Properties

Label 80.11.h
Level $80$
Weight $11$
Character orbit 80.h
Rep. character $\chi_{80}(79,\cdot)$
Character field $\Q$
Dimension $30$
Newform subspaces $3$
Sturm bound $132$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 80.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(132\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(80, [\chi])\).

Total New Old
Modular forms 126 30 96
Cusp forms 114 30 84
Eisenstein series 12 0 12

Trace form

\( 30 q - 4674 q^{5} + 590490 q^{9} - 8860920 q^{21} - 22721682 q^{25} + 58026540 q^{29} + 142012620 q^{41} - 127093926 q^{45} + 2072651370 q^{49} + 2603161500 q^{61} + 2674425408 q^{65} + 1372193160 q^{69}+ \cdots + 5868241500 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(80, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
80.11.h.a 80.h 20.d $2$ $50.829$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-5}) \) 80.11.h.a \(0\) \(0\) \(6250\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-19\beta q^{3}+5^{5}q^{5}-183\beta q^{7}+121451q^{9}+\cdots\)
80.11.h.b 80.h 20.d $8$ $50.829$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 80.11.h.b \(0\) \(0\) \(-2280\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-285-\beta _{2})q^{5}+(-8\beta _{1}+\cdots)q^{7}+\cdots\)
80.11.h.c 80.h 20.d $20$ $50.829$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 80.11.h.c \(0\) \(0\) \(-8644\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{10}q^{3}+(-432-\beta _{1})q^{5}+(-6\beta _{10}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{11}^{\mathrm{old}}(80, [\chi])\) into lower level spaces

\( S_{11}^{\mathrm{old}}(80, [\chi]) \simeq \) \(S_{11}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 3}\)