Properties

Label 8.13
Level 8
Weight 13
Dimension 11
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 52
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 8 = 2^{3} \)
Weight: \( k \) = \( 13 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(52\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{13}(\Gamma_1(8))\).

Total New Old
Modular forms 27 13 14
Cusp forms 21 11 10
Eisenstein series 6 2 4

Trace form

\( 11 q - 46 q^{2} - 2 q^{3} + 1652 q^{4} - 88676 q^{6} + 289304 q^{8} + 1594321 q^{9} + 1873200 q^{10} - 2668322 q^{11} - 2732552 q^{12} + 12728736 q^{14} - 21516784 q^{16} - 2419562 q^{17} + 1926742 q^{18}+ \cdots - 906543916678 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{13}^{\mathrm{new}}(\Gamma_1(8))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
8.13.c \(\chi_{8}(7, \cdot)\) None 0 1
8.13.d \(\chi_{8}(3, \cdot)\) 8.13.d.a 1 1
8.13.d.b 10

Decomposition of \(S_{13}^{\mathrm{old}}(\Gamma_1(8))\) into lower level spaces

\( S_{13}^{\mathrm{old}}(\Gamma_1(8)) \cong \) \(S_{13}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{13}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{13}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)