.557730
\(336\) 0 0
\(337\) −1.02437e21 −0.335429 −0.167715 0.985836i \(-0.553639\pi\)
−0.167715 + 0.985836i \(0.553639\pi\)
\(338\) 0 0
\(339\) −2.59157e21 −0.806984
\(340\) 0 0
\(341\) −2.81208e21 −0.832944
\(342\) 0 0
\(343\) −1.19686e22 −3.37321
\(344\) 0 0
\(345\) 1.32892e21 0.356481
\(346\) 0 0
\(347\) 6.75262e21 1.72453 0.862267 0.506453i \(-0.169044\pi\)
0.862267 + 0.506453i \(0.169044\pi\)
\(348\) 0 0
\(349\) 1.40155e21 0.340872 0.170436 0.985369i \(-0.445482\pi\)
0.170436 + 0.985369i \(0.445482\pi\)
\(350\) 0 0
\(351\) −1.07601e21 −0.249290
\(352\) 0 0
\(353\) −5.00648e21 −1.10522 −0.552609 0.833441i \(-0.686368\pi\)
−0.552609 + 0.833441i \(0.686368\pi\)
\(354\) 0 0
\(355\) 2.64876e21 0.557316
\(356\) 0 0
\(357\) −1.22699e22 −2.46129
\(358\) 0 0
\(359\) −3.40671e21 −0.651677 −0.325839 0.945425i \(-0.605647\pi\)
−0.325839 + 0.945425i \(0.605647\pi\)
\(360\) 0 0
\(361\) −5.93738e20 −0.108339
\(362\) 0 0
\(363\) −3.07947e21 −0.536129
\(364\) 0 0
\(365\) 3.93196e21 0.653310
\(366\) 0 0
\(367\) −6.57465e21 −1.04282 −0.521412 0.853305i \(-0.674594\pi\)
−0.521412 + 0.853305i \(0.674594\pi\)
\(368\) 0 0
\(369\) 7.24347e21 1.09704
\(370\) 0 0
\(371\) −1.43865e22 −2.08102
\(372\) 0 0
\(373\) 4.36334e21 0.602968 0.301484 0.953471i \(-0.402518\pi\)
0.301484 + 0.953471i \(0.402518\pi\)
\(374\) 0 0
\(375\) 9.32318e20 0.123111
\(376\) 0 0
\(377\) −1.33574e22 −1.68586
\(378\) 0 0
\(379\) 6.34370e21 0.765436 0.382718 0.923865i \(-0.374988\pi\)
0.382718 + 0.923865i \(0.374988\pi\)
\(380\) 0 0
\(381\) 2.02051e22 2.33130
\(382\) 0 0
\(383\) 1.39508e22 1.53960 0.769802 0.638283i \(-0.220355\pi\)
0.769802 + 0.638283i \(0.220355\pi\)
\(384\) 0 0
\(385\) 6.40334e21 0.676068
\(386\) 0 0
\(387\) 1.50787e21 0.152342
\(388\) 0 0
\(389\) −8.36900e21 −0.809286 −0.404643 0.914475i \(-0.632604\pi\)
−0.404643 + 0.914475i \(0.632604\pi\)
\(390\) 0 0
\(391\) 5.78155e21 0.535231
\(392\) 0 0
\(393\) −1.60195e22 −1.42008
\(394\) 0 0
\(395\) 7.53033e21 0.639350
\(396\) 0 0
\(397\) −2.83041e21 −0.230213 −0.115107 0.993353i \(-0.536721\pi\)
−0.115107 + 0.993353i \(0.536721\pi\)
\(398\) 0 0
\(399\) 3.22670e22 2.51472
\(400\) 0 0
\(401\) 1.80370e22 1.34722 0.673608 0.739089i \(-0.264744\pi\)
0.673608 + 0.739089i \(0.264744\pi\)
\(402\) 0 0
\(403\) 2.55730e22 1.83100
\(404\) 0 0
\(405\) −7.12903e21 −0.489399
\(406\) 0 0
\(407\) 7.53140e21 0.495819
\(408\) 0 0
\(409\) −1.90532e21 −0.120315 −0.0601575 0.998189i \(-0.519160\pi\)
−0.0601575 + 0.998189i \(0.519160\pi\)
\(410\) 0 0
\(411\) 8.35532e21 0.506183
\(412\) 0 0
\(413\) 3.61237e21 0.209999
\(414\) 0 0
\(415\) −7.64165e21 −0.426362
\(416\) 0 0
\(417\) 1.85837e22 0.995349
\(418\) 0 0
