Properties

Label 792.2.r.f.289.1
Level $792$
Weight $2$
Character 792.289
Analytic conductor $6.324$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(289,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.r (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,1,0,-5,0,0,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.185640625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + x^{6} + x^{5} + 4x^{4} + 3x^{3} + 9x^{2} - 81x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 264)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 289.1
Root \(-0.245684 - 1.71454i\) of defining polynomial
Character \(\chi\) \(=\) 792.289
Dual form 792.2.r.f.433.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.95223 - 1.41838i) q^{5} +(-1.46086 + 4.49606i) q^{7} +(-0.960858 - 3.17439i) q^{11} +(4.86531 - 3.53486i) q^{13} +(0.720508 + 0.523480i) q^{17} +(-1.02419 - 3.15214i) q^{19} -0.204948 q^{23} +(0.254316 + 0.782703i) q^{25} +(2.95756 - 9.10244i) q^{29} +(7.37928 - 5.36136i) q^{31} +(9.22903 - 6.70528i) q^{35} +(0.445299 - 1.37049i) q^{37} +(-1.09445 - 3.36838i) q^{41} -7.79505 q^{43} +(2.83419 + 8.72275i) q^{47} +(-12.4173 - 9.02172i) q^{49} +(-3.76124 + 2.73270i) q^{53} +(-2.62667 + 7.55999i) q^{55} +(0.305720 - 0.940910i) q^{59} +(-5.20386 - 3.78082i) q^{61} -14.5120 q^{65} +6.17505 q^{67} +(5.50435 + 3.99914i) q^{71} +(1.19363 - 3.67361i) q^{73} +(15.6759 + 0.317257i) q^{77} +(3.67274 - 2.66840i) q^{79} +(-8.08582 - 5.87469i) q^{83} +(-0.664104 - 2.04390i) q^{85} +0.930414 q^{89} +(8.78539 + 27.0387i) q^{91} +(-2.47146 + 7.60637i) q^{95} +(-2.36531 + 1.71850i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{5} - 5 q^{7} - q^{11} - q^{13} + 4 q^{17} - 2 q^{19} - 16 q^{23} + 7 q^{25} + 7 q^{29} + 29 q^{31} + 20 q^{35} + 13 q^{37} + 23 q^{41} - 48 q^{43} + 15 q^{47} - 11 q^{49} - 9 q^{53} - 22 q^{55}+ \cdots + 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.95223 1.41838i −0.873063 0.634317i 0.0583444 0.998297i \(-0.481418\pi\)
−0.931407 + 0.363979i \(0.881418\pi\)
\(6\) 0 0
\(7\) −1.46086 + 4.49606i −0.552153 + 1.69935i 0.151194 + 0.988504i \(0.451688\pi\)
−0.703347 + 0.710847i \(0.748312\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.960858 3.17439i −0.289710 0.957115i
\(12\) 0 0
\(13\) 4.86531 3.53486i 1.34940 0.980393i 0.350354 0.936617i \(-0.386061\pi\)
0.999041 0.0437754i \(-0.0139386\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.720508 + 0.523480i 0.174749 + 0.126963i 0.671722 0.740804i \(-0.265555\pi\)
−0.496973 + 0.867766i \(0.665555\pi\)
\(18\) 0 0
\(19\) −1.02419 3.15214i −0.234966 0.723149i −0.997126 0.0757613i \(-0.975861\pi\)
0.762160 0.647388i \(-0.224139\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.204948 −0.0427347 −0.0213673 0.999772i \(-0.506802\pi\)
−0.0213673 + 0.999772i \(0.506802\pi\)
\(24\) 0 0
\(25\) 0.254316 + 0.782703i 0.0508631 + 0.156541i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.95756 9.10244i 0.549205 1.69028i −0.161570 0.986861i \(-0.551656\pi\)
0.710775 0.703419i \(-0.248344\pi\)
\(30\) 0 0
\(31\) 7.37928 5.36136i 1.32536 0.962929i 0.325509 0.945539i \(-0.394464\pi\)
0.999849 0.0173896i \(-0.00553554\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.22903 6.70528i 1.55999 1.13340i
\(36\) 0 0
\(37\) 0.445299 1.37049i 0.0732066 0.225307i −0.907758 0.419495i \(-0.862207\pi\)
0.980964 + 0.194188i \(0.0622072\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.09445 3.36838i −0.170925 0.526052i 0.828499 0.559990i \(-0.189195\pi\)
−0.999424 + 0.0339380i \(0.989195\pi\)
\(42\) 0 0
\(43\) −7.79505 −1.18873 −0.594367 0.804194i \(-0.702597\pi\)
−0.594367 + 0.804194i \(0.702597\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.83419 + 8.72275i 0.413410 + 1.27234i 0.913666 + 0.406466i \(0.133239\pi\)
−0.500256 + 0.865877i \(0.666761\pi\)
\(48\) 0 0
\(49\) −12.4173 9.02172i −1.77390 1.28882i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.76124 + 2.73270i −0.516647 + 0.375366i −0.815339 0.578984i \(-0.803450\pi\)
0.298693 + 0.954349i \(0.403450\pi\)
\(54\) 0 0
\(55\) −2.62667 + 7.55999i −0.354179 + 1.01939i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.305720 0.940910i 0.0398014 0.122496i −0.929182 0.369624i \(-0.879487\pi\)
0.968983 + 0.247127i \(0.0794867\pi\)
\(60\) 0 0
\(61\) −5.20386 3.78082i −0.666285 0.484085i 0.202494 0.979283i \(-0.435095\pi\)
−0.868780 + 0.495199i \(0.835095\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −14.5120 −1.79999
\(66\) 0 0
\(67\) 6.17505 0.754402 0.377201 0.926131i \(-0.376887\pi\)
0.377201 + 0.926131i \(0.376887\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.50435 + 3.99914i 0.653246 + 0.474611i 0.864375 0.502847i \(-0.167714\pi\)
−0.211129 + 0.977458i \(0.567714\pi\)
\(72\) 0 0
\(73\) 1.19363 3.67361i 0.139704 0.429964i −0.856588 0.516001i \(-0.827420\pi\)
