Properties

Label 80.18.a.l.1.3
Level $80$
Weight $18$
Character 80.1
Self dual yes
Analytic conductor $146.578$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [80,18,Mod(1,80)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("80.1"); S:= CuspForms(chi, 18); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(80, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 18, names="a")
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,15384] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.577669876\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 2573495x^{3} + 1741012708x^{2} - 129847160472x - 10015787544672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{32}\cdot 3^{4}\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-46.3535\) of defining polynomial
Character \(\chi\) \(=\) 80.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1318.46 q^{3} +390625. q^{5} +1.28833e7 q^{7} -1.27402e8 q^{9} +1.29449e9 q^{11} +2.46098e9 q^{13} +5.15023e8 q^{15} +2.06308e10 q^{17} +2.35658e10 q^{19} +1.69860e10 q^{21} -1.62325e11 q^{23} +1.52588e11 q^{25} -3.38240e11 q^{27} -1.55032e12 q^{29} +6.44205e12 q^{31} +1.70673e12 q^{33} +5.03252e12 q^{35} +3.71799e13 q^{37} +3.24470e12 q^{39} -3.11582e13 q^{41} -1.13535e12 q^{43} -4.97663e13 q^{45} -2.18435e14 q^{47} -6.66523e13 q^{49} +2.72009e13 q^{51} +1.24200e14 q^{53} +5.05659e14 q^{55} +3.10705e13 q^{57} +3.27101e13 q^{59} +2.09504e15 q^{61} -1.64135e15 q^{63} +9.61318e14 q^{65} +2.90186e15 q^{67} -2.14018e14 q^{69} -8.60335e15 q^{71} -1.13767e16 q^{73} +2.01181e14 q^{75} +1.66772e16 q^{77} -1.09792e16 q^{79} +1.60067e16 q^{81} -1.22943e16 q^{83} +8.05890e15 q^{85} -2.04404e15 q^{87} +3.12723e16 q^{89} +3.17054e16 q^{91} +8.49359e15 q^{93} +9.20537e15 q^{95} +1.38194e17 q^{97} -1.64920e17 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 15384 q^{3} + 1953125 q^{5} - 312868 q^{7} + 410286417 q^{9} - 757119716 q^{11} + 2827963478 q^{13} + 6009375000 q^{15} + 24776563114 q^{17} - 811272116 q^{19} + 332870780352 q^{21} + 73100431588 q^{23}+ \cdots - 35\!\cdots\!44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1318.46 0.116021 0.0580104 0.998316i \(-0.481524\pi\)
0.0580104 + 0.998316i \(0.481524\pi\)
\(4\) 0 0
\(5\) 390625. 0.447214
\(6\) 0 0
\(7\) 1.28833e7 0.844680 0.422340 0.906438i \(-0.361209\pi\)
0.422340 + 0.906438i \(0.361209\pi\)
\(8\) 0 0
\(9\) −1.27402e8 −0.986539
\(10\) 0 0
\(11\) 1.29449e9 1.82079 0.910396 0.413739i \(-0.135777\pi\)
0.910396 + 0.413739i \(0.135777\pi\)
\(12\) 0 0
\(13\) 2.46098e9 0.836737 0.418368 0.908277i \(-0.362602\pi\)
0.418368 + 0.908277i \(0.362602\pi\)
\(14\) 0 0
\(15\) 5.15023e8 0.0518861
\(16\) 0 0
\(17\) 2.06308e10 0.717298 0.358649 0.933472i \(-0.383237\pi\)
0.358649 + 0.933472i \(0.383237\pi\)
\(18\) 0 0
\(19\) 2.35658e10 0.318329 0.159164 0.987252i \(-0.449120\pi\)
0.159164 + 0.987252i \(0.449120\pi\)
\(20\) 0 0
\(21\) 1.69860e10 0.0980005
\(22\) 0 0
\(23\) −1.62325e11 −0.432213 −0.216106 0.976370i \(-0.569336\pi\)
−0.216106 + 0.976370i \(0.569336\pi\)
\(24\) 0 0
\(25\) 1.52588e11 0.200000
\(26\) 0 0
\(27\) −3.38240e11 −0.230480
\(28\) 0 0
\(29\) −1.55032e12 −0.575491 −0.287746 0.957707i \(-0.592906\pi\)
−0.287746 + 0.957707i \(0.592906\pi\)
\(30\) 0 0
\(31\) 6.44205e12 1.35659 0.678297 0.734788i \(-0.262718\pi\)
0.678297 + 0.734788i \(0.262718\pi\)
\(32\) 0 0
\(33\) 1.70673e12 0.211250
\(34\) 0 0
\(35\) 5.03252e12 0.377752
\(36\) 0 0
\(37\) 3.71799e13 1.74018 0.870089 0.492894i \(-0.164061\pi\)
0.870089 + 0.492894i \(0.164061\pi\)
\(38\) 0 0
\(39\) 3.24470e12 0.0970789
\(40\) 0 0
\(41\) −3.11582e13 −0.609410 −0.304705 0.952447i \(-0.598558\pi\)
−0.304705 + 0.952447i \(0.598558\pi\)
\(42\) 0 0
\(43\) −1.13535e12 −0.0148131 −0.00740656 0.999973i \(-0.502358\pi\)
−0.00740656 + 0.999973i \(0.502358\pi\)
\(44\) 0 0
\(45\) −4.97663e13 −0.441194
\(46\) 0 0
\(47\) −2.18435e14 −1.33811 −0.669053 0.743214i \(-0.733300\pi\)
−0.669053 + 0.743214i \(0.733300\pi\)
\(48\) 0 0
\(49\) −6.66523e13 −0.286516
\(50\) 0 0
\(51\) 2.72009e13 0.0832216
\(52\) 0 0
\(53\) 1.24200e14 0.274016 0.137008 0.990570i \(-0.456251\pi\)
0.137008 + 0.990570i \(0.456251\pi\)
\(54\) 0 0
\(55\) 5.05659e14 0.814283
\(56\) 0 0
\(57\) 3.10705e13 0.0369328
\(58\) 0 0
\(59\) 3.27101e13 0.0290028 0.0145014 0.999895i \(-0.495384\pi\)
0.0145014 + 0.999895i \(0.495384\pi\)
\(60\) 0 0
\(61\) 2.09504e15 1.39923 0.699614 0.714521i \(-0.253355\pi\)