\(419\) −1.60121e22 −0.823436 −0.411718 0.911311i \(-0.635071\pi\)
−0.411718 + 0.911311i \(0.635071\pi\)
\(420\) 0 0
\(421\) −7.60456e21 −0.375557 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(422\) 0 0
\(423\) −1.59931e22 −0.758646
\(424\) 0 0
\(425\) 4.05611e21 0.184843
\(426\) 0 0
\(427\) 2.63959e22 1.15585
\(428\) 0 0
\(429\) −4.38929e22 −1.84717
\(430\) 0 0
\(431\) 1.12410e22 0.454725 0.227363 0.973810i \(-0.426990\pi\)
0.227363 + 0.973810i \(0.426990\pi\)
\(432\) 0 0
\(433\) 5.47417e21 0.212898 0.106449 0.994318i \(-0.466052\pi\)
0.106449 + 0.994318i \(0.466052\pi\)
\(434\) 0 0
\(435\) −1.61560e22 −0.604193
\(436\) 0 0
\(437\) −1.52041e22 −0.546850
\(438\) 0 0
\(439\) 3.59418e22 1.24352 0.621759 0.783209i \(-0.286418\pi\)
0.621759 + 0.783209i \(0.286418\pi\)
\(440\) 0 0
\(441\) 7.37275e22 2.45415
\(442\) 0 0
\(443\) −1.59250e20 −0.00510093 −0.00255046 0.999997i \(-0.500812\pi\)
−0.00255046 + 0.999997i \(0.500812\pi\)
\(444\) 0 0
\(445\) 2.31206e22 0.712752
\(446\) 0 0
\(447\) 7.07934e22 2.10077
\(448\) 0 0
\(449\) 6.10942e22 1.74544 0.872722 0.488217i \(-0.162353\pi\)
0.872722 + 0.488217i \(0.162353\pi\)
\(450\) 0 0
\(451\) −3.48303e22 −0.958202
\(452\) 0 0
\(453\) 4.95239e22 1.31214
\(454\) 0 0
\(455\) −5.82319e22 −1.48616
\(456\) 0 0
\(457\) 3.96641e22 0.975237 0.487618 0.873057i \(-0.337866\pi\)
0.487618 + 0.873057i \(0.337866\pi\)
\(458\) 0 0
\(459\) −5.66204e21 −0.134142
\(460\) 0 0
\(461\) −5.01853e21 −0.114583 −0.0572913 0.998358i \(-0.518246\pi\)
−0.0572913 + 0.998358i \(0.518246\pi\)
\(462\) 0 0
\(463\) 6.37654e22 1.40329 0.701644 0.712528i \(-0.252450\pi\)
0.701644 + 0.712528i \(0.252450\pi\)
\(464\) 0 0
\(465\) 3.09310e22 0.656212
\(466\) 0 0
\(467\) −6.69888e22 −1.37028 −0.685139 0.728412i \(-0.740258\pi\)
−0.685139 + 0.728412i \(0.740258\pi\)
\(468\) 0 0
\(469\) −1.22325e23 −2.41293
\(470\) 0 0
\(471\) −1.11092e23 −2.11351
\(472\) 0 0
\(473\) −7.25060e21 −0.133062
\(474\) 0 0
\(475\) −1.06666e22 −0.188856
\(476\) 0 0
\(477\) 5.63188e22 0.962159
\(478\) 0 0
\(479\) 2.66400e22 0.439220 0.219610 0.975588i \(-0.429522\pi\)
0.219610 + 0.975588i \(0.429522\pi\)
\(480\) 0 0
\(481\) −6.84905e22 −1.08993
\(482\) 0 0
\(483\) −1.00394e23 −1.54226
\(484\) 0 0
\(485\) −4.05298e22 −0.601131
\(486\) 0 0
\(487\) −5.25859e22 −0.753136 −0.376568 0.926389i \(-0.622896\pi\)
−0.376568 + 0.926389i \(0.622896\pi\)
\(488\) 0 0
\(489\) 5.21118e21 0.0720793
\(490\) 0 0
\(491\) −3.83652e21 −0.0512561 −0.0256280 0.999672i \(-0.508159\pi\)
−0.0256280 + 0.999672i \(0.508159\pi\)
\(492\) 0 0
\(493\) −7.02878e22 −0.907154
\(494\) 0 0
\(495\) −2.50671e22 −0.312580
\(496\) 0 0
\(497\) −2.00102e23 −2.41114