0.996292 + 0.0860366i \(0.0274202\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 15.6759 + 0.317257i 1.78644 + 0.0361548i
\(78\) 0 0
\(79\) 3.67274 2.66840i 0.413215 0.300218i −0.361687 0.932300i \(-0.617799\pi\)
0.774902 + 0.632081i \(0.217799\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.08582 5.87469i −0.887534 0.644831i 0.0476997 0.998862i \(-0.484811\pi\)
−0.935234 + 0.354030i \(0.884811\pi\)
\(84\) 0 0
\(85\) −0.664104 2.04390i −0.0720322 0.221692i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.930414 0.0986237 0.0493119 0.998783i \(-0.484297\pi\)
0.0493119 + 0.998783i \(0.484297\pi\)
\(90\) 0 0
\(91\) 8.78539 + 27.0387i 0.920960 + 2.83442i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.47146 + 7.60637i −0.253566 + 0.780397i
\(96\) 0 0
\(97\) −2.36531 + 1.71850i −0.240161 + 0.174487i −0.701355 0.712812i \(-0.747421\pi\)
0.461194 + 0.887299i \(0.347421\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.9399 7.94832i 1.08856 0.790887i 0.109407 0.993997i \(-0.465105\pi\)
0.979156 + 0.203110i \(0.0651048\pi\)
\(102\) 0 0
\(103\) 3.96718 12.2097i 0.390898 1.20306i −0.541213 0.840886i \(-0.682035\pi\)
0.932111 0.362174i \(-0.117965\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.03051 + 9.32695i 0.292971 + 0.901671i 0.983896 + 0.178744i \(0.0572034\pi\)
−0.690925 + 0.722926i \(0.742797\pi\)
\(108\) 0 0
\(109\) 10.5344 1.00901 0.504505 0.863409i \(-0.331675\pi\)
0.504505 + 0.863409i \(0.331675\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.221117 + 0.680529i 0.0208010 + 0.0640188i 0.960918 0.276833i \(-0.0892847\pi\)
−0.940117 + 0.340851i \(0.889285\pi\)
\(114\) 0 0
\(115\) 0.400106 + 0.290694i 0.0373101 + 0.0271073i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.40616 + 2.47472i −0.312242 + 0.226857i
\(120\) 0 0
\(121\) −9.15350 + 6.10028i −0.832137 + 0.554571i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.11474 + 9.58618i −0.278591 + 0.857414i
\(126\) 0 0
\(127\) −0.536562 0.389835i −0.0476122 0.0345923i 0.563725 0.825963i \(-0.309368\pi\)
−0.611337 + 0.791371i \(0.709368\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.41309 −0.123462 −0.0617309 0.998093i \(-0.519662\pi\)
−0.0617309 + 0.998093i \(0.519662\pi\)
\(132\) 0 0
\(133\) 15.6684 1.35862
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.57889 + 2.60022i 0.305765 + 0.222152i 0.730077 0.683365i \(-0.239484\pi\)
−0.424312 + 0.905516i \(0.639484\pi\)
\(138\) 0 0
\(139\) −3.62068 + 11.1433i −0.307102 + 0.945163i 0.671782 + 0.740749i \(0.265529\pi\)
−0.978884 + 0.204414i \(0.934471\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −15.8959 12.0479i −1.32928 1.00750i
\(144\) 0 0
\(145\) −18.6845 + 13.5751i −1.55166 + 1.12735i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −14.0745 10.2257i −1.15303 0.837724i −0.164148 0.986436i \(-0.552487\pi\)
−0.988881 + 0.148712i \(0.952487\pi\)
\(150\) 0 0
\(151\) −0.653879 2.01243i −0.0532119 0.163769i 0.920919 0.389754i \(-0.127440\pi\)
−0.974131 + 0.225985i \(0.927440\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −22.0105 −1.76792
\(156\) 0 0
\(157\) −0.988113 3.04110i −0.0788600 0.242706i 0.903853 0.427844i \(-0.140727\pi\)
−0.982713 + 0.185138i \(0.940727\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.299400 0.921460i 0.0235961 0.0726212i
\(162\) 0 0
\(163\) −3.36966 + 2.44820i −0.263932 + 0.191758i −0.711879 0.702302i \(-0.752155\pi\)
0.447947 + 0.894060i \(0.352155\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −13.7263 + 9.97277i −1.06218 + 0.771716i −0.974490 0.224432i \(-0.927947\pi\)
−0.0876866 + 0.996148i \(0.527947\pi\)
\(168\) 0 0
\(169\) 7.15884 22.0326i 0.550680 1.69482i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.75652 + 23.8721i 0.589717 + 1.81496i 0.579439 + 0.815016i \(0.303272\pi\)
0.0102785 + 0.999947i \(0.496728\pi\)
\(174\) 0 0
\(175\) −3.89060 −0.294101
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.577907 1.77861i −0.0431948 0.132940i 0.927133 0.374731i \(-0.122265\pi\)
−0.970328 + 0.241791i \(0.922265\pi\)
\(180\) 0 0
\(181\) 10.7418 + 7.80440i 0.798434 + 0.580097i 0.910454 0.413609i \(-0.135732\pi\)
−0.112020 + 0.993706i \(0.535732\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.81319 + 2.04390i −0.206830 + 0.150271i
\(186\) 0 0
\(187\) 0.969423 2.79016i 0.0708912 0.204037i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.36702 7.28492i 0.171271 0.527119i −0.828172 0.560473i \(-0.810619\pi\)
0.999444 + 0.0333549i \(0.0106192\pi\)
\(192\) 0 0
\(193\) −12.2193 8.87785i −0.879565 0.639041i 0.0535714 0.998564i \(-0.482940\pi\)
−0.933136 + 0.359523i \(0.882940\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.48280 −0.461881 −0.230940 0.972968i \(-0.574180\pi\)
−0.230940 + 0.972968i \(0.574180\pi\)
\(198\) 0 0
