Properties

Label 792.2.m.b.197.3
Level $792$
Weight $2$
Character 792.197
Analytic conductor $6.324$
Analytic rank $0$
Dimension $4$
CM discriminant -88
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(197,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.197"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-8,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 11x^{2} - 10x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 197.3
Root \(0.500000 + 3.07253i\) of defining polynomial
Character \(\chi\) \(=\) 792.197
Dual form 792.2.m.b.197.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} -2.82843i q^{8} -3.31662i q^{11} -2.69042 q^{13} +4.00000 q^{16} -8.69042 q^{19} +4.69042 q^{22} -8.04746i q^{23} -5.00000 q^{25} -3.80482i q^{26} -6.63325i q^{29} +9.38083 q^{31} +5.65685i q^{32} -12.2901i q^{38} +3.30958 q^{43} +6.63325i q^{44} +11.3808 q^{46} +0.437818i q^{47} +7.00000 q^{49} -7.07107i q^{50} +5.38083 q^{52} +9.38083 q^{58} -14.6904 q^{61} +13.2665i q^{62} -8.00000 q^{64} -16.5327i q^{71} +17.3808 q^{76} -6.63325i q^{83} +4.68046i q^{86} -9.38083 q^{88} +11.8523i q^{89} +16.0949i q^{92} -0.619168 q^{94} -18.7617 q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + 8 q^{13} + 16 q^{16} - 16 q^{19} - 20 q^{25} + 32 q^{43} + 8 q^{46} + 28 q^{49} - 16 q^{52} - 40 q^{61} - 32 q^{64} + 32 q^{76} - 40 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 1.00000i
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) − 2.82843i − 1.00000i
\(9\) 0 0
\(10\) 0 0
\(11\) − 3.31662i − 1.00000i
\(12\) 0 0
\(13\) −2.69042 −0.746187 −0.373094 0.927794i \(-0.621703\pi\)
−0.373094 + 0.927794i \(0.621703\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −8.69042 −1.99372 −0.996859 0.0791961i \(-0.974765\pi\)
−0.996859 + 0.0791961i \(0.974765\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.69042 1.00000
\(23\) − 8.04746i − 1.67801i −0.544122 0.839006i \(-0.683137\pi\)
0.544122 0.839006i \(-0.316863\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) − 3.80482i − 0.746187i
\(27\) 0 0
\(28\) 0 0
\(29\) − 6.63325i − 1.23176i −0.787839 0.615882i \(-0.788800\pi\)
0.787839 0.615882i \(-0.211200\pi\)
\(30\) 0 0
\(31\) 9.38083 1.68485 0.842424 0.538816i \(-0.181128\pi\)
0.842424 + 0.538816i \(0.181128\pi\)
\(32\) 5.65685i 1.00000i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) − 12.2901i − 1.99372i
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 3.30958 0.504707 0.252353 0.967635i \(-0.418795\pi\)
0.252353 + 0.967635i \(0.418795\pi\)
\(44\) 6.63325i 1.00000i
\(45\) 0 0
\(46\) 11.3808 1.67801
\(47\) 0.437818i 0.0638624i 0.999490 + 0.0319312i \(0.0101657\pi\)
−0.999490 + 0.0319312i \(0.989834\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) − 7.07107i − 1.00000i
\(51\) 0 0
\(52\) 5.38083 0.746187
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 9.38083 1.23176
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −14.6904 −1.88091 −0.940457 0.339911i \(-0.889603\pi\)
−0.940457 + 0.339911i \(0.889603\pi\)
\(62\) 13.2665i 1.68485i
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 16.5327i − 1.96208i −0.193816 0.981038i \(-0.562086\pi\)
0.193816 0.981038i \(-0.437914\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 17.3808 1.99372
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 6.63325i − 0.728094i −0.931381 0.364047i \(-0.881395\pi\)
0.931381 0.364047i \(-0.118605\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.68046i 0.504707i
\(87\) 0 0
\(88\) −9.38083 −1.00000
\(89\) 11.8523i 1.25634i 0.778076 + 0.628170i \(0.216196\pi\)
−0.778076 + 0.628170i \(0.783804\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 16.0949i 1.67801i
\(93\) 0 0
\(94\) −0.619168 −0.0638624
\(95\) 0 0
\(96\) 0 0