0.699614 + 0.714521i \(0.253355\pi\)
\(62\) 0 0
\(63\) −1.64135e15 −0.833310
\(64\) 0 0
\(65\) 9.61318e14 0.374200
\(66\) 0 0
\(67\) 2.90186e15 0.873052 0.436526 0.899692i \(-0.356209\pi\)
0.436526 + 0.899692i \(0.356209\pi\)
\(68\) 0 0
\(69\) −2.14018e14 −0.0501457
\(70\) 0 0
\(71\) −8.60335e15 −1.58114 −0.790572 0.612369i \(-0.790217\pi\)
−0.790572 + 0.612369i \(0.790217\pi\)
\(72\) 0 0
\(73\) −1.13767e16 −1.65109 −0.825546 0.564335i \(-0.809133\pi\)
−0.825546 + 0.564335i \(0.809133\pi\)
\(74\) 0 0
\(75\) 2.01181e14 0.0232042
\(76\) 0 0
\(77\) 1.66772e16 1.53799
\(78\) 0 0
\(79\) −1.09792e16 −0.814217 −0.407109 0.913380i \(-0.633463\pi\)
−0.407109 + 0.913380i \(0.633463\pi\)
\(80\) 0 0
\(81\) 1.60067e16 0.959799
\(82\) 0 0
\(83\) −1.22943e16 −0.599154 −0.299577 0.954072i \(-0.596846\pi\)
−0.299577 + 0.954072i \(0.596846\pi\)
\(84\) 0 0
\(85\) 8.05890e15 0.320786
\(86\) 0 0
\(87\) −2.04404e15 −0.0667690
\(88\) 0 0
\(89\) 3.12723e16 0.842063 0.421031 0.907046i \(-0.361668\pi\)
0.421031 + 0.907046i \(0.361668\pi\)
\(90\) 0 0
\(91\) 3.17054e16 0.706775
\(92\) 0 0
\(93\) 8.49359e15 0.157393
\(94\) 0 0
\(95\) 9.20537e15 0.142361
\(96\) 0 0
\(97\) 1.38194e17 1.79032 0.895160 0.445745i \(-0.147061\pi\)
0.895160 + 0.445745i \(0.147061\pi\)
\(98\) 0 0
\(99\) −1.64920e17 −1.79628
\(100\) 0 0
\(101\) −9.59703e13 −0.000881872 0 −0.000440936 1.00000i \(-0.500140\pi\)
−0.000440936 1.00000i \(0.500140\pi\)
\(102\) 0 0
\(103\) −2.49608e17 −1.94152 −0.970761 0.240049i \(-0.922837\pi\)
−0.970761 + 0.240049i \(0.922837\pi\)
\(104\) 0 0
\(105\) 6.63518e15 0.0438272
\(106\) 0 0
\(107\) 7.23274e16 0.406950 0.203475 0.979080i \(-0.434777\pi\)
0.203475 + 0.979080i \(0.434777\pi\)
\(108\) 0 0
\(109\) −1.11700e17 −0.536942 −0.268471 0.963288i \(-0.586518\pi\)
−0.268471 + 0.963288i \(0.586518\pi\)
\(110\) 0 0
\(111\) 4.90202e16 0.201897
\(112\) 0 0
\(113\) 1.49665e17 0.529607 0.264804 0.964302i \(-0.414693\pi\)
0.264804 + 0.964302i \(0.414693\pi\)
\(114\) 0 0
\(115\) −6.34080e16 −0.193291
\(116\) 0 0
\(117\) −3.13533e17 −0.825473
\(118\) 0 0
\(119\) 2.65792e17 0.605887
\(120\) 0 0
\(121\) 1.17025e18 2.31528
\(122\) 0 0
\(123\) −4.10808e16 −0.0707043
\(124\) 0 0
\(125\) 5.96046e16 0.0894427
\(126\) 0 0
\(127\) −5.87093e17 −0.769796 −0.384898 0.922959i \(-0.625763\pi\)
−0.384898 + 0.922959i \(0.625763\pi\)
\(128\) 0 0
\(129\) −1.49691e15 −0.00171863
\(130\) 0 0
\(131\) 1.16170e18 1.17027 0.585137 0.810934i \(-0.301041\pi\)
0.585137 + 0.810934i \(0.301041\pi\)
\(132\) 0 0
\(133\) 3.03604e17 0.268886
\(134\) 0 0
\(135\) −1.32125e17 −0.103074
\(136\) 0 0
\(137\) −1.22337e18 −0.842234 −0.421117 0.907006i \(-0.638362\pi\)
−0.421117 + 0.907006i \(0.638362\pi\)
\(138\) 0 0
\(139\) 1.13922e18 0.693398 0.346699 0.937976i \(-0.387303\pi\)
0.346699 + 0.937976i \(0.387303\pi\)
\(140\) 0 0
\(141\) −2.87998e17 −0.155248
\(142\) 0 0
\(143\) 3.18570e18 1.52352
\(144\) 0 0
\(145\) −6.05594e17 −0.257367
\(146\) 0 0
\(147\) −8.78784e16 −0.0332418
\(148\) 0 0
\(149\) 3.78128e18 1.27513 0.637567 0.770395i \(-0.279941\pi\)
0.637567 + 0.770395i \(0.279941\pi\)
\(150\) 0 0
\(151\) 3.56935e18 1.07469 0.537347 0.843361i \(-0.319426\pi\)
0.537347 + 0.843361i \(0.319426\pi\)
\(152\) 0 0
\(153\) −2.62840e18 −0.707643
\(154\) 0 0
\(155\) 2.51643e18 0.606687
\(156\) 0 0
\(157\) −1.24660e18 −0.269513 −0.134756 0.990879i \(-0.543025\pi\)
−0.134756 + 0.990879i \(0.543025\pi\)
\(158\) 0 0
\(159\) 1.63752e17 0.0317916
\(160\) 0 0
\(161\) −2.09127e18 −0.365081
\(162\) 0 0
\(163\) 4.77033e18 0.749814 0.374907 0.927062i \(-0.377675\pi\)
0.374907 + 0.927062i \(0.377675\pi\)
\(164\) 0 0
\(165\) 6.66691e17 0.0944738
\(166\) 0 0
\(167\) 3.38636e18 0.433155 0.216577 0.976265i \(-0.430511\pi\)
0.216577 + 0.976265i \(0.430511\pi\)
\(168\) 0 0
\(169\) −2.59402e18 −0.299872
\(170\) 0 0
\(171\) −3.00232e18 −0.314044
\(172\) 0 0
\(173\) 6.87772e18 0.651707 0.325854 0.945420i \(-0.394348\pi\)
0.325854 + 0.945420i \(0.394348\pi\)
\(174\) 0 0
\(175\) 1.96583e18 0.168936
\(176\) 0 0
\(177\) 4.31269e16 0.00336493
\(178\) 0 0
\(179\) 2.09387e19 1.48491 0.742455 0.669896i \(-0.233661\pi\)
0.742455 + 0.669896i \(0.233661\pi\)
\(180\) 0 0
\(181\) 1.20204e19 0.775622 0.387811 0.921739i \(-0.373231\pi\)
0.387811 + 0.921739i \(0.373231\pi\)
\(182\) 0 0
\(183\) 2.76223e18 0.162340
\(184\) 0 0
\(185\) 1.45234e19 0.778232
\(186\) 0 0
\(187\) 2.67063e19 1.30605
