gp: [N,k,chi] = [798,2,Mod(241,798)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(798, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 3, 5]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("798.241");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [84]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{84} + 15 T_{5}^{82} - 90 T_{5}^{81} + 213 T_{5}^{80} - 1680 T_{5}^{79} - 273 T_{5}^{78} + \cdots + 57\!\cdots\!96 \)
T5^84 + 15*T5^82 - 90*T5^81 + 213*T5^80 - 1680*T5^79 - 273*T5^78 - 23454*T5^77 - 15258*T5^76 + 207270*T5^75 + 127338*T5^74 + 7728312*T5^73 + 10741496*T5^72 + 95937294*T5^71 - 537507*T5^70 - 819356358*T5^69 - 2409974379*T5^68 - 23770224924*T5^67 - 25212051844*T5^66 - 190023581262*T5^65 + 252903740559*T5^64 + 1733507358714*T5^63 + 7436656199439*T5^62 + 35471513511720*T5^61 + 60710749655737*T5^60 + 200789237643900*T5^59 - 254458280865759*T5^58 - 2220573500012526*T5^57 - 8994276637483020*T5^56 - 30837205975210272*T5^55 - 48576988105895494*T5^54 - 79057165145785014*T5^53 + 406248062757642642*T5^52 + 1801544211515820276*T5^51 + 6022963295560174638*T5^50 + 11242073594095815978*T5^49 + 12777588984977888853*T5^48 - 6795525437680760622*T5^47 - 121959243244520366100*T5^46 - 361175668924047969498*T5^45 - 557948333347755642336*T5^44 + 182870806375738242732*T5^43 + 1914380956500307399980*T5^42 + 1688663273186541493188*T5^41 - 1597656147869041424877*T5^40 + 2199871770672508519002*T5^39 + 34901218059222295559847*T5^38 + 54862362638063600112114*T5^37 - 44932470172378839916675*T5^36 - 236027689961466081904308*T5^35 - 215895454262425682752419*T5^34 + 224514027741227019168384*T5^33 + 323274203429378533039518*T5^32 - 396191764726127092307352*T5^31 - 451497195872051718910792*T5^30 + 1437186700579184848918662*T5^29 + 2647514689778837635696515*T5^28 - 966762314171617914185874*T5^27 - 1996064264846980733210535*T5^26 + 3548360063735361028335846*T5^25 + 738494911569234234903447*T5^24 - 8244015797933230581221532*T5^23 - 3856896139187588403281469*T5^22 + 7203369747583347436235070*T5^21 + 3535532306992349908577436*T5^20 - 5106928040090971310248716*T5^19 - 73212687472179264620052*T5^18 + 4509652051021118288640090*T5^17 + 615899531075383074263235*T5^16 - 598318941212023713752724*T5^15 + 271505573733989987042106*T5^14 + 266402877070640518612320*T5^13 + 235409029395662433007441*T5^12 - 61905598223634586418256*T5^11 - 64232922363608590612128*T5^10 + 37878131463559723070208*T5^9 + 4374057801302421590016*T5^8 - 6778115883558378624384*T5^7 - 825839206970574434688*T5^6 - 40841090298276756480*T5^5 + 213146495180987397120*T5^4 + 1284069336689590272*T5^3 + 19000664488869590016*T5^2 + 1108607360361357312*T5 + 575233757691088896
acting on \(S_{2}^{\mathrm{new}}(798, [\chi])\).