Defining parameters
| Level: | \( N \) | \(=\) | \( 80 = 2^{4} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 11 \) |
| Character orbit: | \([\chi]\) | \(=\) | 80.h (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(132\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{11}(80, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 126 | 30 | 96 |
| Cusp forms | 114 | 30 | 84 |
| Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{11}^{\mathrm{new}}(80, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 80.11.h.a | $2$ | $50.829$ | \(\Q(\sqrt{5}) \) | \(\Q(\sqrt{-5}) \) | \(0\) | \(0\) | \(6250\) | \(0\) | \(q-19\beta q^{3}+5^{5}q^{5}-183\beta q^{7}+121451q^{9}+\cdots\) |
| 80.11.h.b | $8$ | $50.829$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(-2280\) | \(0\) | \(q+\beta _{1}q^{3}+(-285-\beta _{2})q^{5}+(-8\beta _{1}+\cdots)q^{7}+\cdots\) |
| 80.11.h.c | $20$ | $50.829$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(0\) | \(-8644\) | \(0\) | \(q+\beta _{10}q^{3}+(-432-\beta _{1})q^{5}+(-6\beta _{10}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{11}^{\mathrm{old}}(80, [\chi])\) into lower level spaces
\( S_{11}^{\mathrm{old}}(80, [\chi]) \simeq \) \(S_{11}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 3}\)