\(188\) 0 0
\(189\) −4.35763e18 −0.194682
\(190\) 0 0
\(191\) 1.47162e18 0.0601190 0.0300595 0.999548i \(-0.490430\pi\)
0.0300595 + 0.999548i \(0.490430\pi\)
\(192\) 0 0
\(193\) 4.39550e19 1.64351 0.821753 0.569844i \(-0.192996\pi\)
0.821753 + 0.569844i \(0.192996\pi\)
\(194\) 0 0
\(195\) 1.26746e18 0.0434150
\(196\) 0 0
\(197\) 4.62419e19 1.45235 0.726177 0.687508i \(-0.241295\pi\)
0.726177 + 0.687508i \(0.241295\pi\)
\(198\) 0 0
\(199\) −4.24592e19 −1.22383 −0.611914 0.790924i \(-0.709600\pi\)
−0.611914 + 0.790924i \(0.709600\pi\)
\(200\) 0 0
\(201\) 3.82598e18 0.101292
\(202\) 0 0
\(203\) −1.99732e19 −0.486106
\(204\) 0 0
\(205\) −1.21712e19 −0.272536
\(206\) 0 0
\(207\) 2.06804e19 0.426395
\(208\) 0 0
\(209\) 3.05056e19 0.579610
\(210\) 0 0
\(211\) 2.11934e19 0.371364 0.185682 0.982610i \(-0.440551\pi\)
0.185682 + 0.982610i \(0.440551\pi\)
\(212\) 0 0
\(213\) −1.13432e19 −0.183446
\(214\) 0 0
\(215\) −4.43495e17 −0.00662463
\(216\) 0 0
\(217\) 8.29946e19 1.14589
\(218\) 0 0
\(219\) −1.49997e19 −0.191561
\(220\) 0 0
\(221\) 5.07718e19 0.600190
\(222\) 0 0
\(223\) 4.41630e19 0.483578 0.241789 0.970329i \(-0.422266\pi\)
0.241789 + 0.970329i \(0.422266\pi\)
\(224\) 0 0
\(225\) −1.94400e19 −0.197308
\(226\) 0 0
\(227\) −2.83332e19 −0.266732 −0.133366 0.991067i \(-0.542579\pi\)
−0.133366 + 0.991067i \(0.542579\pi\)
\(228\) 0 0
\(229\) 1.80362e20 1.57596 0.787978 0.615704i \(-0.211128\pi\)
0.787978 + 0.615704i \(0.211128\pi\)
\(230\) 0 0
\(231\) 2.19882e19 0.178438
\(232\) 0 0
\(233\) 5.28102e18 0.0398284 0.0199142 0.999802i \(-0.493661\pi\)
0.0199142 + 0.999802i \(0.493661\pi\)
\(234\) 0 0
\(235\) −8.53263e19 −0.598420
\(236\) 0 0
\(237\) −1.44756e19 −0.0944662
\(238\) 0 0
\(239\) 2.33305e20 1.41756 0.708780 0.705429i \(-0.249246\pi\)
0.708780 + 0.705429i \(0.249246\pi\)
\(240\) 0 0
\(241\) −2.44816e18 −0.0138578 −0.00692890 0.999976i \(-0.502206\pi\)
−0.00692890 + 0.999976i \(0.502206\pi\)
\(242\) 0 0
\(243\) 6.47846e19 0.341837
\(244\) 0 0
\(245\) −2.60361e19 −0.128134
\(246\) 0 0
\(247\) 5.79947e19 0.266357
\(248\) 0 0
\(249\) −1.62095e19 −0.0695144
\(250\) 0 0
\(251\) −3.81063e20 −1.52676 −0.763380 0.645950i \(-0.776461\pi\)
−0.763380 + 0.645950i \(0.776461\pi\)
\(252\) 0 0
\(253\) −2.10127e20 −0.786969
\(254\) 0 0
\(255\) 1.06253e19 0.0372178
\(256\) 0 0
\(257\) −2.95275e20 −0.967820 −0.483910 0.875118i \(-0.660784\pi\)
−0.483910 + 0.875118i \(0.660784\pi\)
\(258\) 0 0
\(259\) 4.78998e20 1.46989
\(260\) 0 0
\(261\) 1.97514e20 0.567744
\(262\) 0 0
\(263\) −3.37915e19 −0.0910299 −0.0455150 0.998964i \(-0.514493\pi\)
−0.0455150 + 0.998964i \(0.514493\pi\)
\(264\) 0 0
\(265\) 4.85155e19 0.122544
\(266\) 0 0
\(267\) 4.12312e19 0.0976969
\(268\) 0 0
\(269\) −5.37595e20 −1.19553 −0.597766 0.801671i \(-0.703945\pi\)
−0.597766 + 0.801671i \(0.703945\pi\)
\(270\) 0 0
\(271\) 6.17960e20 1.29039 0.645196 0.764017i \(-0.276776\pi\)
0.645196 + 0.764017i \(0.276776\pi\)
\(272\) 0 0
\(273\) 4.18022e19 0.0820006
\(274\) 0 0
\(275\) 1.97523e20 0.364158
\(276\) 0 0
\(277\) −4.52933e20 −0.785157 −0.392578 0.919719i \(-0.628417\pi\)
−0.392578 + 0.919719i \(0.628417\pi\)
\(278\) 0 0
\(279\) −8.20729e20 −1.33833
\(280\) 0 0
\(281\) −7.92146e20 −1.21563 −0.607815 0.794079i \(-0.707954\pi\)
−0.607815 + 0.794079i \(0.707954\pi\)
\(282\) 0 0
\(283\) −4.00061e20 −0.578019 −0.289009 0.957326i \(-0.593326\pi\)
−0.289009 + 0.957326i \(0.593326\pi\)
\(284\) 0 0
\(285\) 1.21369e19 0.0165168
\(286\) 0 0
\(287\) −4.01419e20 −0.514756
\(288\) 0 0
\(289\) −4.01611e20 −0.485483
\(290\) 0 0
\(291\) 1.82204e20 0.207715
\(292\) 0 0
\(293\) −5.43391e20 −0.584437 −0.292218 0.956352i \(-0.594393\pi\)
−0.292218 + 0.956352i \(0.594393\pi\)
\(294\) 0 0
\(295\) 1.27774e19 0.0129704
\(296\) 0 0
\(297\) −4.37848e20 −0.419656
\(298\) 0 0
\(299\) −3.99477e20 −0.361648
\(300\) 0 0
\(301\) −1.46270e19 −0.0125123
\(302\) 0 0
\(303\) −1.26533e17 −0.000102316 0
\(304\) 0 0
\(305\) 8.18375e20 0.625754
\(306\) 0 0
\(307\) 4.88990e20 0.353691 0.176845 0.984239i \(-0.443411\pi\)
0.176845 + 0.984239i \(0.443411\pi\)
\(308\) 0 0
\(309\) −3.29098e20 −0.225257
\(310\) 0 0
\(311\) −1.87387e21 −1.21416 −0.607079 0.794642i \(-0.707659\pi\)
−0.607079 + 0.794642i \(0.707659\pi\)
\(312\) 0 0
\(313\) 1.09750e21 0.673408 0.336704 0.941611i \(-0.390688\pi\)
0.336704 + 0.941611i \(0.390688\pi\)
\(314\) 0 0
\(315\) −6.41152e20 −0.372667
\(316\) 0 0
