gp: [N,k,chi] = [798,2,Mod(317,798)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(798, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 6, 5]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("798.317");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [162,0,0,0,0,0,0,81]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{162} - 6 T_{5}^{160} - 18 T_{5}^{159} - 36 T_{5}^{158} + 12 T_{5}^{157} - 13004 T_{5}^{156} + \cdots + 56\!\cdots\!68 \)
T5^162 - 6*T5^160 - 18*T5^159 - 36*T5^158 + 12*T5^157 - 13004*T5^156 + 1314*T5^155 + 85980*T5^154 + 238932*T5^153 + 387831*T5^152 - 168534*T5^151 + 111984507*T5^150 - 10797594*T5^149 - 851175288*T5^148 - 1959037914*T5^147 - 4409545803*T5^146 + 3923021316*T5^145 - 529067999700*T5^144 + 113624531196*T5^143 + 4523842361991*T5^142 + 8828102213646*T5^141 + 23699032776498*T5^140 - 32664880329846*T5^139 + 1798871074279744*T5^138 - 380469508100028*T5^137 - 17301426773495481*T5^136 - 26899253017543818*T5^135 - 82450792849208877*T5^134 + 146614265313077394*T5^133 - 3715937608093786704*T5^132 + 959712770563097124*T5^131 + 41474118585208885554*T5^130 + 47227656544481479566*T5^129 + 116059452862294668777*T5^128 - 352581999879664379268*T5^127 + 5981137570174938751265*T5^126 - 556943555288305150728*T5^125 - 61380397398281028773667*T5^124 - 46761860822133120046248*T5^123 - 122729506448970308731611*T5^122 + 464725091095897236847374*T5^121 - 6928419376848978792578027*T5^120 - 236140484762166879346992*T5^119 + 62529383154409730692030047*T5^118 + 25620483065576954692242138*T5^117 + 79982061835671953747278401*T5^116 - 358082263087150911990206238*T5^115 + 6102519167919206533965549606*T5^114 + 305822865511197452332627236*T5^113 - 38906962794598670910662411436*T5^112 + 6361400153064692445127351620*T5^111 - 57142130744429306429338235148*T5^110 + 196236194229805910930016506412*T5^109 - 3315070200053412084959477709400*T5^108 + 150672205687682983650534671832*T5^107 + 13764227878350968860178140507539*T5^106 - 9339813529842702807397838157048*T5^105 + 36408975891652586151842788640232*T5^104 - 107536611890530456701423251862018*T5^103 + 1315909839143670642876080065023939*T5^102 - 92182805847284910066461477852184*T5^101 - 2156028579134071250017652813222571*T5^100 + 3960764405561015827000278752310744*T5^99 - 3259026157843386621688289459762352*T5^98 + 42911863997221041290131783570067478*T5^97 - 295703037763245762615525150000803277*T5^96 + 78244211787091694226006228121895190*T5^95 + 253213678589806130215340101169875833*T5^94 - 617391314053241494423186941318261024*T5^93 + 135001166752808959368561503650683153*T5^92 - 9832086518006293110790435115068955892*T5^91 + 48152945716438720776958496516013305707*T5^90 - 20528656822455727034910371934997225524*T5^89 - 2732048878083806824314403024115597232*T5^88 - 3994274423710740055048152264509056158*T5^87 + 201313000960780655755777763138421814464*T5^86 + 1095570119388838641151227200084678901732*T5^85 - 4330395006196097507015850882223071839964*T5^84 + 959487579247817291137697384074676512140*T5^83 + 1403471861672526669317458682512657892316*T5^82 + 4010824390735942275075264294074704249314*T5^81 - 19576487163245495584079366693504879789679*T5^80 - 93217339707674164939052716437977112927648*T5^79 + 267921868770004607591862964331872029386254*T5^78 + 54049528303682876946156747199411126603968*T5^77 - 226355191242347780820213891306598775428407*T5^76 - 370783751255731298232876658382684294008536*T5^75 + 1177229633498593881445921459275118146927927*T5^74 + 5144105739887758258955580828503200321576698*T5^73 - 9321687981013562839196475483171370561345933*T5^72 - 10195191104568406280269836305135288132865816*T5^71 + 12840489573169229788735898810309990919316761*T5^70 + 29433699904842651470667834858686928147814836*T5^69 - 38077577244270632150224414022303575339014024*T5^68 - 174968963167624487384674817804663129770523034*T5^67 + 177165966323054141164392326680040268455274303*T5^66 + 385568590804219378205159262874753712942597460*T5^65 - 164699893105740447383477610252334828647705087*T5^64 - 809586319883420632368999572794279310025724596*T5^63 + 427747800638371891653310936692509069613873003*T5^62 + 3040516611138657737104830871015741349083362234*T5^61 - 2173415427827358988992497089895066518457080994*T5^60 - 5795781567045887589706175723902485189852317640*T5^59 + 3909028051398582706327884416319744203590348926*T5^58 + 6877977816887399021796585665636912196369142848*T5^57 - 12131928099870035266048634346049450030842808863*T5^56 - 15550132362095633747312525824027452215547690984*T5^55 + 36693585772677534596636960380251344898619289038*T5^54 + 20097854363036086283217703882600942379433212502*T5^53 - 50736730769006149286430049623211958972237061273*T5^52 + 11856863635897951110997836476628905450298339246*T5^51 + 58897749125170188247064459866691307486521206533*T5^50 - 47611641821514813831409152122577352653146874984*T5^49 - 92641732447849123973635664098958966564203961421*T5^48 + 55729159150602772460310180659264777000672383920*T5^47 + 68506419028872907100888144772424723653712338045*T5^46 - 93635881628100161667059586283972183681822970844*T5^45 + 1937431177446572117371592156275660470156315465*T5^44 + 122299366208906241533429113151130121116476651922*T5^43 + 7132117262764088744275363826284569981169227979*T5^42 - 67962934742111113931381470049299789639877877636*T5^41 + 16225574997029872150386431654673869673189089943*T5^40 + 44450855006014992853670878685123702522673193362*T5^39 - 70947537897138180201056846490142187690814168243*T5^38 - 54162103522555986470557430742125837746553378196*T5^37 + 20081356750398307395610029189714583638297719418*T5^36 + 3581188747210668250972852589869571850857036010*T5^35 - 1317121067481283522979779480479256702030606287*T5^34 + 9695100592068849997680567175603441474800144402*T5^33 + 31014095362917855269730651908750295926565273837*T5^32 + 14295315037616780839975237398984062769660288426*T5^31 - 3197396912291618173115967320921931990831330798*T5^30 + 1305497268421809005855100322948402272008583900*T5^29 - 1635913092234695715945425504247134373268509222*T5^28 + 319980542411430270522713895636685116424026726*T5^27 - 3865600725618988949528514618303649364638934154*T5^26 - 609235623558495529772745351253582952805473982*T5^25 + 2361388072340660009361221289289905644418949383*T5^24 - 826734258821904999817311610870863615101018946*T5^23 + 167543572696273170451398807307249589669033610*T5^22 - 92935761448643219805975062796865943537567370*T5^21 + 66530067987883522221089109302728753253472741*T5^20 - 1334870830763006867261334890881600014045432*T5^19 - 7480719957197131164998823590801313434530011*T5^18 + 79206940090063337946632217652425110433486*T5^17 - 298055174779766279236924417994806932542817*T5^16 + 328793308939120459469322771282716538575400*T5^15 - 139512192370725345897189463729672668003036*T5^14 + 4904103244404629754335542075162617039804*T5^13 + 15687585747349525225050770807626657925187*T5^12 - 2476078858146988593091700922622721634702*T5^11 + 1539782059125087835426925093469891469644*T5^10 - 186328424637590385548123814793001645952*T5^9 + 158115001132771971047809308292015714635*T5^8 - 23194943579555112824982172448841580308*T5^7 + 1319165205573643700110767863822404773*T5^6 - 1897053578598586319926562885589002106*T5^5 + 78473105793304825640597157517222392*T5^4 - 5843034911806398782243982171080712*T5^3 + 7599293146376039621041622769875472*T5^2 + 388508741195462549864476927300800*T5 + 56673867154103092985137287576768
acting on \(S_{2}^{\mathrm{new}}(798, [\chi])\).