Defining parameters
| Level: | \( N \) | \(=\) | \( 8 = 2^{3} \) |
| Weight: | \( k \) | \(=\) | \( 13 \) |
| Character orbit: | \([\chi]\) | \(=\) | 8.d (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(13\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{13}(8, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 13 | 13 | 0 |
| Cusp forms | 11 | 11 | 0 |
| Eisenstein series | 2 | 2 | 0 |
Trace form
Decomposition of \(S_{13}^{\mathrm{new}}(8, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 8.13.d.a | $1$ | $7.312$ | \(\Q\) | \(\Q(\sqrt{-2}) \) | \(64\) | \(658\) | \(0\) | \(0\) | \(q+2^{6}q^{2}+658q^{3}+2^{12}q^{4}+42112q^{6}+\cdots\) |
| 8.13.d.b | $10$ | $7.312$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-110\) | \(-660\) | \(0\) | \(0\) | \(q+(-11-\beta _{1})q^{2}+(-66+3\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\) |