Properties

Label 798.2.cj.b
Level $798$
Weight $2$
Character orbit 798.cj
Analytic conductor $6.372$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [798,2,Mod(241,798)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(798, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("798.241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.cj (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [84] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(14\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 84 q + 12 q^{7} - 12 q^{10} - 12 q^{11} + 84 q^{12} + 24 q^{13} + 6 q^{14} + 6 q^{19} - 6 q^{21} + 12 q^{22} - 42 q^{23} - 30 q^{25} + 42 q^{27} + 6 q^{28} + 6 q^{31} + 12 q^{33} - 30 q^{34} - 42 q^{35}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
241.1 −0.342020 + 0.939693i −0.766044 + 0.642788i −0.766044 0.642788i −2.65126 3.15965i −0.342020 0.939693i −2.64400 0.0962613i 0.866025 0.500000i 0.173648 0.984808i 3.87588 1.41071i
241.2 −0.342020 + 0.939693i −0.766044 + 0.642788i −0.766044 0.642788i −1.14708 1.36703i −0.342020 0.939693i 2.30387 + 1.30084i 0.866025 0.500000i 0.173648 0.984808i 1.67691 0.610346i
241.3 −0.342020 + 0.939693i −0.766044 + 0.642788i −0.766044 0.642788i −0.687355 0.819158i −0.342020 0.939693i −1.68696 + 2.03818i 0.866025 0.500000i 0.173648 0.984808i 1.00485 0.365734i
241.4 −0.342020 + 0.939693i −0.766044 + 0.642788i −0.766044 0.642788i 0.363191 + 0.432835i −0.342020 0.939693i 1.43186 2.22481i 0.866025 0.500000i 0.173648 0.984808i −0.530950 + 0.193250i
241.5 −0.342020 + 0.939693i −0.766044 + 0.642788i −0.766044 0.642788i 0.860786 + 1.02584i −0.342020 0.939693i 0.326418 + 2.62554i 0.866025 0.500000i 0.173648 0.984808i −1.25838 + 0.458014i
241.6 −0.342020 + 0.939693i −0.766044 + 0.642788i −0.766044 0.642788i 1.19350 + 1.42236i −0.342020 0.939693i −1.25603 2.32860i 0.866025 0.500000i 0.173648 0.984808i −1.74479 + 0.635050i
241.7 −0.342020 + 0.939693i −0.766044 + 0.642788i −0.766044 0.642788i 2.16291 + 2.57766i −0.342020 0.939693i −2.63218 + 0.267601i 0.866025 0.500000i 0.173648 0.984808i −3.16197 + 1.15086i
241.8 0.342020 0.939693i −0.766044 + 0.642788i −0.766044 0.642788i −2.62033 3.12278i 0.342020 + 0.939693i 1.89594 1.84537i −0.866025 + 0.500000i 0.173648 0.984808i −3.83066 + 1.39425i
241.9 0.342020 0.939693i −0.766044 + 0.642788i −0.766044 0.642788i −1.64471 1.96009i 0.342020 + 0.939693i −2.00395 1.72747i −0.866025 + 0.500000i 0.173648 0.984808i −2.40441 + 0.875134i
241.10 0.342020 0.939693i −0.766044 + 0.642788i −0.766044 0.642788i −1.39177 1.65864i 0.342020 + 0.939693i 1.22000 + 2.34768i −0.866025 + 0.500000i 0.173648 0.984808i −2.03463 + 0.740544i
241.11 0.342020 0.939693i −0.766044 + 0.642788i −0.766044 0.642788i −0.195288 0.232735i 0.342020 + 0.939693i 1.33464 + 2.28446i −0.866025 + 0.500000i 0.173648 0.984808i −0.285492 + 0.103911i
241.12 0.342020 0.939693i −0.766044 + 0.642788i −0.766044 0.642788i 0.367636 + 0.438132i 0.342020 + 0.939693i −2.61193 + 0.421719i −0.866025 + 0.500000i 0.173648 0.984808i 0.537448 0.195615i
241.13 0.342020 0.939693i −0.766044 + 0.642788i −0.766044 0.642788i 0.494314 + 0.589100i 0.342020 + 0.939693i 1.48242 2.19145i −0.866025 + 0.500000i 0.173648 0.984808i 0.722638 0.263019i
241.14 0.342020 0.939693i −0.766044 + 0.642788i −0.766044 0.642788i 2.66876 + 3.18050i 0.342020 + 0.939693i 2.61323 + 0.413530i −0.866025 + 0.500000i 0.173648 0.984808i 3.90147 1.42002i
409.1 −0.642788 0.766044i −0.173648 0.984808i −0.173648 + 0.984808i −2.99934 + 0.528865i −0.642788 + 0.766044i 2.53961 0.741884i 0.866025 0.500000i −0.939693 + 0.342020i 2.33307 + 1.95768i
409.2 −0.642788 0.766044i −0.173648 0.984808i −0.173648 + 0.984808i −1.67755 + 0.295797i −0.642788 + 0.766044i 0.711004 2.54843i 0.866025 0.500000i −0.939693 + 0.342020i 1.30490 + 1.09494i
409.3 −0.642788 0.766044i −0.173648 0.984808i −0.173648 + 0.984808i −0.933464 + 0.164595i −0.642788 + 0.766044i −2.24821 1.39484i 0.866025 0.500000i −0.939693 + 0.342020i 0.726106 + 0.609276i
409.4 −0.642788 0.766044i −0.173648 0.984808i −0.173648 + 0.984808i 0.400945 0.0706975i −0.642788 + 0.766044i −0.444783 + 2.60810i 0.866025 0.500000i −0.939693 + 0.342020i −0.311880 0.261698i
409.5 −0.642788 0.766044i −0.173648 0.984808i −0.173648 + 0.984808i 1.57868 0.278363i −0.642788 + 0.766044i 1.21184 + 2.35190i 0.866025 0.500000i −0.939693 + 0.342020i −1.22799 1.03041i
409.6 −0.642788 0.766044i −0.173648 0.984808i −0.173648 + 0.984808i 3.04553 0.537009i −0.642788 + 0.766044i −2.64029 0.169924i 0.866025 0.500000i −0.939693 + 0.342020i −2.36900 1.98783i
See all 84 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 241.14
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
133.bf even 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 798.2.cj.b yes 84
7.d odd 6 1 798.2.ca.b 84
19.f odd 18 1 798.2.ca.b 84
133.bf even 18 1 inner 798.2.cj.b yes 84
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
798.2.ca.b 84 7.d odd 6 1
798.2.ca.b 84 19.f odd 18 1
798.2.cj.b yes 84 1.a even 1 1 trivial
798.2.cj.b yes 84 133.bf even 18 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{84} + 15 T_{5}^{82} - 90 T_{5}^{81} + 213 T_{5}^{80} - 1680 T_{5}^{79} - 273 T_{5}^{78} + \cdots + 57\!\cdots\!96 \) acting on \(S_{2}^{\mathrm{new}}(798, [\chi])\). Copy content Toggle raw display