Properties

Label 80.10.l
Level $80$
Weight $10$
Character orbit 80.l
Rep. character $\chi_{80}(21,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $144$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 80.l (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(80, [\chi])\).

Total New Old
Modular forms 220 144 76
Cusp forms 212 144 68
Eisenstein series 8 0 8

Trace form

\( 144 q - 340 q^{4} + 4380 q^{6} - 22500 q^{10} - 131720 q^{11} - 202332 q^{12} + 158572 q^{14} - 405000 q^{15} + 1100304 q^{16} - 4357760 q^{18} + 480888 q^{19} + 905000 q^{20} - 1449020 q^{22} + 1160392 q^{24}+ \cdots - 5099487112 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(80, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
80.10.l.a 80.l 16.e $144$ $41.203$ None 80.10.l.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{10}^{\mathrm{old}}(80, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(80, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 2}\)