\(199\) 7.03322 0.498572 0.249286 0.968430i \(-0.419804\pi\)
0.249286 + 0.968430i \(0.419804\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 36.6045 + 26.5947i 2.56913 + 1.86659i
\(204\) 0 0
\(205\) −2.64101 + 8.12818i −0.184456 + 0.567697i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.02200 + 6.27994i −0.624065 + 0.434392i
\(210\) 0 0
\(211\) −4.47037 + 3.24791i −0.307753 + 0.223595i −0.730932 0.682451i \(-0.760914\pi\)
0.423179 + 0.906046i \(0.360914\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 15.2177 + 11.0563i 1.03784 + 0.754034i
\(216\) 0 0
\(217\) 13.3249 + 41.0099i 0.904554 + 2.78393i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.35592 0.360278
\(222\) 0 0
\(223\) −2.59911 7.99924i −0.174049 0.535669i 0.825539 0.564344i \(-0.190871\pi\)
−0.999589 + 0.0286757i \(0.990871\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.35570 10.3278i 0.222725 0.685478i −0.775789 0.630992i \(-0.782648\pi\)
0.998515 0.0544860i \(-0.0173520\pi\)
\(228\) 0 0
\(229\) −18.3090 + 13.3022i −1.20989 + 0.879037i −0.995221 0.0976492i \(-0.968868\pi\)
−0.214670 + 0.976687i \(0.568868\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.995718 0.723431i 0.0652316 0.0473936i −0.554692 0.832056i \(-0.687164\pi\)
0.619923 + 0.784662i \(0.287164\pi\)
\(234\) 0 0
\(235\) 6.83915 21.0487i 0.446137 1.37307i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.11205 9.57790i −0.201302 0.619543i −0.999845 0.0176057i \(-0.994396\pi\)
0.798543 0.601937i \(-0.205604\pi\)
\(240\) 0 0
\(241\) −4.56095 −0.293797 −0.146898 0.989152i \(-0.546929\pi\)
−0.146898 + 0.989152i \(0.546929\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 11.4453 + 35.2249i 0.731211 + 2.25044i
\(246\) 0 0
\(247\) −16.1254 11.7158i −1.02603 0.745456i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5.46032 + 3.96715i −0.344652 + 0.250404i −0.746622 0.665248i \(-0.768326\pi\)
0.401970 + 0.915653i \(0.368326\pi\)
\(252\) 0 0
\(253\) 0.196926 + 0.650586i 0.0123807 + 0.0409020i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.67213 5.14628i 0.104304 0.321016i −0.885262 0.465092i \(-0.846021\pi\)
0.989567 + 0.144076i \(0.0460211\pi\)
\(258\) 0 0
\(259\) 5.51128 + 4.00418i 0.342454 + 0.248807i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 22.3831 1.38020 0.690101 0.723713i \(-0.257566\pi\)
0.690101 + 0.723713i \(0.257566\pi\)
\(264\) 0 0
\(265\) 11.2188 0.689166
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −18.9163 13.7435i −1.15335 0.837958i −0.164427 0.986389i \(-0.552578\pi\)
−0.988923 + 0.148432i \(0.952578\pi\)
\(270\) 0 0
\(271\) −5.37163 + 16.5322i −0.326303 + 1.00426i 0.644545 + 0.764566i \(0.277047\pi\)
−0.970849 + 0.239693i \(0.922953\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.24024 1.55936i 0.135092 0.0940331i
\(276\) 0 0
\(277\) 7.50149 5.45015i 0.450721 0.327468i −0.339160 0.940729i \(-0.610143\pi\)
0.789880 + 0.613261i \(0.210143\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.09533 + 2.97543i 0.244307 + 0.177499i 0.703200 0.710992i \(-0.251754\pi\)
−0.458893 + 0.888492i \(0.651754\pi\)
\(282\) 0 0
\(283\) −2.88522 8.87980i −0.171509 0.527849i 0.827948 0.560805i \(-0.189508\pi\)
−0.999457 + 0.0329553i \(0.989508\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 16.7433 0.988324
\(288\) 0 0
\(289\) −5.00819 15.4136i −0.294599 0.906683i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.70352 5.24290i 0.0995207 0.306293i −0.888885 0.458131i \(-0.848519\pi\)
0.988405 + 0.151838i \(0.0485191\pi\)
\(294\) 0 0
\(295\) −1.93140 + 1.40324i −0.112450 + 0.0817000i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.997138 + 0.724463i −0.0576660 + 0.0418968i
\(300\) 0 0
\(301\) 11.3875 35.0470i 0.656363 2.02008i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.79648 + 14.7620i 0.274646 + 0.845272i
\(306\) 0 0
\(307\) −18.5988 −1.06149 −0.530745 0.847532i \(-0.678088\pi\)
−0.530745 + 0.847532i \(0.678088\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.76813 30.0632i −0.553900 1.70473i −0.698831 0.715287i \(-0.746296\pi\)
0.144931 0.989442i \(-0.453704\pi\)
\(312\) 0 0
\(313\) 13.3046 + 9.66638i 0.752022 + 0.546376i 0.896453 0.443139i \(-0.146135\pi\)
−0.144431 + 0.989515i \(0.546135\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 21.4189 15.5618i 1.20301 0.874035i 0.208429 0.978037i \(-0.433165\pi\)
0.994577 + 0.104002i \(0.0331649\pi\)
\(318\) 0 0
\(319\) −31.7365 0.642299i −1.77690 0.0359619i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.912141 2.80728i 0.0507529 0.156201i
\(324\) 0 0
\(325\) 4.00407 + 2.90912i 0.222106 + 0.161369i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −43.3584 −2.39042
\(330\) 0 0
\(331\) −18.4301 −1.01301 −0.506506 0.862237i \(-0.669063\pi\)
−0.506506 + 0.862237i \(0.669063\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −12.0551 8.75854i −0.658640 0.478530i
