Properties

Label 80.10.s
Level $80$
Weight $10$
Character orbit 80.s
Rep. character $\chi_{80}(3,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $212$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 80.s (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 80 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(80, [\chi])\).

Total New Old
Modular forms 220 220 0
Cusp forms 212 212 0
Eisenstein series 8 8 0

Trace form

\( 212 q - 2 q^{2} - 4 q^{3} - 684 q^{4} - 2 q^{5} - 4 q^{6} - 4 q^{7} + 712 q^{8} + 1338444 q^{9} + 1022 q^{10} - 4 q^{11} - 155360 q^{12} - 78732 q^{15} + 534200 q^{16} - 4 q^{17} - 759866 q^{18} + 480888 q^{19}+ \cdots - 778491244 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(80, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
80.10.s.a 80.s 80.s $212$ $41.203$ None 80.10.j.a \(-2\) \(-4\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{4}]$