Properties

Label 798.2.cc.b
Level $798$
Weight $2$
Character orbit 798.cc
Analytic conductor $6.372$
Analytic rank $0$
Dimension $162$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [798,2,Mod(317,798)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(798, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 6, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("798.317"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.cc (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [162,0,0,0,0,0,0,81] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(162\)
Relative dimension: \(27\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 162 q + 81 q^{8} + 15 q^{13} - 9 q^{14} + 3 q^{15} - 12 q^{17} + 18 q^{18} - 36 q^{19} - 6 q^{22} + 12 q^{25} + 9 q^{27} - 12 q^{28} - 6 q^{29} - 12 q^{33} + 6 q^{34} + 12 q^{35} - 18 q^{37} - 9 q^{39}+ \cdots + 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
317.1 −0.173648 0.984808i −1.66333 0.483049i −0.939693 + 0.342020i 0.727990 2.00013i −0.186877 + 1.72194i −2.16840 1.51592i 0.500000 + 0.866025i 2.53333 + 1.60694i −2.09616 0.369610i
317.2 −0.173648 0.984808i −1.63247 0.578829i −0.939693 + 0.342020i 0.104841 0.288049i −0.286560 + 1.70818i 2.04725 1.67593i 0.500000 + 0.866025i 2.32991 + 1.88984i −0.301878 0.0532293i
317.3 −0.173648 0.984808i −1.59272 + 0.680625i −0.939693 + 0.342020i 0.424869 1.16732i 0.946857 + 1.45033i 0.842300 + 2.50809i 0.500000 + 0.866025i 2.07350 2.16809i −1.22336 0.215712i
317.4 −0.173648 0.984808i −1.56298 + 0.746396i −0.939693 + 0.342020i 0.834649 2.29318i 1.00646 + 1.40962i 1.57431 2.12639i 0.500000 + 0.866025i 1.88578 2.33320i −2.40328 0.423763i
317.5 −0.173648 0.984808i −1.55093 + 0.771120i −0.939693 + 0.342020i −1.48651 + 4.08415i 1.02872 + 1.39346i 1.98637 1.74766i 0.500000 + 0.866025i 1.81075 2.39190i 4.28024 + 0.754721i
317.6 −0.173648 0.984808i −1.52684 0.817784i −0.939693 + 0.342020i −1.22401 + 3.36293i −0.540228 + 1.64565i −2.57164 + 0.621829i 0.500000 + 0.866025i 1.66246 + 2.49725i 3.52438 + 0.621444i
317.7 −0.173648 0.984808i −1.28388 1.16261i −0.939693 + 0.342020i 1.12250 3.08403i −0.922003 + 1.46626i −1.00637 + 2.44688i 0.500000 + 0.866025i 0.296682 + 2.98529i −3.23210 0.569906i
317.8 −0.173648 0.984808i −1.16044 + 1.28583i −0.939693 + 0.342020i −0.749562 + 2.05941i 1.46781 + 0.919531i −1.89892 + 1.84231i 0.500000 + 0.866025i −0.306742 2.98428i 2.15828 + 0.380563i
317.9 −0.173648 0.984808i −0.850014 1.50913i −0.939693 + 0.342020i −0.726838 + 1.99697i −1.33860 + 1.09916i 2.31032 1.28935i 0.500000 + 0.866025i −1.55495 + 2.56557i 2.09285 + 0.369026i
317.10 −0.173648 0.984808i −0.807441 + 1.53233i −0.939693 + 0.342020i −0.0331429 + 0.0910594i 1.64926 + 0.529087i −1.96662 1.76986i 0.500000 + 0.866025i −1.69608 2.47453i 0.0954312 + 0.0168271i