\(336\) 0 0
\(337\) −0.106081 + 0.326483i −0.00577858 + 0.0177847i −0.953904 0.300111i \(-0.902976\pi\)
0.948126 + 0.317896i \(0.102976\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −24.1095 18.2732i −1.30560 0.989549i
\(342\) 0 0
\(343\) 31.9301 23.1986i 1.72406 1.25260i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.17807 5.21517i −0.385339 0.279965i 0.378204 0.925722i \(-0.376542\pi\)
−0.763543 + 0.645757i \(0.776542\pi\)
\(348\) 0 0
\(349\) 10.6415 + 32.7513i 0.569629 + 1.75314i 0.653780 + 0.756685i \(0.273182\pi\)
−0.0841506 + 0.996453i \(0.526818\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 35.5171 1.89039 0.945193 0.326513i \(-0.105874\pi\)
0.945193 + 0.326513i \(0.105874\pi\)
\(354\) 0 0
\(355\) −5.07345 15.6145i −0.269271 0.828730i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.00659 + 18.4864i −0.317016 + 0.975675i 0.657901 + 0.753105i \(0.271445\pi\)
−0.974917 + 0.222570i \(0.928555\pi\)
\(360\) 0 0
\(361\) 6.48433 4.71114i 0.341281 0.247955i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.54080 + 5.47871i −0.394704 + 0.286769i
\(366\) 0 0
\(367\) −4.12228 + 12.6871i −0.215181 + 0.662259i 0.783960 + 0.620812i \(0.213197\pi\)
−0.999141 + 0.0414473i \(0.986803\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −6.79175 20.9029i −0.352610 1.08522i
\(372\) 0 0
\(373\) 19.4513 1.00715 0.503576 0.863951i \(-0.332017\pi\)
0.503576 + 0.863951i \(0.332017\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −17.7864 54.7408i −0.916044 2.81929i
\(378\) 0 0
\(379\) 19.9382 + 14.4860i 1.02416 + 0.744094i 0.967131 0.254279i \(-0.0818380\pi\)
0.0570266 + 0.998373i \(0.481838\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −21.9642 + 15.9579i −1.12232 + 0.815411i −0.984559 0.175055i \(-0.943990\pi\)
−0.137758 + 0.990466i \(0.543990\pi\)
\(384\) 0 0
\(385\) −30.1530 22.8537i −1.53674 1.16473i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.71085 5.26546i 0.0867436 0.266969i −0.898271 0.439443i \(-0.855176\pi\)
0.985014 + 0.172474i \(0.0551759\pi\)
\(390\) 0 0
\(391\) −0.147667 0.107286i −0.00746784 0.00542570i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −10.9548 −0.551196
\(396\) 0 0
\(397\) 26.4130 1.32563 0.662815 0.748783i \(-0.269361\pi\)
0.662815 + 0.748783i \(0.269361\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 21.7322 + 15.7894i 1.08525 + 0.788483i 0.978591 0.205813i \(-0.0659838\pi\)
0.106662 + 0.994295i \(0.465984\pi\)
\(402\) 0 0
\(403\) 16.9509 52.1694i 0.844382 2.59874i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.77833 0.0967064i −0.236853 0.00479356i
\(408\) 0 0
\(409\) −4.95113 + 3.59721i −0.244818 + 0.177871i −0.703427 0.710768i \(-0.748348\pi\)
0.458609 + 0.888638i \(0.348348\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.78377 + 2.74907i 0.186187 + 0.135273i
\(414\) 0 0
\(415\) 7.45284 + 22.9375i 0.365845 + 1.12596i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11.1984 0.547075 0.273538 0.961861i \(-0.411806\pi\)
0.273538 + 0.961861i \(0.411806\pi\)
\(420\) 0 0
\(421\) 6.38155 + 19.6404i 0.311018 + 0.957214i 0.977363 + 0.211570i \(0.0678578\pi\)
−0.666345 + 0.745643i \(0.732142\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.226493 + 0.697073i −0.0109865 + 0.0338130i
\(426\) 0 0
\(427\) 24.6009 17.8736i 1.19052 0.864964i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 25.2600 18.3525i 1.21673 0.884009i 0.220909 0.975294i \(-0.429098\pi\)
0.995825 + 0.0912859i \(0.0290977\pi\)
\(432\) 0 0
\(433\) −11.9458 + 36.7655i −0.574080 + 1.76684i 0.0652087 + 0.997872i \(0.479229\pi\)
−0.639289 + 0.768966i \(0.720771\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.209906 + 0.646025i 0.0100412 + 0.0309036i
\(438\) 0 0
\(439\) −10.5363 −0.502872 −0.251436 0.967874i \(-0.580903\pi\)
−0.251436 + 0.967874i \(0.580903\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.35771 7.25628i −0.112018 0.344756i 0.879295 0.476277i \(-0.158014\pi\)
−0.991313 + 0.131521i \(0.958014\pi\)
\(444\) 0 0
\(445\) −1.81638 1.31968i −0.0861047 0.0625587i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.3712 23.5191i 1.52769 1.10993i 0.570188 0.821514i \(-0.306870\pi\)
0.957504 0.288419i \(-0.0931296\pi\)
\(450\) 0 0
\(451\) −9.64093 + 6.71075i −0.453974 + 0.315997i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 21.1999 65.2466i 0.993867 3.05881i
\(456\) 0 0
\(457\) −19.5709 14.2191i −0.915490 0.665142i 0.0269075 0.999638i \(-0.491434\pi\)
−0.942397 + 0.334496i \(0.891434\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 31.9494 1.48803 0.744017 0.668161i \(-0.232918\pi\)
0.744017 + 0.668161i \(0.232918\pi\)
\(462\) 0 0
\(463\) 22.5612 1.04851 0.524254 0.851562i \(-0.324344\pi\)
0.524254 + 0.851562i \(0.324344\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.1681 13.1999i −0.840718 0.610818i 0.0818529 0.996644i \(-0.473916\pi\)