\(317\) 1.14233e21 0.629201 0.314600 0.949224i \(-0.398129\pi\)
0.314600 + 0.949224i \(0.398129\pi\)
\(318\) 0 0
\(319\) −2.00687e21 −1.04785
\(320\) 0 0
\(321\) 9.53607e19 0.0472147
\(322\) 0 0
\(323\) 4.86180e20 0.228337
\(324\) 0 0
\(325\) 3.75515e20 0.167347
\(326\) 0 0
\(327\) −1.47272e20 −0.0622965
\(328\) 0 0
\(329\) −2.81416e21 −1.13027
\(330\) 0 0
\(331\) −4.78454e21 −1.82517 −0.912583 0.408892i \(-0.865915\pi\)
−0.912583 + 0.408892i \(0.865915\pi\)
\(332\) 0 0
\(333\) −4.73679e21 −1.71675
\(334\) 0 0
\(335\) 1.13354e21 0.390441
\(336\) 0 0
\(337\) −4.59118e21 −1.50338 −0.751692 0.659515i \(-0.770762\pi\)
−0.751692 + 0.659515i \(0.770762\pi\)
\(338\) 0 0
\(339\) 1.97327e20 0.0614455
\(340\) 0 0
\(341\) 8.33916e21 2.47007
\(342\) 0 0
\(343\) −3.85574e21 −1.08669
\(344\) 0 0
\(345\) −8.36009e19 −0.0224258
\(346\) 0 0
\(347\) −1.40187e21 −0.358020 −0.179010 0.983847i \(-0.557289\pi\)
−0.179010 + 0.983847i \(0.557289\pi\)
\(348\) 0 0
\(349\) 5.24405e21 1.27541 0.637707 0.770279i \(-0.279883\pi\)
0.637707 + 0.770279i \(0.279883\pi\)
\(350\) 0 0
\(351\) −8.32401e20 −0.192851
\(352\) 0 0
\(353\) 8.36954e21 1.84764 0.923818 0.382832i \(-0.125051\pi\)
0.923818 + 0.382832i \(0.125051\pi\)
\(354\) 0 0
\(355\) −3.36068e21 −0.707109
\(356\) 0 0
\(357\) 3.50435e20 0.0702956
\(358\) 0 0
\(359\) 6.38455e21 1.22131 0.610657 0.791895i \(-0.290905\pi\)
0.610657 + 0.791895i \(0.290905\pi\)
\(360\) 0 0
\(361\) −4.92504e21 −0.898667
\(362\) 0 0
\(363\) 1.54293e21 0.268621
\(364\) 0 0
\(365\) −4.44402e21 −0.738391
\(366\) 0 0
\(367\) 3.11866e21 0.494659 0.247330 0.968931i \(-0.420447\pi\)
0.247330 + 0.968931i \(0.420447\pi\)
\(368\) 0 0
\(369\) 3.96961e21 0.601207
\(370\) 0 0
\(371\) 1.60010e21 0.231456
\(372\) 0 0
\(373\) −1.12730e22 −1.55781 −0.778904 0.627143i \(-0.784224\pi\)
−0.778904 + 0.627143i \(0.784224\pi\)
\(374\) 0 0
\(375\) 7.85863e19 0.0103772
\(376\) 0 0
\(377\) −3.81530e21 −0.481534
\(378\) 0 0
\(379\) 6.82454e21 0.823456 0.411728 0.911307i \(-0.364925\pi\)
0.411728 + 0.911307i \(0.364925\pi\)
\(380\) 0 0
\(381\) −7.74059e20 −0.0893124
\(382\) 0 0
\(383\) −5.10368e21 −0.563240 −0.281620 0.959526i \(-0.590872\pi\)
−0.281620 + 0.959526i \(0.590872\pi\)
\(384\) 0 0
\(385\) 6.51454e21 0.687808
\(386\) 0 0
\(387\) 1.44645e20 0.0146137
\(388\) 0 0
\(389\) −8.13898e21 −0.787043 −0.393522 0.919315i \(-0.628743\pi\)
−0.393522 + 0.919315i \(0.628743\pi\)
\(390\) 0 0
\(391\) −3.34888e21 −0.310025
\(392\) 0 0
\(393\) 1.53165e21 0.135776
\(394\) 0 0
\(395\) −4.28875e21 −0.364129
\(396\) 0 0
\(397\) −7.03201e21 −0.571953 −0.285977 0.958237i \(-0.592318\pi\)
−0.285977 + 0.958237i \(0.592318\pi\)
\(398\) 0 0
\(399\) 4.00289e20 0.0311964
\(400\) 0 0
\(401\) 1.67041e22 1.24766 0.623830 0.781560i \(-0.285576\pi\)
0.623830 + 0.781560i \(0.285576\pi\)
\(402\) 0 0
\(403\) 1.58537e22 1.13511
\(404\) 0 0
\(405\) 6.25263e21 0.429235
\(406\) 0 0
\(407\) 4.81290e22 3.16850
\(408\) 0 0
\(409\) −5.17984e21 −0.327091 −0.163545 0.986536i \(-0.552293\pi\)
−0.163545 + 0.986536i \(0.552293\pi\)
\(410\) 0 0
\(411\) −1.61296e21 −0.0977168
\(412\) 0 0
\(413\) 4.21412e20 0.0244981
\(414\) 0 0
\(415\) −4.80244e21 −0.267950
\(416\) 0 0
\(417\) 1.50202e21 0.0804486
\(418\) 0 0
\(419\) 2.11912e22 1.08977 0.544887 0.838509i \(-0.316572\pi\)
0.544887 + 0.838509i \(0.316572\pi\)
\(420\) 0 0
\(421\) 1.47972e22 0.730774 0.365387 0.930856i \(-0.380937\pi\)
0.365387 + 0.930856i \(0.380937\pi\)
\(422\) 0 0
\(423\) 2.78290e22 1.32009
\(424\) 0 0
\(425\) 3.14801e21 0.143460
\(426\) 0 0
\(427\) 2.69909e22 1.18190
\(428\) 0 0
\(429\) 4.20022e21 0.176760
\(430\) 0 0
\(431\) −3.11948e22 −1.26190 −0.630950 0.775823i \(-0.717335\pi\)
−0.630950 + 0.775823i \(0.717335\pi\)
\(432\) 0 0
\(433\) 1.92999e22 0.750597 0.375299 0.926904i \(-0.377540\pi\)
0.375299 + 0.926904i \(0.377540\pi\)
\(434\) 0 0
\(435\) −7.98451e20 −0.0298600
\(436\) 0 0
\(437\) −3.82530e21 −0.137586
\(438\) 0 0
\(439\) −1.29380e22 −0.447630 −0.223815 0.974632i \(-0.571851\pi\)
−0.223815 + 0.974632i \(0.571851\pi\)
\(440\) 0 0
\(441\) 8.49163e21 0.282659
\(442\) 0 0
\(443\) −1.95846e22 −0.627312 −0.313656 0.949537i \(-0.601554\pi\)
−0.313656 + 0.949537i \(0.601554\pi\)
\(444\) 0 0
\(445\) 1.22157e22 0.376582
\(446\) 0 0
\(447\) 4.98547e21 0.147942
\(448\) 0 0
\(449\) −6.08659e22 −1.73892 −0.869460 0.494003i \(-0.835533\pi\)
−0.869460 + 0.494003i \(0.835533\pi\)
\(450\) 0 0
\(451\) −4.03339e22 −1.10961