\(498\) 0 0
\(499\) 1.29674e22 0.151007 0.0755037 0.997146i \(-0.475944\pi\)
0.0755037 + 0.997146i \(0.475944\pi\)
\(500\) 0 0
\(501\) 1.97146e23 2.21905
\(502\) 0 0
\(503\) 1.28633e23 1.39967 0.699835 0.714304i \(-0.253257\pi\)
0.699835 + 0.714304i \(0.253257\pi\)
\(504\) 0 0
\(505\) 1.88558e22 0.198367
\(506\) 0 0
\(507\) 2.63854e23 2.68408
\(508\) 0 0
\(509\) −1.25797e23 −1.23756 −0.618782 0.785562i \(-0.712374\pi\)
−0.618782 + 0.785562i \(0.712374\pi\)
\(510\) 0 0
\(511\) −2.97042e23 −2.82644
\(512\) 0 0
\(513\) 1.48898e22 0.137054
\(514\) 0 0
\(515\) 2.66526e22 0.237344
\(516\) 0 0
\(517\) 7.69030e22 0.662634
\(518\) 0 0
\(519\) −1.82226e23 −1.51946
\(520\) 0 0
\(521\) 1.17618e22 0.0949189 0.0474595 0.998873i \(-0.484888\pi\)
0.0474595 + 0.998873i \(0.484888\pi\)
\(522\) 0 0
\(523\) −2.86621e21 −0.0223895 −0.0111947 0.999937i \(-0.503563\pi\)
−0.0111947 + 0.999937i \(0.503563\pi\)
\(524\) 0 0
\(525\) −7.04325e22 −0.532622
\(526\) 0 0
\(527\) 1.34567e23 0.985256
\(528\) 0 0
\(529\) −9.37448e22 −0.664621
\(530\) 0 0
\(531\) −1.41413e22 −0.0970927
\(532\) 0 0
\(533\) 3.16747e23 2.10635
\(534\) 0 0
\(535\) 1.09693e22 0.0706600
\(536\) 0 0
\(537\) −1.18802e23 −0.741384
\(538\) 0 0
\(539\) −3.54520e23 −2.14356
\(540\) 0 0
\(541\) 2.71778e23 1.59235 0.796174 0.605068i \(-0.206854\pi\)
0.796174 + 0.605068i \(0.206854\pi\)
\(542\) 0 0
\(543\) 3.30513e23 1.87668
\(544\) 0 0
\(545\) 7.00004e22 0.385239
\(546\) 0 0
\(547\) 7.28132e21 0.0388434 0.0194217 0.999811i \(-0.493817\pi\)
0.0194217 + 0.999811i \(0.493817\pi\)
\(548\) 0 0
\(549\) −1.03332e23 −0.534405
\(550\) 0 0
\(551\) 1.84840e23 0.926845
\(552\) 0 0
\(553\) −5.68883e23 −2.76605
\(554\) 0 0
\(555\) −8.28403e22 −0.390617
\(556\) 0 0
\(557\) −4.03298e23 −1.84441 −0.922203 0.386706i \(-0.873613\pi\)
−0.922203 + 0.386706i \(0.873613\pi\)
\(558\) 0 0
\(559\) 6.59369e22 0.292501
\(560\) 0 0
\(561\) −2.30968e23 −0.993955
\(562\) 0 0
\(563\) −1.97223e23 −0.823449 −0.411724 0.911308i \(-0.635073\pi\)
−0.411724 + 0.911308i \(0.635073\pi\)
\(564\) 0 0
\(565\) −6.47200e22 −0.262196
\(566\) 0 0
\(567\) 5.38567e23 2.11730
\(568\) 0 0
\(569\) −3.84081e23 −1.46544 −0.732721 0.680529i \(-0.761750\pi\)
−0.732721 + 0.680529i \(0.761750\pi\)
\(570\) 0 0
\(571\) 3.82690e20 0.00141723 0.000708615 1.00000i \(-0.499774\pi\)
0.000708615 1.00000i \(0.499774\pi\)
\(572\) 0 0
\(573\) 5.75122e23 2.06750
\(574\) 0 0
\(575\) 3.31875e22 0.115824
\(576\) 0 0
\(577\) −4.83185e23 −1.63727 −0.818633 0.574317i \(-0.805268\pi\)
−0.818633 + 0.574317i \(0.805268\pi\)
\(578\) 0 0
\(579\) −1.09196e22 −0.0359285
\(580\) 0 0
\(581\) 5.77293e23 1.84459
\(582\) 0 0
\(583\) −2.70810e23 −0.840391