−0.922571 + 0.385827i \(0.873916\pi\)
\(468\) 0 0
\(469\) −9.02087 + 27.7634i −0.416545 + 1.28199i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.48994 + 24.7445i 0.344388 + 1.13775i
\(474\) 0 0
\(475\) 2.20672 1.60327i 0.101251 0.0735633i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.64222 + 1.19315i 0.0750352 + 0.0545162i 0.624670 0.780888i \(-0.285233\pi\)
−0.549635 + 0.835405i \(0.685233\pi\)
\(480\) 0 0
\(481\) −2.67796 8.24192i −0.122105 0.375799i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.05511 0.320356
\(486\) 0 0
\(487\) 6.94156 + 21.3639i 0.314552 + 0.968092i 0.975938 + 0.218046i \(0.0699684\pi\)
−0.661386 + 0.750045i \(0.730032\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.20427 16.0171i 0.234866 0.722842i −0.762274 0.647255i \(-0.775917\pi\)
0.997139 0.0755869i \(-0.0240830\pi\)
\(492\) 0 0
\(493\) 6.89589 5.01016i 0.310575 0.225646i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −26.0215 + 18.9057i −1.16722 + 0.848036i
\(498\) 0 0
\(499\) 12.3245 37.9308i 0.551719 1.69802i −0.152735 0.988267i \(-0.548808\pi\)
0.704454 0.709749i \(-0.251192\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.08685 + 18.7334i 0.271399 + 0.835281i 0.990150 + 0.140013i \(0.0447143\pi\)
−0.718751 + 0.695268i \(0.755286\pi\)
\(504\) 0 0
\(505\) −32.6309 −1.45206
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.8047 + 39.4088i 0.567558 + 1.74676i 0.660226 + 0.751067i \(0.270461\pi\)
−0.0926679 + 0.995697i \(0.529539\pi\)
\(510\) 0 0
\(511\) 14.7731 + 10.7333i 0.653522 + 0.474811i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −25.0628 + 18.2092i −1.10440 + 0.802393i
\(516\) 0 0
\(517\) 24.9662 17.3782i 1.09801 0.764291i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −4.62870 + 14.2457i −0.202787 + 0.624115i 0.797010 + 0.603966i \(0.206414\pi\)
−0.999797 + 0.0201484i \(0.993586\pi\)
\(522\) 0 0
\(523\) −13.7706 10.0050i −0.602148 0.437486i 0.244492 0.969651i \(-0.421379\pi\)
−0.846641 + 0.532165i \(0.821379\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.12339 0.353861
\(528\) 0 0
\(529\) −22.9580 −0.998174
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −17.2316 12.5195i −0.746383 0.542279i
\(534\) 0 0
\(535\) 7.31288 22.5067i 0.316163 0.973051i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −16.7072 + 48.0860i −0.719628 + 2.07121i
\(540\) 0 0
\(541\) 7.07203 5.13813i 0.304050 0.220905i −0.425289 0.905058i \(-0.639828\pi\)
0.729339 + 0.684152i \(0.239828\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −20.5655 14.9417i −0.880929 0.640032i
\(546\) 0 0
\(547\) −3.46411 10.6614i −0.148115 0.455851i 0.849284 0.527937i \(-0.177034\pi\)
−0.997398 + 0.0720864i \(0.977034\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −31.7212 −1.35137
\(552\) 0 0
\(553\) 6.63193 + 20.4110i 0.282018 + 0.867964i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.64712 + 5.06930i −0.0697905 + 0.214793i −0.979869 0.199644i \(-0.936021\pi\)
0.910078 + 0.414437i \(0.136021\pi\)
\(558\) 0 0
\(559\) −37.9254 + 27.5544i −1.60407 + 1.16543i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.27521 + 4.55921i −0.264469 + 0.192148i −0.712115 0.702063i \(-0.752262\pi\)
0.447646 + 0.894211i \(0.352262\pi\)
\(564\) 0 0
\(565\) 0.533575 1.64217i 0.0224477 0.0690868i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.40452 7.40036i −0.100803 0.310239i 0.887920 0.459999i \(-0.152150\pi\)
−0.988722 + 0.149759i \(0.952150\pi\)
\(570\) 0 0
\(571\) −46.6962 −1.95418 −0.977088 0.212834i \(-0.931731\pi\)
−0.977088 + 0.212834i \(0.931731\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.0521215 0.160414i −0.00217362 0.00668971i
\(576\) 0 0
\(577\) 13.5333 + 9.83253i 0.563400 + 0.409334i 0.832702 0.553722i \(-0.186793\pi\)
−0.269302 + 0.963056i \(0.586793\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 38.2252 27.7722i 1.58585 1.15219i
\(582\) 0 0
\(583\) 12.2887 + 9.31391i 0.508946 + 0.385743i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.63485 14.2646i 0.191301 0.588764i −0.808699 0.588223i \(-0.799828\pi\)
1.00000 0.000540811i \(-0.000172146\pi\)
\(588\) 0 0
\(589\) −24.4575 17.7694i −1.00775 0.732177i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −9.84235 −0.404177 −0.202088 0.979367i \(-0.564773\pi\)
−0.202088 + 0.979367i \(0.564773\pi\)
\(594\) 0 0
\(595\) 10.1597 0.416506
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.51930 1.10384i −0.0620769 0.0451015i 0.556314 0.830972i \(-0.312215\pi\)
−0.618391 + 0.785871i \(0.712215\pi\)
\(600\) 0 0
\(601\) 8.51453 26.2050i 0.347315 1.06893i −0.613018 0.790069i \(-0.710045\pi\)
0.960333 0.278857i \(-0.0899554\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 26.5222 + 1.07398i 1.07828 + 0.0436635i
\(606\) 0 0