\(452\) 0 0
\(453\) 4.70604e21 0.124687
\(454\) 0 0
\(455\) 1.23849e22 0.316079
\(456\) 0 0
\(457\) −1.58093e21 −0.0388710 −0.0194355 0.999811i \(-0.506187\pi\)
−0.0194355 + 0.999811i \(0.506187\pi\)
\(458\) 0 0
\(459\) −6.97816e21 −0.165323
\(460\) 0 0
\(461\) 7.43310e22 1.69712 0.848560 0.529100i \(-0.177470\pi\)
0.848560 + 0.529100i \(0.177470\pi\)
\(462\) 0 0
\(463\) 1.75196e22 0.385556 0.192778 0.981242i \(-0.438250\pi\)
0.192778 + 0.981242i \(0.438250\pi\)
\(464\) 0 0
\(465\) 3.31781e21 0.0703884
\(466\) 0 0
\(467\) −7.70965e22 −1.57703 −0.788517 0.615013i \(-0.789151\pi\)
−0.788517 + 0.615013i \(0.789151\pi\)
\(468\) 0 0
\(469\) 3.73853e22 0.737449
\(470\) 0 0
\(471\) −1.64359e21 −0.0312691
\(472\) 0 0
\(473\) −1.46969e21 −0.0269716
\(474\) 0 0
\(475\) 3.59585e21 0.0636657
\(476\) 0 0
\(477\) −1.58233e22 −0.270328
\(478\) 0 0
\(479\) 2.06396e22 0.340290 0.170145 0.985419i \(-0.445576\pi\)
0.170145 + 0.985419i \(0.445576\pi\)
\(480\) 0 0
\(481\) 9.14989e22 1.45607
\(482\) 0 0
\(483\) −2.75725e21 −0.0423571
\(484\) 0 0
\(485\) 5.39822e22 0.800656
\(486\) 0 0
\(487\) 9.29138e22 1.33071 0.665356 0.746527i \(-0.268280\pi\)
0.665356 + 0.746527i \(0.268280\pi\)
\(488\) 0 0
\(489\) 6.28949e21 0.0869941
\(490\) 0 0
\(491\) −4.31577e22 −0.576587 −0.288294 0.957542i \(-0.593088\pi\)
−0.288294 + 0.957542i \(0.593088\pi\)
\(492\) 0 0
\(493\) −3.19843e22 −0.412799
\(494\) 0 0
\(495\) −6.44219e22 −0.803322
\(496\) 0 0
\(497\) −1.10839e23 −1.33556
\(498\) 0 0
\(499\) 4.81122e22 0.560274 0.280137 0.959960i \(-0.409620\pi\)
0.280137 + 0.959960i \(0.409620\pi\)
\(500\) 0 0
\(501\) 4.46478e21 0.0502550
\(502\) 0 0
\(503\) −6.43576e22 −0.700280 −0.350140 0.936697i \(-0.613866\pi\)
−0.350140 + 0.936697i \(0.613866\pi\)
\(504\) 0 0
\(505\) −3.74884e19 −0.000394385 0
\(506\) 0 0
\(507\) −3.42011e21 −0.0347914
\(508\) 0 0
\(509\) 6.98569e21 0.0687240 0.0343620 0.999409i \(-0.489060\pi\)
0.0343620 + 0.999409i \(0.489060\pi\)
\(510\) 0 0
\(511\) −1.46569e23 −1.39464
\(512\) 0 0
\(513\) −7.97089e21 −0.0733684
\(514\) 0 0
\(515\) −9.75032e22 −0.868275
\(516\) 0 0
\(517\) −2.82762e23 −2.43641
\(518\) 0 0
\(519\) 9.06799e21 0.0756116
\(520\) 0 0
\(521\) 1.59270e23 1.28533 0.642664 0.766148i \(-0.277829\pi\)
0.642664 + 0.766148i \(0.277829\pi\)
\(522\) 0 0
\(523\) −2.37823e22 −0.185776 −0.0928880 0.995677i \(-0.529610\pi\)
−0.0928880 + 0.995677i \(0.529610\pi\)
\(524\) 0 0
\(525\) 2.59187e21 0.0196001
\(526\) 0 0
\(527\) 1.32905e23 0.973083
\(528\) 0 0
\(529\) −1.14701e23 −0.813192
\(530\) 0 0
\(531\) −4.16732e21 −0.0286124
\(532\) 0 0
\(533\) −7.66795e22 −0.509915
\(534\) 0 0
\(535\) 2.82529e22 0.181993
\(536\) 0 0
\(537\) 2.76069e22 0.172280
\(538\) 0 0
\(539\) −8.62806e22 −0.521686
\(540\) 0 0
\(541\) −1.78303e23 −1.04468 −0.522339 0.852738i \(-0.674941\pi\)
−0.522339 + 0.852738i \(0.674941\pi\)
\(542\) 0 0
\(543\) 1.58484e22 0.0899884
\(544\) 0 0
\(545\) −4.36328e22 −0.240128
\(546\) 0 0
\(547\) 1.48213e23 0.790668 0.395334 0.918538i \(-0.370629\pi\)
0.395334 + 0.918538i \(0.370629\pi\)
\(548\) 0 0
\(549\) −2.66912e23 −1.38039
\(550\) 0 0
\(551\) −3.65345e22 −0.183195
\(552\) 0 0
\(553\) −1.41448e23 −0.687753
\(554\) 0 0
\(555\) 1.91485e22 0.0902911
\(556\) 0 0
\(557\) 1.77111e23 0.809983 0.404992 0.914320i \(-0.367274\pi\)
0.404992 + 0.914320i \(0.367274\pi\)
\(558\) 0 0
\(559\) −2.79406e21 −0.0123947
\(560\) 0 0
\(561\) 3.52112e22 0.151529
\(562\) 0 0
\(563\) 4.04590e21 0.0168925 0.00844625 0.999964i \(-0.497311\pi\)
0.00844625 + 0.999964i \(0.497311\pi\)
\(564\) 0 0
\(565\) 5.84629e22 0.236847
\(566\) 0 0
\(567\) 2.06219e23 0.810723
\(568\) 0 0
\(569\) −3.66551e23 −1.39856 −0.699278 0.714850i \(-0.746495\pi\)
−0.699278 + 0.714850i \(0.746495\pi\)
\(570\) 0 0
\(571\) −4.00635e23 −1.48369 −0.741843 0.670573i \(-0.766048\pi\)
−0.741843 + 0.670573i \(0.766048\pi\)
\(572\) 0 0
\(573\) 1.94027e21 0.00697506
\(574\) 0 0
\(575\) −2.47688e22 −0.0864425
\(576\) 0 0
\(577\) 8.04220e22 0.272509 0.136254 0.990674i \(-0.456494\pi\)
0.136254 + 0.990674i \(0.456494\pi\)
\(578\) 0 0
\(579\) 5.79529e22 0.190681
\(580\) 0 0
\(581\) −1.58390e23 −0.506093
\(582\) 0 0
\(583\) 1.60775e23 0.498926
\(584\) 0 0
\(585\) −1.22474e23 −0.369163
\(586\) 0 0
\(587\) 1.16687e23 0.341663 0.170832 0.985300i \(-0.445355\pi\)
0.170832 + 0.985300i \(0.445355\pi\)
\(588\) 0 0
\(589\) 1.51812e23 0.431843
\(590\) 0 0
\(591\) 6.09680e22 0.168503