\(584\) 0 0
\(585\) 2.27960e23 0.687123
\(586\) 0 0
\(587\) −4.44210e23 −1.30066 −0.650330 0.759651i \(-0.725370\pi\)
−0.650330 + 0.759651i \(0.725370\pi\)
\(588\) 0 0
\(589\) −3.53880e23 −1.00664
\(590\) 0 0
\(591\) 5.66050e23 1.56445
\(592\) 0 0
\(593\) 2.55235e23 0.685449 0.342724 0.939436i \(-0.388650\pi\)
0.342724 + 0.939436i \(0.388650\pi\)
\(594\) 0 0
\(595\) −3.06421e23 −0.799695
\(596\) 0 0
\(597\) −8.40490e23 −2.13182
\(598\) 0 0
\(599\) −3.68729e23 −0.909032 −0.454516 0.890739i \(-0.650188\pi\)
−0.454516 + 0.890739i \(0.650188\pi\)
\(600\) 0 0
\(601\) −1.30500e23 −0.312735 −0.156368 0.987699i \(-0.549978\pi\)
−0.156368 + 0.987699i \(0.549978\pi\)
\(602\) 0 0
\(603\) 4.78864e23 1.11562
\(604\) 0 0
\(605\) −7.69045e22 −0.174193
\(606\) 0 0
\(607\) −4.88721e23 −1.07636 −0.538180 0.842830i \(-0.680888\pi\)
−0.538180 + 0.842830i \(0.680888\pi\)
\(608\) 0 0
\(609\) 1.22052e24 2.61394
\(610\) 0 0
\(611\) −6.99355e23 −1.45662
\(612\) 0 0
\(613\) −2.91453e23 −0.590411 −0.295205 0.955434i \(-0.595388\pi\)
−0.295205 + 0.955434i \(0.595388\pi\)
\(614\) 0 0
\(615\) 3.83110e23 0.754893
\(616\) 0 0
\(617\) 4.96535e23 0.951756 0.475878 0.879511i \(-0.342130\pi\)
0.475878 + 0.879511i \(0.342130\pi\)
\(618\) 0 0
\(619\) 1.38017e23 0.257372 0.128686 0.991685i \(-0.458924\pi\)
0.128686 + 0.991685i \(0.458924\pi\)
\(620\) 0 0
\(621\) −4.63274e22 −0.0840542
\(622\) 0 0
\(623\) −1.74666e24 −3.08361
\(624\) 0 0
\(625\) 2.32831e22 0.0400000
\(626\) 0 0
\(627\) 6.07390e23 1.01553
\(628\) 0 0
\(629\) −3.60402e23 −0.586485
\(630\) 0 0
\(631\) 4.54842e23 0.720463 0.360231 0.932863i \(-0.382698\pi\)
0.360231 + 0.932863i \(0.382698\pi\)
\(632\) 0 0
\(633\) −8.35038e23 −1.28758
\(634\) 0 0
\(635\) 5.04587e23 0.757460
\(636\) 0 0
\(637\) 3.22400e24 4.71205
\(638\) 0 0
\(639\) 7.83339e23 1.11479
\(640\) 0 0
\(641\) 1.01467e24 1.40614 0.703072 0.711118i \(-0.251811\pi\)
0.703072 + 0.711118i \(0.251811\pi\)
\(642\) 0 0
\(643\) −2.72123e23 −0.367258 −0.183629 0.982996i \(-0.558785\pi\)
−0.183629 + 0.982996i \(0.558785\pi\)
\(644\) 0 0
\(645\) 7.97517e22 0.104829
\(646\) 0 0
\(647\) 6.92887e23 0.887108 0.443554 0.896248i \(-0.353718\pi\)
0.443554 + 0.896248i \(0.353718\pi\)
\(648\) 0 0
\(649\) 6.79988e22 0.0848049
\(650\) 0 0
\(651\) −2.33670e24 −2.83899
\(652\) 0 0
\(653\) −1.09165e24 −1.29218 −0.646088 0.763263i \(-0.723596\pi\)
−0.646088 + 0.763263i \(0.723596\pi\)
\(654\) 0 0
\(655\) −4.00059e23 −0.461395
\(656\) 0 0
\(657\) 1.16283e24 1.30680
\(658\) 0 0
\(659\) −3.23117e23 −0.353861 −0.176931 0.984223i \(-0.556617\pi\)
−0.176931 + 0.984223i \(0.556617\pi\)
\(660\) 0 0
\(661\) −1.07030e24 −1.14233 −0.571166 0.820835i \(-0.693509\pi\)