\(607\) −10.9756 + 7.97424i −0.445486 + 0.323664i −0.787811 0.615917i \(-0.788786\pi\)
0.342325 + 0.939582i \(0.388786\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 44.6229 + 32.4204i 1.80525 + 1.31159i
\(612\) 0 0
\(613\) −13.1565 40.4915i −0.531385 1.63544i −0.751332 0.659924i \(-0.770588\pi\)
0.219947 0.975512i \(-0.429412\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.95843 0.239877 0.119939 0.992781i \(-0.461730\pi\)
0.119939 + 0.992781i \(0.461730\pi\)
\(618\) 0 0
\(619\) 6.93986 + 21.3587i 0.278936 + 0.858478i 0.988151 + 0.153485i \(0.0490497\pi\)
−0.709215 + 0.704993i \(0.750950\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.35920 + 4.18320i −0.0544553 + 0.167596i
\(624\) 0 0
\(625\) 23.0065 16.7152i 0.920260 0.668608i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.03826 0.754343i 0.0413983 0.0300776i
\(630\) 0 0
\(631\) 0.328317 1.01045i 0.0130701 0.0402256i −0.944309 0.329061i \(-0.893268\pi\)
0.957379 + 0.288835i \(0.0932679\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.494558 + 1.52209i 0.0196259 + 0.0604024i
\(636\) 0 0
\(637\) −92.3047 −3.65724
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.66138 + 29.7347i 0.381601 + 1.17445i 0.938916 + 0.344147i \(0.111832\pi\)
−0.557314 + 0.830302i \(0.688168\pi\)
\(642\) 0 0
\(643\) 19.3052 + 14.0261i 0.761324 + 0.553134i 0.899316 0.437299i \(-0.144065\pi\)
−0.137992 + 0.990433i \(0.544065\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.07454 4.41341i 0.238815 0.173509i −0.461940 0.886911i \(-0.652847\pi\)
0.700755 + 0.713402i \(0.252847\pi\)
\(648\) 0 0
\(649\) −3.28057 0.0663939i −0.128774 0.00260619i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.71150 17.5782i 0.223508 0.687888i −0.774931 0.632045i \(-0.782216\pi\)
0.998440 0.0558423i \(-0.0177844\pi\)
\(654\) 0 0
\(655\) 2.75866 + 2.00429i 0.107790 + 0.0783140i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24.0641 −0.937403 −0.468702 0.883357i \(-0.655278\pi\)
−0.468702 + 0.883357i \(0.655278\pi\)
\(660\) 0 0
\(661\) 10.9489 0.425863 0.212931 0.977067i \(-0.431699\pi\)
0.212931 + 0.977067i \(0.431699\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −30.5883 22.2237i −1.18616 0.861797i
\(666\) 0 0
\(667\) −0.606147 + 1.86553i −0.0234701 + 0.0722336i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7.00164 + 20.1519i −0.270295 + 0.777955i
\(672\) 0 0
\(673\) 14.8164 10.7648i 0.571132 0.414952i −0.264384 0.964417i \(-0.585169\pi\)
0.835516 + 0.549466i \(0.185169\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −26.4379 19.2083i −1.01609 0.738234i −0.0506135 0.998718i \(-0.516118\pi\)
−0.965478 + 0.260485i \(0.916118\pi\)
\(678\) 0 0
\(679\) −4.27109 13.1451i −0.163910 0.504462i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 42.7468 1.63566 0.817831 0.575458i \(-0.195176\pi\)
0.817831 + 0.575458i \(0.195176\pi\)
\(684\) 0 0
\(685\) −3.29872 10.1524i −0.126038 0.387904i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −8.63991 + 26.5909i −0.329154 + 1.01303i
\(690\) 0 0
\(691\) −13.5847 + 9.86988i −0.516787 + 0.375468i −0.815392 0.578909i \(-0.803479\pi\)
0.298605 + 0.954377i \(0.403479\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 22.8738 16.6188i 0.867652 0.630386i
\(696\) 0 0
\(697\) 0.974716 2.99987i 0.0369200 0.113628i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3.85906 + 11.8770i 0.145755 + 0.448587i 0.997107 0.0760071i \(-0.0242172\pi\)
−0.851353 + 0.524594i \(0.824217\pi\)
\(702\) 0 0
\(703\) −4.77603 −0.180132
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 19.7544 + 60.7979i 0.742942 + 2.28654i
\(708\) 0 0
\(709\) 31.5048 + 22.8896i 1.18319 + 0.859636i 0.992528 0.122020i \(-0.0389371\pi\)
0.190660 + 0.981656i \(0.438937\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.51237 + 1.09880i −0.0566387 + 0.0411504i
\(714\) 0 0
\(715\) 13.9439 + 46.0666i 0.521473 + 1.72279i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −11.4849 + 35.3469i −0.428315 + 1.31822i 0.471470 + 0.881882i \(0.343724\pi\)
−0.899785 + 0.436334i \(0.856276\pi\)
\(720\) 0 0
\(721\) 49.1001 + 35.6733i 1.82858 + 1.32854i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7.87666 0.292532
\(726\) 0 0
\(727\) −1.69543 −0.0628801 −0.0314400 0.999506i \(-0.510009\pi\)
−0.0314400 + 0.999506i \(0.510009\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.61640 4.08055i −0.207730 0.150925i
\(732\) 0 0
\(733\) −4.64378 + 14.2921i −0.171522 + 0.527890i −0.999458 0.0329330i \(-0.989515\pi\)
0.827936 + 0.560823i \(0.189515\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.93335 19.6020i −0.218558 0.722049i
\(738\) 0 0
\(739\) 25.0145 18.1741i 0.920174 0.668546i −0.0233930 0.999726i \(-0.507447\pi\)
0.943567 + 0.331180i \(0.107447\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4.26114 3.09590i −0.156326 0.113577i 0.506873 0.862021i \(-0.330801\pi\)