\(97\) −18.7617 −1.90496 −0.952479 0.304604i \(-0.901476\pi\)
−0.952479 + 0.304604i \(0.901476\pi\)
\(98\) 9.89949i 1.00000i
\(99\) 0 0
\(100\) 10.0000 1.00000
\(101\) 2.82843i 0.281439i 0.990050 + 0.140720i \(0.0449416\pi\)
−0.990050 + 0.140720i \(0.955058\pi\)
\(102\) 0 0
\(103\) 9.38083 0.924321 0.462160 0.886796i \(-0.347074\pi\)
0.462160 + 0.886796i \(0.347074\pi\)
\(104\) 7.60964i 0.746187i
\(105\) 0 0
\(106\) 0 0
\(107\) − 5.65685i − 0.546869i −0.961891 0.273434i \(-0.911840\pi\)
0.961891 0.273434i \(-0.0881596\pi\)
\(108\) 0 0
\(109\) 9.30958 0.891696 0.445848 0.895109i \(-0.352902\pi\)
0.445848 + 0.895109i \(0.352902\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 20.3376i 1.91320i 0.291409 + 0.956599i \(0.405876\pi\)
−0.291409 + 0.956599i \(0.594124\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 13.2665i 1.23176i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) − 20.7754i − 1.88091i
\(123\) 0 0
\(124\) −18.7617 −1.68485
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) − 11.3137i − 1.00000i
\(129\) 0 0
\(130\) 0 0
\(131\) 11.3137i 0.988483i 0.869325 + 0.494242i \(0.164554\pi\)
−0.869325 + 0.494242i \(0.835446\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.36700i 0.287663i 0.989602 + 0.143831i \(0.0459423\pi\)
−0.989602 + 0.143831i \(0.954058\pi\)
\(138\) 0 0
\(139\) −20.6904 −1.75494 −0.877469 0.479633i \(-0.840770\pi\)
−0.877469 + 0.479633i \(0.840770\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 23.3808 1.96208
\(143\) 8.92310i 0.746187i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 14.1421i − 1.15857i −0.815125 0.579284i \(-0.803332\pi\)
0.815125 0.579284i \(-0.196668\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 24.5802i 1.99372i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 9.38083 0.728094
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −5.76166 −0.443205
\(170\) 0 0
\(171\) 0 0
\(172\) −6.61917 −0.504707
\(173\) − 6.63325i − 0.504317i −0.967686 0.252158i \(-0.918860\pi\)
0.967686 0.252158i \(-0.0811404\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 13.2665i − 1.00000i
\(177\) 0 0
\(178\) −16.7617 −1.25634
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −22.7617 −1.67801
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) − 0.875636i − 0.0638624i
\(189\) 0 0
\(190\) 0 0
\(191\) − 25.0180i − 1.81024i −0.425155 0.905120i \(-0.639781\pi\)
0.425155 0.905120i \(-0.360219\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) − 26.5330i − 1.90496i
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) 19.7990i 1.41062i 0.708899 + 0.705310i \(0.249192\pi\)
−0.708899 + 0.705310i \(0.750808\pi\)
\(198\) 0 0
\(199\) 2.00000 0.141776 0.0708881 0.997484i \(-0.477417\pi\)
0.0708881 + 0.997484i \(0.477417\pi\)
\(200\) 14.1421i 1.00000i
\(201\) 0 0
\(202\) −4.00000 −0.281439
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 13.2665i 0.924321i
\(207\) 0 0
\(208\) −10.7617 −0.746187
\(209\) 28.8228i 1.99372i
\(210\) 0 0
\(211\) 15.3096 1.05396 0.526978 0.849879i \(-0.323325\pi\)
0.526978 + 0.849879i \(0.323325\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 8.00000 0.546869
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 13.1657i 0.891696i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −10.0000 −0.669650 −0.334825 0.942280i \(-0.608677\pi\)
−0.334825 + 0.942280i \(0.608677\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −28.7617 −1.91320
\(227\) − 22.6274i − 1.50183i −0.660396 0.750917i \(-0.729612\pi\)
0.660396 0.750917i \(-0.270388\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −18.7617 −1.23176
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) − 15.5563i − 1.00000i
\(243\) 0 0
\(244\) 29.3808 1.88091
\(245\) 0 0
\(246\) 0 0