−0.571166 + 0.820835i \(0.693509\pi\)
\(662\) 0 0
\(663\) 2.10042e24 2.18495
\(664\) 0 0
\(665\) 8.05814e23 0.817054
\(666\) 0 0
\(667\) −5.75102e23 −0.568428
\(668\) 0 0
\(669\) −8.85771e23 −0.853492
\(670\) 0 0
\(671\) 4.96874e23 0.466772
\(672\) 0 0
\(673\) −3.00782e23 −0.275502 −0.137751 0.990467i \(-0.543987\pi\)
−0.137751 + 0.990467i \(0.543987\pi\)
\(674\) 0 0
\(675\) −3.25015e22 −0.0290283
\(676\) 0 0
\(677\) 1.63077e23 0.142033 0.0710164 0.997475i \(-0.477376\pi\)
0.0710164 + 0.997475i \(0.477376\pi\)
\(678\) 0 0
\(679\) 3.06184e24 2.60070
\(680\) 0 0
\(681\) −1.70187e24 −1.40986
\(682\) 0 0
\(683\) 9.16610e23 0.740643 0.370321 0.928904i \(-0.379248\pi\)
0.370321 + 0.928904i \(0.379248\pi\)
\(684\) 0 0
\(685\) 2.08660e23 0.164463
\(686\) 0 0
\(687\) 8.90646e23 0.684814
\(688\) 0 0
\(689\) 2.46274e24 1.84738
\(690\) 0 0
\(691\) 1.83129e24 1.34028 0.670139 0.742236i \(-0.266235\pi\)
0.670139 + 0.742236i \(0.266235\pi\)
\(692\) 0 0
\(693\) 1.89371e24 1.35233
\(694\) 0 0
\(695\) 4.64096e23 0.323398
\(696\) 0 0
\(697\) 1.66675e24 1.13342
\(698\) 0 0
\(699\) 4.38670e23 0.291126
\(700\) 0 0
\(701\) −1.01906e24 −0.660080 −0.330040 0.943967i \(-0.607062\pi\)
−0.330040 + 0.943967i \(0.607062\pi\)
\(702\) 0 0
\(703\) 9.47771e23 0.599216
\(704\) 0 0
\(705\) −8.45881e23 −0.522038
\(706\) 0 0
\(707\) −1.42447e24 −0.858202
\(708\) 0 0
\(709\) 9.36499e23 0.550826 0.275413 0.961326i \(-0.411185\pi\)
0.275413 + 0.961326i \(0.411185\pi\)
\(710\) 0 0
\(711\) 2.22700e24 1.27888
\(712\) 0 0
\(713\) 1.10104e24 0.617367
\(714\) 0 0
\(715\) −1.09615e24 −0.600162
\(716\) 0 0
\(717\) 1.63338e24 0.873323
\(718\) 0 0
\(719\) −3.46287e24 −1.80817 −0.904087 0.427348i \(-0.859448\pi\)
−0.904087 + 0.427348i \(0.859448\pi\)
\(720\) 0 0
\(721\) −2.01349e24 −1.02683
\(722\) 0 0
\(723\) −4.24283e24 −2.11339
\(724\) 0 0
\(725\) −4.03469e23 −0.196308
\(726\) 0 0
\(727\) 1.95222e24 0.927866 0.463933 0.885870i \(-0.346438\pi\)
0.463933 + 0.885870i \(0.346438\pi\)
\(728\) 0 0
\(729\) −1.67807e24 −0.779157
\(730\) 0 0
\(731\) 3.46965e23 0.157394
\(732\) 0 0
\(733\) −1.57883e24 −0.699765 −0.349883 0.936794i \(-0.613779\pi\)
−0.349883 + 0.936794i \(0.613779\pi\)
\(734\) 0 0
\(735\) 3.89948e24 1.68875
\(736\) 0 0
\(737\) −2.30262e24 −0.974427
\(738\) 0 0
\(739\) 1.68319e24 0.696074 0.348037 0.937481i \(-0.386848\pi\)
0.348037 + 0.937481i \(0.386848\pi\)
\(740\) 0 0
\(741\) −5.52359e24 −2.23237
\(742\) 0 0
\(743\) −1.94960e24 −0.770088 −0.385044 0.922898i \(-0.625814\pi\)
−0.385044 + 0.922898i \(0.625814\pi\)
\(744\) 0 0
\(745\) 1.76795e24 0.682560
\(746\) 0 0
\(747\) −2.25993e24 −0.852843
\(748\) 0 0
\(749\) −8.28685e23 −0.305699
