Properties

Label 8.51.d.a
Level $8$
Weight $51$
Character orbit 8.d
Self dual yes
Analytic conductor $126.668$
Analytic rank $0$
Dimension $1$
CM discriminant -8
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8,51,Mod(3,8)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8.3"); S:= CuspForms(chi, 51); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 51, names="a")
 
Level: \( N \) \(=\) \( 8 = 2^{3} \)
Weight: \( k \) \(=\) \( 51 \)
Character orbit: \([\chi]\) \(=\) 8.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.668362818\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 33554432 q^{2} - 1357246255682 q^{3} + 11\!\cdots\!24 q^{4} + 45\!\cdots\!24 q^{6} - 37\!\cdots\!68 q^{8} + 11\!\cdots\!75 q^{9} - 21\!\cdots\!26 q^{11} - 15\!\cdots\!68 q^{12} + 12\!\cdots\!76 q^{16}+ \cdots - 24\!\cdots\!50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(7\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
0
−3.35544e7 −1.35725e12 1.12590e15 0 4.55416e19 0 −3.77789e22 1.12422e24 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8.51.d.a 1
8.d odd 2 1 CM 8.51.d.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.51.d.a 1 1.a even 1 1 trivial
8.51.d.a 1 8.d odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 1357246255682 \) acting on \(S_{51}^{\mathrm{new}}(8, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 33554432 \) Copy content Toggle raw display
$3$ \( T + 1357246255682 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 21\!\cdots\!26 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 11\!\cdots\!82 \) Copy content Toggle raw display
$19$ \( T + 10\!\cdots\!74 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T + 30\!\cdots\!26 \) Copy content Toggle raw display
$43$ \( T + 11\!\cdots\!86 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T + 13\!\cdots\!02 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T + 46\!\cdots\!18 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 69\!\cdots\!82 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T - 11\!\cdots\!18 \) Copy content Toggle raw display
$89$ \( T + 96\!\cdots\!74 \) Copy content Toggle raw display
$97$ \( T + 74\!\cdots\!14 \) Copy content Toggle raw display
show more
show less