\(592\) 0 0
\(593\) −3.44705e23 −0.925726 −0.462863 0.886430i \(-0.653178\pi\)
−0.462863 + 0.886430i \(0.653178\pi\)
\(594\) 0 0
\(595\) 1.03825e23 0.270961
\(596\) 0 0
\(597\) −5.59807e22 −0.141990
\(598\) 0 0
\(599\) −1.64013e23 −0.404344 −0.202172 0.979350i \(-0.564800\pi\)
−0.202172 + 0.979350i \(0.564800\pi\)
\(600\) 0 0
\(601\) 5.27655e23 1.26449 0.632247 0.774767i \(-0.282133\pi\)
0.632247 + 0.774767i \(0.282133\pi\)
\(602\) 0 0
\(603\) −3.69702e23 −0.861300
\(604\) 0 0
\(605\) 4.57129e23 1.03542
\(606\) 0 0
\(607\) 3.31440e23 0.729963 0.364981 0.931015i \(-0.381075\pi\)
0.364981 + 0.931015i \(0.381075\pi\)
\(608\) 0 0
\(609\) −2.63338e22 −0.0563984
\(610\) 0 0
\(611\) −5.37564e23 −1.11964
\(612\) 0 0
\(613\) 5.48999e23 1.11214 0.556068 0.831137i \(-0.312309\pi\)
0.556068 + 0.831137i \(0.312309\pi\)
\(614\) 0 0
\(615\) −1.60472e22 −0.0316199
\(616\) 0 0
\(617\) −1.71333e23 −0.328410 −0.164205 0.986426i \(-0.552506\pi\)
−0.164205 + 0.986426i \(0.552506\pi\)
\(618\) 0 0
\(619\) −5.04276e23 −0.940368 −0.470184 0.882568i \(-0.655812\pi\)
−0.470184 + 0.882568i \(0.655812\pi\)
\(620\) 0 0
\(621\) 5.49047e22 0.0996164
\(622\) 0 0
\(623\) 4.02889e23 0.711273
\(624\) 0 0
\(625\) 2.32831e22 0.0400000
\(626\) 0 0
\(627\) 4.02204e22 0.0672469
\(628\) 0 0
\(629\) 7.67051e23 1.24823
\(630\) 0 0
\(631\) −7.36135e22 −0.116602 −0.0583012 0.998299i \(-0.518568\pi\)
−0.0583012 + 0.998299i \(0.518568\pi\)
\(632\) 0 0
\(633\) 2.79427e22 0.0430860
\(634\) 0 0
\(635\) −2.29333e23 −0.344263
\(636\) 0 0
\(637\) −1.64030e23 −0.239738
\(638\) 0 0
\(639\) 1.09608e24 1.55986
\(640\) 0 0
\(641\) 1.37693e23 0.190818 0.0954090 0.995438i \(-0.469584\pi\)
0.0954090 + 0.995438i \(0.469584\pi\)
\(642\) 0 0
\(643\) −1.06980e23 −0.144380 −0.0721901 0.997391i \(-0.522999\pi\)
−0.0721901 + 0.997391i \(0.522999\pi\)
\(644\) 0 0
\(645\) −5.84730e20 −0.000768595 0
\(646\) 0 0
\(647\) −1.05305e24 −1.34822 −0.674112 0.738629i \(-0.735474\pi\)
−0.674112 + 0.738629i \(0.735474\pi\)
\(648\) 0 0
\(649\) 4.23428e22 0.0528080
\(650\) 0 0
\(651\) 1.09425e23 0.132947
\(652\) 0 0
\(653\) 2.49950e23 0.295863 0.147932 0.988998i \(-0.452738\pi\)
0.147932 + 0.988998i \(0.452738\pi\)
\(654\) 0 0
\(655\) 4.53789e23 0.523363
\(656\) 0 0
\(657\) 1.44941e24 1.62887
\(658\) 0 0
\(659\) −1.48770e24 −1.62926 −0.814631 0.579980i \(-0.803060\pi\)
−0.814631 + 0.579980i \(0.803060\pi\)
\(660\) 0 0
\(661\) −1.01867e24 −1.08723 −0.543615 0.839335i \(-0.682945\pi\)
−0.543615 + 0.839335i \(0.682945\pi\)
\(662\) 0 0
\(663\) 6.69406e22 0.0696345
\(664\) 0 0
\(665\) 1.18595e23 0.120249
\(666\) 0 0
\(667\) 2.51655e23 0.248735
\(668\) 0 0
\(669\) 5.82271e22 0.0561052
\(670\) 0 0
\(671\) 2.71200e24 2.54770
\(672\) 0 0
\(673\) 1.93408e24 1.77152 0.885762 0.464140i \(-0.153637\pi\)
0.885762 + 0.464140i \(0.153637\pi\)
\(674\) 0 0
\(675\) −5.16114e22 −0.0460960
\(676\) 0 0
\(677\) 1.40989e24 1.22795 0.613976 0.789325i \(-0.289569\pi\)
0.613976 + 0.789325i \(0.289569\pi\)
\(678\) 0 0
\(679\) 1.78039e24 1.51225
\(680\) 0 0
\(681\) −3.73561e22 −0.0309465
\(682\) 0 0
\(683\) −1.08698e24 −0.878305 −0.439153 0.898413i \(-0.644721\pi\)
−0.439153 + 0.898413i \(0.644721\pi\)
\(684\) 0 0
\(685\) −4.77879e23 −0.376659
\(686\) 0 0
\(687\) 2.37800e23 0.182844
\(688\) 0 0
\(689\) 3.05653e23 0.229279
\(690\) 0 0
\(691\) 4.28347e23 0.313497 0.156748 0.987639i \(-0.449899\pi\)
0.156748 + 0.987639i \(0.449899\pi\)
\(692\) 0 0
\(693\) −2.12471e24 −1.51728
\(694\) 0 0
\(695\) 4.45008e23 0.310097
\(696\) 0 0
\(697\) −6.42818e23 −0.437129
\(698\) 0 0
\(699\) 6.96281e21 0.00462092
\(700\) 0 0
\(701\) 2.71394e24 1.75791 0.878955 0.476905i \(-0.158241\pi\)
0.878955 + 0.476905i \(0.158241\pi\)
\(702\) 0 0
\(703\) 8.76173e23 0.553949
\(704\) 0 0
\(705\) −1.12499e23 −0.0694292
\(706\) 0 0
\(707\) −1.23641e21 −0.000744899 0
\(708\) 0 0
\(709\) −1.69687e24 −0.998056 −0.499028 0.866586i \(-0.666310\pi\)
−0.499028 + 0.866586i \(0.666310\pi\)
\(710\) 0 0
\(711\) 1.39877e24 0.803257
\(712\) 0 0
\(713\) −1.04570e24 −0.586337
\(714\) 0 0
\(715\) 1.24441e24 0.681340
\(716\) 0 0
\(717\) 3.07603e23 0.164467
\(718\) 0 0
\(719\) −1.87362e24 −0.978333 −0.489167 0.872190i \(-0.662699\pi\)
−0.489167 + 0.872190i \(0.662699\pi\)
\(720\) 0 0
\(721\) −3.21576e24 −1.63996
\(722\) 0 0
\(723\) −3.22779e21 −0.00160779
\(724\) 0 0
\(725\) −2.36560e23 −0.115098
\(726\) 0 0
\(727\) 2.29336e24 1.09001 0.545003 0.838434i \(-0.316528\pi\)