−0.663198 + 0.748444i \(0.730801\pi\)
\(744\) 0 0
\(745\) 12.9727 + 39.9259i 0.475283 + 1.46277i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −46.3617 −1.69402
\(750\) 0 0
\(751\) 10.0487 + 30.9268i 0.366683 + 1.12853i 0.948921 + 0.315515i \(0.102177\pi\)
−0.582238 + 0.813019i \(0.697823\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.57787 + 4.85617i −0.0574244 + 0.176734i
\(756\) 0 0
\(757\) 30.7000 22.3048i 1.11581 0.810683i 0.132241 0.991218i \(-0.457783\pi\)
0.983569 + 0.180535i \(0.0577828\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −40.4447 + 29.3848i −1.46612 + 1.06520i −0.484402 + 0.874846i \(0.660963\pi\)
−0.981716 + 0.190352i \(0.939037\pi\)
\(762\) 0 0
\(763\) −15.3892 + 47.3632i −0.557128 + 1.71466i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.83856 5.65850i −0.0663865 0.204317i
\(768\) 0 0
\(769\) 21.4620 0.773940 0.386970 0.922092i \(-0.373522\pi\)
0.386970 + 0.922092i \(0.373522\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.57912 + 7.93773i 0.0927647 + 0.285500i 0.986665 0.162766i \(-0.0520416\pi\)
−0.893900 + 0.448266i \(0.852042\pi\)
\(774\) 0 0
\(775\) 6.07302 + 4.41230i 0.218149 + 0.158495i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.49665 + 6.89972i −0.340253 + 0.247208i
\(780\) 0 0
\(781\) 7.40594 21.3156i 0.265005 0.762731i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.38440 + 7.33844i −0.0851030 + 0.261920i
\(786\) 0 0
\(787\) −16.3990 11.9146i −0.584562 0.424709i 0.255804 0.966729i \(-0.417660\pi\)
−0.840366 + 0.542020i \(0.817660\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.38272 −0.120276
\(792\) 0 0
\(793\) −38.6830 −1.37368
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −29.7487 21.6137i −1.05375 0.765597i −0.0808312 0.996728i \(-0.525757\pi\)
−0.972923 + 0.231131i \(0.925757\pi\)
\(798\) 0 0
\(799\) −2.52412 + 7.76846i −0.0892971 + 0.274828i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −12.8084 0.259223i −0.451998 0.00914778i
\(804\) 0 0
\(805\) −1.89147 + 1.37424i −0.0666657 + 0.0484355i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −0.410774 0.298445i −0.0144421 0.0104928i 0.580541 0.814231i \(-0.302841\pi\)
−0.594983 + 0.803738i \(0.702841\pi\)
\(810\) 0 0
\(811\) 13.1816 + 40.5689i 0.462870 + 1.42457i 0.861642 + 0.507517i \(0.169436\pi\)
−0.398772 + 0.917050i \(0.630564\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 10.0508 0.352065
\(816\) 0 0
\(817\) 7.98362 + 24.5711i 0.279312 + 0.859633i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9.88658 + 30.4278i −0.345044 + 1.06194i 0.616516 + 0.787342i \(0.288544\pi\)
−0.961560 + 0.274594i \(0.911456\pi\)
\(822\) 0 0
\(823\) −21.9348 + 15.9365i −0.764598 + 0.555513i −0.900317 0.435235i \(-0.856665\pi\)
0.135719 + 0.990747i \(0.456665\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.9539 7.95847i 0.380904 0.276743i −0.380814 0.924652i \(-0.624356\pi\)
0.761718 + 0.647909i \(0.224356\pi\)
\(828\) 0 0
\(829\) −3.84608 + 11.8370i −0.133580 + 0.411117i −0.995366 0.0961545i \(-0.969346\pi\)
0.861787 + 0.507271i \(0.169346\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.22410 13.0004i −0.146356 0.450439i
\(834\) 0 0
\(835\) 40.9421 1.41686
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −0.341189 1.05007i −0.0117791 0.0362525i 0.944994 0.327087i \(-0.106067\pi\)
−0.956773 + 0.290835i \(0.906067\pi\)
\(840\) 0 0
\(841\) −50.6457 36.7963i −1.74640 1.26884i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −45.2262 + 32.8588i −1.55583 + 1.13038i
\(846\) 0 0
\(847\) −14.0552 50.0663i −0.482944 1.72030i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.0912632 + 0.280879i −0.00312846 + 0.00962842i
\(852\) 0 0
\(853\) −16.2816 11.8293i −0.557471 0.405026i 0.273062 0.961997i \(-0.411964\pi\)
−0.830532 + 0.556970i \(0.811964\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 26.5205 0.905924 0.452962 0.891530i \(-0.350367\pi\)
0.452962 + 0.891530i \(0.350367\pi\)
\(858\) 0 0
\(859\) −40.3123 −1.37544 −0.687719 0.725977i \(-0.741388\pi\)
−0.687719 + 0.725977i \(0.741388\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 41.6384 + 30.2521i 1.41739 + 1.02979i 0.992196 + 0.124689i \(0.0397934\pi\)
0.425192 + 0.905103i \(0.360207\pi\)
\(864\) 0 0
\(865\) 18.7171 57.6054i 0.636402 1.95864i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −11.9995 9.09474i −0.407056 0.308518i
\(870\) 0 0
\(871\) 30.0435 21.8279i 1.01799 0.739610i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −38.5498 28.0081i −1.30322 0.946846i
\(876\) 0 0
\(877\) 12.9505 + 39.8576i 0.437308 + 1.34590i 0.890703 + 0.454586i \(0.150213\pi\)
−0.453395 + 0.891310i \(0.649787\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.6635 1.03308 0.516539 0.856263i \(-0.327220\pi\)
0.516539 + 0.856263i \(0.327220\pi\)
\(882\) 0 0