\(750\) 0 0
\(751\) −1.05627e24 −0.380922 −0.190461 0.981695i \(-0.560998\pi\)
−0.190461 + 0.981695i \(0.560998\pi\)
\(752\) 0 0
\(753\) −2.45973e24 −0.867222
\(754\) 0 0
\(755\) 1.23677e24 0.426326
\(756\) 0 0
\(757\) −4.04949e24 −1.36485 −0.682425 0.730955i \(-0.739075\pi\)
−0.682425 + 0.730955i \(0.739075\pi\)
\(758\) 0 0
\(759\) −1.88980e24 −0.622818
\(760\) 0 0
\(761\) 1.99728e24 0.643679 0.321840 0.946794i \(-0.395699\pi\)
0.321840 + 0.946794i \(0.395699\pi\)
\(762\) 0 0
\(763\) −5.28822e24 −1.66668
\(764\) 0 0
\(765\) 1.19954e24 0.369738
\(766\) 0 0
\(767\) −6.18380e23 −0.186421
\(768\) 0 0
\(769\) −3.39610e24 −1.00140 −0.500699 0.865621i \(-0.666924\pi\)
−0.500699 + 0.865621i \(0.666924\pi\)
\(770\) 0 0
\(771\) 1.18312e24 0.341245
\(772\) 0 0
\(773\) −3.72165e24 −1.05005 −0.525024 0.851087i \(-0.675944\pi\)
−0.525024 + 0.851087i \(0.675944\pi\)
\(774\) 0 0
\(775\) 7.72450e23 0.213209
\(776\) 0 0
\(777\) 6.25822e24 1.68994
\(778\) 0 0
\(779\) −4.38314e24 −1.15802
\(780\) 0 0
\(781\) −3.76670e24 −0.973704
\(782\) 0 0
\(783\) 5.63214e23 0.142462
\(784\) 0 0
\(785\) −2.77433e24 −0.686699
\(786\) 0 0
\(787\) −4.44239e23 −0.107605 −0.0538023 0.998552i \(-0.517134\pi\)
−0.0538023 + 0.998552i \(0.517134\pi\)
\(788\) 0 0
\(789\) 6.86099e24 1.62642
\(790\) 0 0
\(791\) 4.88931e24 1.13435
\(792\) 0 0
\(793\) −4.51856e24 −1.02607
\(794\) 0 0
\(795\) 2.97872e24 0.662079
\(796\) 0 0
\(797\) 6.81742e24 1.48328 0.741642 0.670796i \(-0.234047\pi\)
0.741642 + 0.670796i \(0.234047\pi\)
\(798\) 0 0
\(799\) −3.68006e24 −0.783804
\(800\) 0 0
\(801\) 6.83763e24 1.42570
\(802\) 0 0
\(803\) −5.59148e24 −1.14142
\(804\) 0 0
\(805\) −2.50717e24 −0.501093
\(806\) 0 0
\(807\) 4.49267e24 0.879183
\(808\) 0 0
\(809\) 4.25297e24 0.814949 0.407474 0.913217i \(-0.366410\pi\)
0.407474 + 0.913217i \(0.366410\pi\)
\(810\) 0 0
\(811\) 4.18911e24 0.786040 0.393020 0.919530i \(-0.371430\pi\)
0.393020 + 0.919530i \(0.371430\pi\)
\(812\) 0 0
\(813\) −4.43066e24 −0.814140
\(814\) 0 0
\(815\) 1.30140e23 0.0234192
\(816\) 0 0
\(817\) −9.12435e23 −0.160810
\(818\) 0 0
\(819\) −1.72214e25 −2.97273
\(820\) 0 0
\(821\) 7.48932e24 1.26627 0.633134 0.774042i \(-0.281768\pi\)
0.633134 + 0.774042i \(0.281768\pi\)
\(822\) 0 0
\(823\) 4.16223e24 0.689331 0.344666 0.938726i \(-0.387992\pi\)
0.344666 + 0.938726i \(0.387992\pi\)
\(824\) 0 0
\(825\) −1.32581e24 −0.215092
\(826\) 0 0
\(827\) −6.20940e24 −0.986853 −0.493427 0.869787i \(-0.664256\pi\)
−0.493427 + 0.869787i \(0.664256\pi\)
\(828\) 0 0
\(829\) 1.14805e24 0.178751 0.0893755 0.995998i \(-0.471513\pi\)
0.0893755 + 0.995998i \(0.471513\pi\)
\(830\) 0 0
\(831\) −7.49316e24 −1.14303
\(832\) 0 0