0.545003 + 0.838434i \(0.316528\pi\)
\(728\) 0 0
\(729\) −1.98170e24 −0.920138
\(730\) 0 0
\(731\) −2.34231e22 −0.0106254
\(732\) 0 0
\(733\) −2.61406e24 −1.15859 −0.579297 0.815117i \(-0.696673\pi\)
−0.579297 + 0.815117i \(0.696673\pi\)
\(734\) 0 0
\(735\) −3.43275e22 −0.0148662
\(736\) 0 0
\(737\) 3.75642e24 1.58964
\(738\) 0 0
\(739\) −4.47027e24 −1.84866 −0.924329 0.381598i \(-0.875374\pi\)
−0.924329 + 0.381598i \(0.875374\pi\)
\(740\) 0 0
\(741\) 7.64637e22 0.0309030
\(742\) 0 0
\(743\) −2.49359e23 −0.0984963 −0.0492482 0.998787i \(-0.515683\pi\)
−0.0492482 + 0.998787i \(0.515683\pi\)
\(744\) 0 0
\(745\) 1.47706e24 0.570258
\(746\) 0 0
\(747\) 1.56631e24 0.591089
\(748\) 0 0
\(749\) 9.31812e23 0.343742
\(750\) 0 0
\(751\) 8.20625e23 0.295941 0.147971 0.988992i \(-0.452726\pi\)
0.147971 + 0.988992i \(0.452726\pi\)
\(752\) 0 0
\(753\) −5.02417e23 −0.177136
\(754\) 0 0
\(755\) 1.39428e24 0.480618
\(756\) 0 0
\(757\) 4.01821e24 1.35431 0.677154 0.735841i \(-0.263213\pi\)
0.677154 + 0.735841i \(0.263213\pi\)
\(758\) 0 0
\(759\) −2.77044e23 −0.0913049
\(760\) 0 0
\(761\) −4.19948e24 −1.35340 −0.676700 0.736259i \(-0.736591\pi\)
−0.676700 + 0.736259i \(0.736591\pi\)
\(762\) 0 0
\(763\) −1.43906e24 −0.453544
\(764\) 0 0
\(765\) −1.02672e24 −0.316468
\(766\) 0 0
\(767\) 8.04987e22 0.0242677
\(768\) 0 0
\(769\) −8.42992e23 −0.248571 −0.124285 0.992247i \(-0.539664\pi\)
−0.124285 + 0.992247i \(0.539664\pi\)
\(770\) 0 0
\(771\) −3.89308e23 −0.112287
\(772\) 0 0
\(773\) −7.90088e23 −0.222920 −0.111460 0.993769i \(-0.535553\pi\)
−0.111460 + 0.993769i \(0.535553\pi\)
\(774\) 0 0
\(775\) 9.82979e23 0.271319
\(776\) 0 0
\(777\) 6.31540e23 0.170538
\(778\) 0 0
\(779\) −7.34266e23 −0.193993
\(780\) 0 0
\(781\) −1.11369e25 −2.87893
\(782\) 0 0
\(783\) 5.24381e23 0.132639
\(784\) 0 0
\(785\) −4.86952e23 −0.120530
\(786\) 0 0
\(787\) −6.59484e24 −1.59742 −0.798710 0.601717i \(-0.794484\pi\)
−0.798710 + 0.601717i \(0.794484\pi\)
\(788\) 0 0
\(789\) −4.45528e22 −0.0105614
\(790\) 0 0
\(791\) 1.92817e24 0.447348
\(792\) 0 0
\(793\) 5.15584e24 1.17079
\(794\) 0 0
\(795\) 6.39658e22 0.0142176
\(796\) 0 0
\(797\) 7.26238e24 1.58010 0.790048 0.613045i \(-0.210056\pi\)
0.790048 + 0.613045i \(0.210056\pi\)
\(798\) 0 0
\(799\) −4.50649e24 −0.959822
\(800\) 0 0
\(801\) −3.98415e24 −0.830728
\(802\) 0 0
\(803\) −1.47270e25 −3.00629
\(804\) 0 0
\(805\) −8.16901e23 −0.163269
\(806\) 0 0
\(807\) −7.08798e23 −0.138707
\(808\) 0 0
\(809\) 4.34267e24 0.832137 0.416068 0.909333i \(-0.363408\pi\)
0.416068 + 0.909333i \(0.363408\pi\)
\(810\) 0 0
\(811\) −2.42001e24 −0.454088 −0.227044 0.973885i \(-0.572906\pi\)
−0.227044 + 0.973885i \(0.572906\pi\)
\(812\) 0 0
\(813\) 8.14756e23 0.149712
\(814\) 0 0
\(815\) 1.86341e24 0.335327
\(816\) 0 0
\(817\) −2.67553e22 −0.00471544
\(818\) 0 0
\(819\) −4.03932e24 −0.697261
\(820\) 0 0
\(821\) 7.14459e24 1.20798 0.603991 0.796991i \(-0.293576\pi\)
0.603991 + 0.796991i \(0.293576\pi\)
\(822\) 0 0
\(823\) 8.98461e24 1.48799 0.743996 0.668184i \(-0.232928\pi\)
0.743996 + 0.668184i \(0.232928\pi\)
\(824\) 0 0
\(825\) 2.60426e23 0.0422500
\(826\) 0 0
\(827\) −6.67657e24 −1.06110 −0.530550 0.847654i \(-0.678015\pi\)
−0.530550 + 0.847654i \(0.678015\pi\)
\(828\) 0 0
\(829\) −4.56314e24 −0.710477 −0.355238 0.934776i \(-0.615600\pi\)
−0.355238 + 0.934776i \(0.615600\pi\)
\(830\) 0 0
\(831\) −5.97175e23 −0.0910946
\(832\) 0 0
\(833\) −1.37509e24 −0.205517
\(834\) 0 0
\(835\) 1.32280e24 0.193713
\(836\) 0 0
\(837\) −2.17896e24 −0.312668
\(838\) 0 0
\(839\) 1.99989e24 0.281209 0.140604 0.990066i \(-0.455095\pi\)
0.140604 + 0.990066i \(0.455095\pi\)
\(840\) 0 0
\(841\) −4.85365e24 −0.668810
\(842\) 0 0
\(843\) −1.04441e24 −0.141038
\(844\) 0 0
\(845\) −1.01329e24 −0.134107
\(846\) 0 0
\(847\) 1.50766e25 1.95567
\(848\) 0 0
\(849\) −5.27465e23 −0.0670623
\(850\) 0 0
\(851\) −6.03521e24 −0.752127
\(852\) 0 0
\(853\) 6.35284e24 0.776071 0.388035 0.921645i \(-0.373154\pi\)
0.388035 + 0.921645i \(0.373154\pi\)
\(854\) 0 0
\(855\) −1.17278e24 −0.140445
\(856\) 0 0
\(857\) 6.73960e24 0.791220 0.395610 0.918419i \(-0.370533\pi\)
0.395610 + 0.918419i \(0.370533\pi\)
\(858\) 0 0
\(859\) −1.54449e25 −1.77763 −0.888817 0.458262i \(-0.848472\pi\)
−0.888817 + 0.458262i \(0.848472\pi\)
\(860\) 0 0
\(861\) −5.29255e23 −0.0597225
\(862\) 0 0
\(863\) −1.22551e25 −1.35590 −0.677948 0.735110i \(-0.737131\pi\)
