Properties

Label 8.13.d
Level $8$
Weight $13$
Character orbit 8.d
Rep. character $\chi_{8}(3,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $2$
Sturm bound $13$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8 = 2^{3} \)
Weight: \( k \) \(=\) \( 13 \)
Character orbit: \([\chi]\) \(=\) 8.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(13\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{13}(8, [\chi])\).

Total New Old
Modular forms 13 13 0
Cusp forms 11 11 0
Eisenstein series 2 2 0

Trace form

\( 11 q - 46 q^{2} - 2 q^{3} + 1652 q^{4} - 88676 q^{6} + 289304 q^{8} + 1594321 q^{9} + 1873200 q^{10} - 2668322 q^{11} - 2732552 q^{12} + 12728736 q^{14} - 21516784 q^{16} - 2419562 q^{17} + 1926742 q^{18}+ \cdots - 906543916678 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{13}^{\mathrm{new}}(8, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
8.13.d.a 8.d 8.d $1$ $7.312$ \(\Q\) \(\Q(\sqrt{-2}) \) 8.13.d.a \(64\) \(658\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+2^{6}q^{2}+658q^{3}+2^{12}q^{4}+42112q^{6}+\cdots\)
8.13.d.b 8.d 8.d $10$ $7.312$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 8.13.d.b \(-110\) \(-660\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-11-\beta _{1})q^{2}+(-66+3\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\)