Newspace parameters
Level: | \( N \) | \(=\) | \( 80 = 2^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 80.q (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(41.2028668931\) |
Analytic rank: | \(0\) |
Dimension: | \(212\) |
Relative dimension: | \(106\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | −22.6274 | − | 0.0159624i | 51.5285 | − | 51.5285i | 511.999 | + | 0.722376i | −883.755 | − | 1082.64i | −1166.78 | + | 1165.13i | 1973.74 | −11585.2 | − | 24.5182i | 14372.6i | 19979.8 | + | 24511.4i | ||||
29.2 | −22.6212 | + | 0.528982i | 109.589 | − | 109.589i | 511.440 | − | 23.9325i | −430.266 | + | 1329.66i | −2421.07 | + | 2537.01i | 12550.3 | −11556.8 | + | 811.924i | − | 4336.57i | 9029.77 | − | 30306.2i | |||
29.3 | −22.5970 | + | 1.17210i | −90.3471 | + | 90.3471i | 509.252 | − | 52.9719i | −476.958 | + | 1313.63i | 1935.68 | − | 2147.47i | −6610.86 | −11445.5 | + | 1793.90i | 3357.81i | 9238.12 | − | 30243.3i | ||||
29.4 | −22.4389 | + | 2.91447i | −31.0461 | + | 31.0461i | 495.012 | − | 130.795i | 1381.88 | + | 208.635i | 606.158 | − | 787.124i | 3903.52 | −10726.3 | + | 4377.61i | 17755.3i | −31616.0 | − | 654.082i | ||||
29.5 | −22.4073 | + | 3.14872i | 15.4750 | − | 15.4750i | 492.171 | − | 141.108i | −1297.71 | − | 518.731i | −298.027 | + | 395.480i | −8769.00 | −10583.9 | + | 4711.56i | 19204.0i | 30711.4 | + | 7537.22i | ||||
29.6 | −22.3218 | + | 3.70652i | −184.162 | + | 184.162i | 484.523 | − | 165.472i | 1397.54 | + | 4.06959i | 3428.23 | − | 4793.43i | −4698.49 | −10202.1 | + | 5489.53i | − | 48148.5i | −31210.6 | + | 5089.16i | |||
29.7 | −22.0219 | − | 5.19957i | 112.080 | − | 112.080i | 457.929 | + | 229.009i | 980.598 | + | 995.768i | −3050.99 | + | 1885.45i | −6639.94 | −8893.72 | − | 7424.25i | − | 5440.91i | −16417.1 | − | 27027.4i | |||
29.8 | −21.9530 | − | 5.48332i | −33.4851 | + | 33.4851i | 451.867 | + | 240.750i | 782.435 | − | 1157.98i | 918.706 | − | 551.488i | 5858.30 | −8599.71 | − | 7762.91i | 17440.5i | −23526.4 | + | 21130.8i | ||||
29.9 | −21.9219 | − | 5.60642i | −154.741 | + | 154.741i | 449.136 | + | 245.806i | −1249.37 | − | 626.262i | 4259.76 | − | 2524.67i | 2175.39 | −8467.81 | − | 7906.58i | − | 28206.7i | 23877.4 | + | 20733.3i | |||
29.10 | −21.8788 | + | 5.77221i | 158.152 | − | 158.152i | 445.363 | − | 252.578i | 807.774 | − | 1140.45i | −2547.29 | + | 4373.07i | 3847.35 | −8286.08 | + | 8096.83i | − | 30341.3i | −11090.2 | + | 29614.3i | |||
29.11 | −21.7913 | + | 6.09410i | 188.670 | − | 188.670i | 437.724 | − | 265.597i | −1142.05 | + | 805.508i | −2961.60 | + | 5261.15i | −8687.40 | −7920.01 | + | 8455.25i | − | 51509.9i | 19978.0 | − | 24512.9i | |||
29.12 | −21.0565 | + | 8.28407i | −96.5305 | + | 96.5305i | 374.748 | − | 348.866i | −1354.58 | + | 343.873i | 1232.92 | − | 2832.26i | 10222.4 | −5000.84 | + | 10450.3i | 1046.72i | 25673.9 | − | 18462.2i | ||||
29.13 | −20.8701 | − | 8.74303i | 125.002 | − | 125.002i | 359.119 | + | 364.935i | 722.421 | − | 1196.34i | −3701.70 | + | 1515.90i | −4152.59 | −4304.19 | − | 10756.0i | − | 11568.0i | −25536.6 | + | 18651.6i | |||
29.14 | −20.4780 | + | 9.62562i | −128.797 | + | 128.797i | 326.695 | − | 394.226i | 200.862 | − | 1383.03i | 1397.76 | − | 3877.27i | 6973.65 | −2895.38 | + | 11217.6i | − | 13494.5i | 9199.29 | + | 30255.1i | |||
29.15 | −20.3763 | − | 9.83893i | −98.0596 | + | 98.0596i | 318.391 | + | 400.963i | 237.582 | − | 1377.20i | 2962.90 | − | 1033.29i | −10470.5 | −2542.60 | − | 11302.8i | 451.630i | −18391.2 | + | 25724.7i | ||||
29.16 | −20.2536 | − | 10.0892i | −147.091 | + | 147.091i | 308.414 | + | 408.687i | 303.650 | + | 1364.16i | 4463.15 | − | 1495.08i | 6644.50 | −2123.15 | − | 11389.0i | − | 23588.3i | 7613.31 | − | 30692.6i | |||
29.17 | −20.0088 | − | 10.5663i | 47.8279 | − | 47.8279i | 288.707 | + | 422.838i | −1077.67 | + | 889.809i | −1462.35 | + | 451.618i | 1025.94 | −1308.86 | − | 11511.1i | 15108.0i | 30964.8 | − | 6417.12i | ||||
29.18 | −19.7925 | + | 10.9662i | 48.6440 | − | 48.6440i | 271.485 | − | 434.097i | 1255.67 | − | 613.526i | −429.346 | + | 1496.23i | −11079.3 | −612.967 | + | 11569.0i | 14950.5i | −18124.8 | + | 25913.1i | ||||
29.19 | −19.3748 | − | 11.6883i | 179.082 | − | 179.082i | 238.765 | + | 452.918i | −1236.30 | − | 651.681i | −5562.84 | + | 1376.50i | 1576.93 | 667.839 | − | 11566.0i | − | 44457.5i | 16336.0 | + | 27076.5i | |||
29.20 | −19.3384 | + | 11.7485i | 96.8997 | − | 96.8997i | 235.945 | − | 454.394i | 804.961 | + | 1142.44i | −735.454 | + | 3012.31i | 1696.61 | 775.676 | + | 11559.2i | 903.893i | −28988.6 | − | 12635.8i | ||||
See next 80 embeddings (of 212 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
16.e | even | 4 | 1 | inner |
80.q | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 80.10.q.a | ✓ | 212 |
5.b | even | 2 | 1 | inner | 80.10.q.a | ✓ | 212 |
16.e | even | 4 | 1 | inner | 80.10.q.a | ✓ | 212 |
80.q | even | 4 | 1 | inner | 80.10.q.a | ✓ | 212 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
80.10.q.a | ✓ | 212 | 1.a | even | 1 | 1 | trivial |
80.10.q.a | ✓ | 212 | 5.b | even | 2 | 1 | inner |
80.10.q.a | ✓ | 212 | 16.e | even | 4 | 1 | inner |
80.10.q.a | ✓ | 212 | 80.q | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{10}^{\mathrm{new}}(80, [\chi])\).