−0.677948 + 0.735110i \(0.737131\pi\)
\(864\) 0 0
\(865\) 2.68661e24 0.291452
\(866\) 0 0
\(867\) −5.29508e23 −0.0563262
\(868\) 0 0
\(869\) −1.42124e25 −1.48252
\(870\) 0 0
\(871\) 7.14139e24 0.730514
\(872\) 0 0
\(873\) −1.76062e25 −1.76622
\(874\) 0 0
\(875\) 7.67902e23 0.0755505
\(876\) 0 0
\(877\) 1.24989e25 1.20608 0.603041 0.797710i \(-0.293955\pi\)
0.603041 + 0.797710i \(0.293955\pi\)
\(878\) 0 0
\(879\) −7.16439e23 −0.0678069
\(880\) 0 0
\(881\) 4.70446e24 0.436732 0.218366 0.975867i \(-0.429927\pi\)
0.218366 + 0.975867i \(0.429927\pi\)
\(882\) 0 0
\(883\) 2.05718e25 1.87330 0.936650 0.350267i \(-0.113909\pi\)
0.936650 + 0.350267i \(0.113909\pi\)
\(884\) 0 0
\(885\) 1.68465e22 0.00150484
\(886\) 0 0
\(887\) 1.45774e23 0.0127741 0.00638705 0.999980i \(-0.497967\pi\)
0.00638705 + 0.999980i \(0.497967\pi\)
\(888\) 0 0
\(889\) −7.56367e24 −0.650231
\(890\) 0 0
\(891\) 2.07205e25 1.74759
\(892\) 0 0
\(893\) −5.14759e24 −0.425958
\(894\) 0 0
\(895\) 8.17920e24 0.664072
\(896\) 0 0
\(897\) −5.26694e23 −0.0419587
\(898\) 0 0
\(899\) −9.98725e24 −0.780708
\(900\) 0 0
\(901\) 2.56234e24 0.196551
\(902\) 0 0
\(903\) −1.92851e22 −0.00145169
\(904\) 0 0
\(905\) 4.69546e24 0.346869
\(906\) 0 0
\(907\) 3.03117e24 0.219760 0.109880 0.993945i \(-0.464953\pi\)
0.109880 + 0.993945i \(0.464953\pi\)
\(908\) 0 0
\(909\) 1.22268e22 0.000870001 0
\(910\) 0 0
\(911\) 7.30782e24 0.510366 0.255183 0.966893i \(-0.417864\pi\)
0.255183 + 0.966893i \(0.417864\pi\)
\(912\) 0 0
\(913\) −1.59148e25 −1.09093
\(914\) 0 0
\(915\) 1.07899e24 0.0726005
\(916\) 0 0
\(917\) 1.49665e25 0.988507
\(918\) 0 0
\(919\) 1.55368e24 0.100735 0.0503673 0.998731i \(-0.483961\pi\)
0.0503673 + 0.998731i \(0.483961\pi\)
\(920\) 0 0
\(921\) 6.44713e23 0.0410355
\(922\) 0 0
\(923\) −2.11726e25 −1.32300
\(924\) 0 0
\(925\) 5.67321e24 0.348036
\(926\) 0 0
\(927\) 3.18005e25 1.91539
\(928\) 0 0
\(929\) −4.57365e24 −0.270476 −0.135238 0.990813i \(-0.543180\pi\)
−0.135238 + 0.990813i \(0.543180\pi\)
\(930\) 0 0
\(931\) −1.57071e24 −0.0912062
\(932\) 0 0
\(933\) −2.47062e24 −0.140868
\(934\) 0 0
\(935\) 1.04321e25 0.584084
\(936\) 0 0
\(937\) 2.61843e25 1.43964 0.719821 0.694159i \(-0.244224\pi\)
0.719821 + 0.694159i \(0.244224\pi\)
\(938\) 0 0
\(939\) 1.44701e24 0.0781294
\(940\) 0 0
\(941\) −1.02278e25 −0.542341 −0.271170 0.962531i \(-0.587411\pi\)
−0.271170 + 0.962531i \(0.587411\pi\)
\(942\) 0 0
\(943\) 5.05774e24 0.263395
\(944\) 0 0
\(945\) −1.70220e24 −0.0870644
\(946\) 0 0
\(947\) 3.57120e25 1.79407 0.897034 0.441962i \(-0.145717\pi\)
0.897034 + 0.441962i \(0.145717\pi\)
\(948\) 0 0
\(949\) −2.79977e25 −1.38153
\(950\) 0 0
\(951\) 1.50612e24 0.0730005
\(952\) 0 0
\(953\) 1.63928e25 0.780483 0.390241 0.920713i \(-0.372392\pi\)
0.390241 + 0.920713i \(0.372392\pi\)
\(954\) 0 0
\(955\) 5.74851e23 0.0268860
\(956\) 0 0
\(957\) −2.64598e24 −0.121572
\(958\) 0 0
\(959\) −1.57610e25 −0.711418
\(960\) 0 0
\(961\) 1.89499e25 0.840347
\(962\) 0 0
\(963\) −9.21464e24 −0.401472
\(964\) 0 0
\(965\) 1.71699e25 0.734998
\(966\) 0 0
\(967\) 4.18323e25 1.75949 0.879746 0.475444i \(-0.157713\pi\)
0.879746 + 0.475444i \(0.157713\pi\)
\(968\) 0 0
\(969\) 6.41009e23 0.0264918
\(970\) 0 0
\(971\) −4.48245e25 −1.82034 −0.910169 0.414238i \(-0.864048\pi\)
−0.910169 + 0.414238i \(0.864048\pi\)
\(972\) 0 0
\(973\) 1.46769e25 0.585699
\(974\) 0 0
\(975\) 4.95101e23 0.0194158
\(976\) 0 0
\(977\) 2.15059e25 0.828808 0.414404 0.910093i \(-0.363990\pi\)
0.414404 + 0.910093i \(0.363990\pi\)
\(978\) 0 0
\(979\) 4.04816e25 1.53322
\(980\) 0 0
\(981\) 1.42308e25 0.529714
\(982\) 0 0
\(983\) −6.63523e24 −0.242745 −0.121373 0.992607i \(-0.538730\pi\)
−0.121373 + 0.992607i \(0.538730\pi\)
\(984\) 0 0
\(985\) 1.80632e25 0.649512
\(986\) 0 0
\(987\) −3.71035e24 −0.131135
\(988\) 0 0
\(989\) 1.84295e23 0.00640242
\(990\) 0 0
\(991\) −1.56507e25 −0.534450 −0.267225 0.963634i \(-0.586107\pi\)
−0.267225 + 0.963634i \(0.586107\pi\)
\(992\) 0 0
\(993\) −6.30822e24 −0.211757
\(994\) 0 0
\(995\) −1.65856e25 −0.547312
\(996\) 0 0
\(997\) −3.41918e25 −1.10921 −0.554605 0.832114i \(-0.687130\pi\)
−0.554605 + 0.832114i \(0.687130\pi\)
\(998\) 0 0
\(999\) −1.25757e25 −0.401076
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.18.a.l.1.3 5
4.3 odd 2 40.18.a.d.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.18.a.d.1.3 5 4.3 odd 2
80.18.a.l.1.3 5 1.1 even 1 trivial