\(883\) 5.54832 + 17.0760i 0.186716 + 0.574652i 0.999974 0.00725148i \(-0.00230824\pi\)
−0.813258 + 0.581903i \(0.802308\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.48830 + 23.0466i −0.251433 + 0.773830i 0.743079 + 0.669204i \(0.233365\pi\)
−0.994512 + 0.104626i \(0.966635\pi\)
\(888\) 0 0
\(889\) 2.53656 1.84292i 0.0850735 0.0618096i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 24.5925 17.8675i 0.822958 0.597914i
\(894\) 0 0
\(895\) −1.39454 + 4.29195i −0.0466143 + 0.143464i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −26.9768 83.0260i −0.899726 2.76907i
\(900\) 0 0
\(901\) −4.14052 −0.137941
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9.90093 30.4719i −0.329118 1.01292i
\(906\) 0 0
\(907\) 12.1932 + 8.85887i 0.404868 + 0.294154i 0.771521 0.636204i \(-0.219496\pi\)
−0.366653 + 0.930358i \(0.619496\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −39.4415 + 28.6559i −1.30675 + 0.949413i −0.999997 0.00237514i \(-0.999244\pi\)
−0.306757 + 0.951788i \(0.599244\pi\)
\(912\) 0 0
\(913\) −10.8792 + 31.3123i −0.360050 + 1.03629i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.06432 6.35332i 0.0681698 0.209805i
\(918\) 0 0
\(919\) −21.1984 15.4015i −0.699271 0.508050i 0.180424 0.983589i \(-0.442253\pi\)
−0.879695 + 0.475539i \(0.842253\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 40.9168 1.34679
\(924\) 0 0
\(925\) 1.18593 0.0389932
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 9.79770 + 7.11844i 0.321452 + 0.233549i 0.736795 0.676116i \(-0.236338\pi\)
−0.415343 + 0.909665i \(0.636338\pi\)
\(930\) 0 0
\(931\) −15.7200 + 48.3811i −0.515201 + 1.58562i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.85004 + 4.07203i −0.191317 + 0.133170i
\(936\) 0 0
\(937\) −7.99643 + 5.80975i −0.261232 + 0.189796i −0.710690 0.703505i \(-0.751617\pi\)
0.449458 + 0.893301i \(0.351617\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6.46167 + 4.69468i 0.210644 + 0.153042i 0.688105 0.725611i \(-0.258443\pi\)
−0.477461 + 0.878653i \(0.658443\pi\)
\(942\) 0 0
\(943\) 0.224306 + 0.690343i 0.00730441 + 0.0224807i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 29.3817 0.954776 0.477388 0.878693i \(-0.341584\pi\)
0.477388 + 0.878693i \(0.341584\pi\)
\(948\) 0 0
\(949\) −7.17832 22.0926i −0.233018 0.717156i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −12.2804 + 37.7951i −0.397800 + 1.22430i 0.528959 + 0.848648i \(0.322583\pi\)
−0.926759 + 0.375656i \(0.877417\pi\)
\(954\) 0 0
\(955\) −14.9537 + 10.8645i −0.483891 + 0.351567i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −16.9190 + 12.2924i −0.546343 + 0.396941i
\(960\) 0 0
\(961\) 16.1300 49.6432i 0.520324 1.60139i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 11.2627 + 34.6631i 0.362560 + 1.11585i
\(966\) 0 0
\(967\) 35.5630 1.14363 0.571814 0.820383i \(-0.306240\pi\)
0.571814 + 0.820383i \(0.306240\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.28310 + 16.2597i 0.169543 + 0.521799i 0.999342 0.0362627i \(-0.0115453\pi\)
−0.829800 + 0.558061i \(0.811545\pi\)
\(972\) 0 0
\(973\) −44.8117 32.5576i −1.43660 1.04375i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.4671 17.7764i 0.782771 0.568717i −0.123038 0.992402i \(-0.539264\pi\)
0.905810 + 0.423685i \(0.139264\pi\)
\(978\) 0 0
\(979\) −0.893996 2.95350i −0.0285722 0.0943942i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 5.61476 17.2805i 0.179083 0.551161i −0.820713 0.571340i \(-0.806424\pi\)
0.999796 + 0.0201791i \(0.00642366\pi\)
\(984\) 0 0
\(985\) 12.6559 + 9.19506i 0.403251 + 0.292979i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.59758 0.0508002
\(990\) 0 0
\(991\) 19.2500 0.611497 0.305748 0.952112i \(-0.401093\pi\)
0.305748 + 0.952112i \(0.401093\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −13.7305 9.97576i −0.435285 0.316253i
\(996\) 0 0
\(997\) −2.06598 + 6.35843i −0.0654302 + 0.201373i −0.978427 0.206594i \(-0.933762\pi\)
0.912997 + 0.407967i \(0.133762\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.r.f.289.1 8
3.2 odd 2 264.2.q.e.25.2 8
11.2 odd 10 8712.2.a.cc.1.4 4
11.4 even 5 inner 792.2.r.f.433.1 8
11.9 even 5 8712.2.a.bz.1.4 4
12.11 even 2 528.2.y.k.289.2 8
33.2 even 10 2904.2.a.be.1.1 4
33.20 odd 10 2904.2.a.bb.1.1 4
33.26 odd 10 264.2.q.e.169.2 yes 8
132.35 odd 10 5808.2.a.cl.1.1 4
132.59 even 10 528.2.y.k.433.2 8
132.119 even 10 5808.2.a.co.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.2.q.e.25.2 8 3.2 odd 2
264.2.q.e.169.2 yes 8 33.26 odd 10
528.2.y.k.289.2 8 12.11 even 2
528.2.y.k.433.2 8 132.59 even 10
792.2.r.f.289.1 8 1.1 even 1 trivial
792.2.r.f.433.1 8 11.4 even 5 inner
2904.2.a.bb.1.1 4 33.20 odd 10
2904.2.a.be.1.1 4 33.2 even 10
5808.2.a.cl.1.1 4 132.35 odd 10
5808.2.a.co.1.1 4 132.119 even 10
8712.2.a.bz.1.4 4 11.9 even 5
8712.2.a.cc.1.4 4 11.2 odd 10