\(833\) 1.69649e25 2.53553
\(834\) 0 0
\(835\) 4.92339e24 0.720990
\(836\) 0 0
\(837\) −1.07829e24 −0.154727
\(838\) 0 0
\(839\) −3.96214e24 −0.557126 −0.278563 0.960418i \(-0.589858\pi\)
−0.278563 + 0.960418i \(0.589858\pi\)
\(840\) 0 0
\(841\) −2.65484e23 −0.0365824
\(842\) 0 0
\(843\) −2.37381e24 −0.320561
\(844\) 0 0
\(845\) 6.58931e24 0.872083
\(846\) 0 0
\(847\) 5.80979e24 0.753619
\(848\) 0 0
\(849\) −1.69084e25 −2.14975
\(850\) 0 0
\(851\) −2.94885e24 −0.367495
\(852\) 0 0
\(853\) 5.80663e24 0.709345 0.354672 0.934991i \(-0.384592\pi\)
0.354672 + 0.934991i \(0.384592\pi\)
\(854\) 0 0
\(855\) −3.15451e24 −0.377764
\(856\) 0 0
\(857\) 7.13830e24 0.838027 0.419013 0.907980i \(-0.362376\pi\)
0.419013 + 0.907980i \(0.362376\pi\)
\(858\) 0 0
\(859\) −1.31344e25 −1.51171 −0.755857 0.654737i \(-0.772779\pi\)
−0.755857 + 0.654737i \(0.772779\pi\)
\(860\) 0 0
\(861\) −2.89423e25 −3.26592
\(862\) 0 0
\(863\) 6.23473e24 0.689804 0.344902 0.938639i \(-0.387912\pi\)
0.344902 + 0.938639i \(0.387912\pi\)
\(864\) 0 0
\(865\) −4.55080e24 −0.493686
\(866\) 0 0
\(867\) −1.88689e24 −0.200717
\(868\) 0 0
\(869\) −1.07086e25 −1.11703
\(870\) 0 0
\(871\) 2.09400e25 2.14202
\(872\) 0 0
\(873\) −1.19862e25 −1.20243
\(874\) 0 0
\(875\) −1.75893e24 −0.173054
\(876\) 0 0
\(877\) 1.80103e25 1.73790 0.868948 0.494903i \(-0.164796\pi\)
0.868948 + 0.494903i \(0.164796\pi\)
\(878\) 0 0
\(879\) 8.82474e24 0.835212
\(880\) 0 0
\(881\) −1.44968e25 −1.34578 −0.672892 0.739741i \(-0.734948\pi\)
−0.672892 + 0.739741i \(0.734948\pi\)
\(882\) 0 0
\(883\) −4.79871e24 −0.436977 −0.218489 0.975840i \(-0.570113\pi\)
−0.218489 + 0.975840i \(0.570113\pi\)
\(884\) 0 0
\(885\) −7.47940e23 −0.0668112
\(886\) 0 0
\(887\) 1.60797e25 1.40905 0.704526 0.709679i \(-0.251160\pi\)
0.704526 + 0.709679i \(0.251160\pi\)
\(888\) 0 0
\(889\) −3.81193e25 −3.27703
\(890\) 0 0
\(891\) 1.01379e25 0.855043
\(892\) 0 0
\(893\) 9.67768e24 0.800818
\(894\) 0 0
\(895\) −2.96689e24 −0.240882
\(896\) 0 0
\(897\) 1.71858e25 1.36910
\(898\) 0 0
\(899\) −1.33857e25 −1.04636
\(900\) 0 0
\(901\) 1.29591e25 0.994065
\(902\) 0 0
\(903\) −6.02489e24 −0.453527
\(904\) 0 0
\(905\) 8.25401e24 0.609750
\(906\) 0 0
\(907\) 2.07733e25 1.50606 0.753031 0.657985i \(-0.228591\pi\)
0.753031 + 0.657985i \(0.228591\pi\)
\(908\) 0 0
\(909\) 5.57638e24 0.396789
\(910\) 0 0
\(911\) −9.41556e24 −0.657567 −0.328783 0.944405i \(-0.606639\pi\)
−0.328783 + 0.944405i \(0.606639\pi\)
\(912\) 0 0
\(913\) 1.08669e25 0.744910
\(914\) 0 0
\(915\) −5.46528e24 −0.367733
\(916\) 0 0
\(917\) 3.02227e25 1.99615
\(918\) 0 0
\(919\) 1.89739e25 1.23020 0.615098 0.788450i \(-0.289116\pi\)
0.615098 + 0.788450i \(0.289116\pi\)