317.11 −0.173648 0.984808i −0.593593 1.62716i −0.939693 + 0.342020i −0.662980 + 1.82152i −1.49936 + 0.867129i −1.38490 2.25434i 0.500000 + 0.866025i −2.29529 + 1.93174i 1.90898 + 0.336604i
317.12 −0.173648 0.984808i −0.560498 1.63885i −0.939693 + 0.342020i −0.0666847 + 0.183215i −1.51663 + 0.836567i 1.64561 + 2.07170i 0.500000 + 0.866025i −2.37168 + 1.83715i 0.192011 + 0.0338567i
317.13 −0.173648 0.984808i −0.218213 + 1.71825i −0.939693 + 0.342020i 0.282752 0.776854i 1.73004 0.0834729i 2.59722 + 0.504428i 0.500000 + 0.866025i −2.90477 0.749890i −0.814151 0.143557i
317.14 −0.173648 0.984808i −0.0146433 + 1.73199i −0.939693 + 0.342020i 1.33157 3.65844i 1.70822 0.286336i −1.16329 + 2.37629i 0.500000 + 0.866025i −2.99957 0.0507239i −3.83409 0.676053i
317.15 −0.173648 0.984808i 0.0195594 1.73194i −0.939693 + 0.342020i 1.17404 3.22564i −1.70902 + 0.281486i 2.53058 + 0.772120i 0.500000 + 0.866025i −2.99923 0.0677514i −3.38050 0.596074i
317.16 −0.173648 0.984808i 0.291399 + 1.70736i −0.939693 + 0.342020i −0.687483 + 1.88884i 1.63082 0.583453i −0.708845 2.54903i 0.500000 + 0.866025i −2.83017 + 0.995048i 1.97953 + 0.349044i
317.17 −0.173648 0.984808i 0.687834 1.58962i −0.939693 + 0.342020i 0.890265 2.44598i −1.68491 0.401350i −2.59902 0.495088i 0.500000 + 0.866025i −2.05377 2.18679i −2.56342 0.452000i
317.18 −0.173648 0.984808i 0.983012 1.42607i −0.939693 + 0.342020i −0.835832 + 2.29643i −1.57511 0.720442i 1.05193 + 2.42764i 0.500000 + 0.866025i −1.06738 2.80370i 2.40668 + 0.424363i
317.19 −0.173648 0.984808i 1.07604 + 1.35726i −0.939693 + 0.342020i 0.303001 0.832489i 1.14978 1.29538i −2.63559 + 0.231649i 0.500000 + 0.866025i −0.684287 + 2.92092i −0.872457 0.153838i
317.20 −0.173648 0.984808i 1.11980 + 1.32138i −0.939693 + 0.342020i −0.0590761 + 0.162310i 1.10686 1.33224i 2.55580 0.684024i 0.500000 + 0.866025i −0.492096 + 2.95937i 0.170103 + 0.0299937i
See next 80 embeddings (of 162 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 317.27
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
399.bv even 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 798.2.cc.b yes 162
3.b odd 2 1 798.2.cc.a yes 162
7.c even 3 1 798.2.bu.b yes 162
19.f odd 18 1 798.2.bu.a 162
21.h odd 6 1 798.2.bu.a 162
57.j even 18 1 798.2.bu.b yes 162
133.bd odd 18 1 798.2.cc.a yes 162
399.bv even 18 1 inner 798.2.cc.b yes 162
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
798.2.bu.a 162 19.f odd 18 1
798.2.bu.a 162 21.h odd 6 1
798.2.bu.b yes 162 7.c even 3 1
798.2.bu.b yes 162 57.j even 18 1
798.2.cc.a yes 162 3.b odd 2 1
798.2.cc.a yes 162 133.bd odd 18 1
798.2.cc.b yes 162 1.a even 1 1 trivial
798.2.cc.b yes 162 399.bv even 18 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{162} - 6 T_{5}^{160} - 18 T_{5}^{159} - 36 T_{5}^{158} + 12 T_{5}^{157} - 13004 T_{5}^{156} + \cdots + 56\!\cdots\!68 \) acting on \(S_{2}^{\mathrm{new}}(798, [\chi])\). Copy content Toggle raw display