\(920\) 0 0
\(921\) 1.23028e25 0.783063
\(922\) 0 0
\(923\) 3.42543e25 2.14043
\(924\) 0 0
\(925\) −2.06880e24 −0.126915
\(926\) 0 0
\(927\) 7.88218e24 0.474754
\(928\) 0 0
\(929\) −3.14410e25 −1.85936 −0.929679 0.368371i \(-0.879916\pi\)
−0.929679 + 0.368371i \(0.879916\pi\)
\(930\) 0 0
\(931\) −4.46137e25 −2.59057
\(932\) 0 0
\(933\) −2.90775e25 −1.65792
\(934\) 0 0
\(935\) −5.76803e24 −0.322945
\(936\) 0 0
\(937\) −2.64305e25 −1.45318 −0.726589 0.687073i \(-0.758895\pi\)
−0.726589 + 0.687073i \(0.758895\pi\)
\(938\) 0 0
\(939\) 1.59250e25 0.859846
\(940\) 0 0
\(941\) −1.16589e25 −0.618226 −0.309113 0.951025i \(-0.600032\pi\)
−0.309113 + 0.951025i \(0.600032\pi\)
\(942\) 0 0
\(943\) 1.36375e25 0.710207
\(944\) 0 0
\(945\) 2.45534e24 0.125586
\(946\) 0 0
\(947\) −1.23570e25 −0.620780 −0.310390 0.950609i \(-0.600460\pi\)
−0.310390 + 0.950609i \(0.600460\pi\)
\(948\) 0 0
\(949\) 5.08488e25 2.50910
\(950\) 0 0
\(951\) 4.95558e24 0.240193
\(952\) 0 0
\(953\) 2.25388e25 1.07310 0.536550 0.843869i \(-0.319727\pi\)
0.536550 + 0.843869i \(0.319727\pi\)
\(954\) 0 0
\(955\) 1.43627e25 0.671749
\(956\) 0 0
\(957\) 2.29748e25 1.05560
\(958\) 0 0
\(959\) −1.57633e25 −0.711525
\(960\) 0 0
\(961\) 3.07703e24 0.136453
\(962\) 0 0
\(963\) 3.24405e24 0.141340
\(964\) 0 0
\(965\) −2.72699e23 −0.0116735
\(966\) 0 0
\(967\) 1.82941e25 0.769459 0.384730 0.923029i \(-0.374295\pi\)
0.384730 + 0.923029i \(0.374295\pi\)
\(968\) 0 0
\(969\) −2.90656e25 −1.20123
\(970\) 0 0
\(971\) −7.45406e22 −0.00302712 −0.00151356 0.999999i \(-0.500482\pi\)
−0.00151356 + 0.999999i \(0.500482\pi\)
\(972\) 0 0
\(973\) −3.50604e25 −1.39913
\(974\) 0 0
\(975\) 1.20569e25 0.472821
\(976\) 0 0
\(977\) 2.23755e25 0.862320 0.431160 0.902276i \(-0.358105\pi\)
0.431160 + 0.902276i \(0.358105\pi\)
\(978\) 0 0
\(979\) −3.28788e25 −1.24527
\(980\) 0 0
\(981\) 2.07018e25 0.770586
\(982\) 0 0
\(983\) 7.32013e24 0.267802 0.133901 0.990995i \(-0.457250\pi\)
0.133901 + 0.990995i \(0.457250\pi\)
\(984\) 0 0
\(985\) 1.41361e25 0.508303
\(986\) 0 0
\(987\) 6.39026e25 2.25851
\(988\) 0 0
\(989\) 2.83890e24 0.0986239
\(990\) 0 0
\(991\) 4.05373e25 1.38429 0.692147 0.721757i \(-0.256665\pi\)
0.692147 + 0.721757i \(0.256665\pi\)
\(992\) 0 0
\(993\) −1.46031e25 −0.490203
\(994\) 0 0
\(995\) −2.09898e25 −0.692648
\(996\) 0 0
\(997\) 3.59617e25 1.16662 0.583312 0.812248i \(-0.301756\pi\)
0.583312 + 0.812248i \(0.301756\pi\)
\(998\) 0 0
\(999\) 2.88789e24 0.0921032
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.18.a.l.1.4 5
4.3 odd 2 40.18.a.d.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.18.a.d.1.2 5 4.3 odd 2
80.18.a.l.1.4 5 1.1 even 1 trivial