\(247\) 23.3808 1.48769
\(248\) − 26.5330i − 1.68485i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −26.6904 −1.67801
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) − 5.11828i − 0.319269i −0.987176 0.159635i \(-0.948968\pi\)
0.987176 0.159635i \(-0.0510316\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −16.0000 −0.988483
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −4.76166 −0.287663
\(275\) 16.5831i 1.00000i
\(276\) 0 0
\(277\) 25.4521 1.52927 0.764634 0.644465i \(-0.222920\pi\)
0.764634 + 0.644465i \(0.222920\pi\)
\(278\) − 29.2607i − 1.75494i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 19.4521 1.15631 0.578153 0.815928i \(-0.303774\pi\)
0.578153 + 0.815928i \(0.303774\pi\)
\(284\) 33.0655i 1.96208i
\(285\) 0 0
\(286\) −12.6192 −0.746187
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 33.1662i 1.93759i 0.247858 + 0.968796i \(0.420273\pi\)
−0.247858 + 0.968796i \(0.579727\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 20.0000 1.15857
\(299\) 21.6510i 1.25211i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −34.7617 −1.99372
\(305\) 0 0
\(306\) 0 0
\(307\) 31.4521 1.79506 0.897532 0.440948i \(-0.145358\pi\)
0.897532 + 0.440948i \(0.145358\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 17.4084i 0.987139i 0.869706 + 0.493569i \(0.164308\pi\)
−0.869706 + 0.493569i \(0.835692\pi\)
\(312\) 0 0
\(313\) −18.7617 −1.06047 −0.530236 0.847850i \(-0.677897\pi\)
−0.530236 + 0.847850i \(0.677897\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) −22.0000 −1.23176
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 13.4521 0.746187
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 13.2665i 0.728094i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) − 8.14822i − 0.443205i
\(339\) 0 0
\(340\) 0 0
\(341\) − 31.1127i − 1.68485i
\(342\) 0 0
\(343\) 0 0
\(344\) − 9.36092i − 0.504707i
\(345\) 0 0
\(346\) 9.38083 0.504317
\(347\) 33.1662i 1.78046i 0.455514 + 0.890229i \(0.349456\pi\)
−0.455514 + 0.890229i \(0.650544\pi\)
\(348\) 0 0
\(349\) 21.3096 1.14068 0.570338 0.821410i \(-0.306812\pi\)
0.570338 + 0.821410i \(0.306812\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 18.7617 1.00000
\(353\) − 27.9472i − 1.48748i −0.668469 0.743740i \(-0.733050\pi\)
0.668469 0.743740i \(-0.266950\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 23.7046i − 1.25634i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 56.5233 2.97491
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 26.0000 1.35719 0.678594 0.734513i \(-0.262589\pi\)
0.678594 + 0.734513i \(0.262589\pi\)
\(368\) − 32.1899i − 1.67801i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 37.4521 1.93920 0.969598 0.244705i \(-0.0786911\pi\)
0.969598 + 0.244705i \(0.0786911\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.23834 0.0638624
\(377\) 17.8462i 0.919126i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 35.3808 1.81024
\(383\) − 33.5033i − 1.71194i −0.517026 0.855970i \(-0.672961\pi\)
0.517026 0.855970i \(-0.327039\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 37.5233 1.90496
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 19.7990i − 1.00000i
\(393\) 0 0
\(394\) −28.0000 −1.41062
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 2.82843i 0.141776i
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) − 36.4325i − 1.81935i −0.415319 0.909676i \(-0.636330\pi\)
0.415319 0.909676i \(-0.363670\pi\)
\(402\) 0 0
\(403\) −25.2383 −1.25721
\(404\) − 5.65685i − 0.281439i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −18.7617 −0.924321
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) − 15.2193i − 0.746187i
\(417\) 0 0
\(418\) −40.7617 −1.99372
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 21.6510i 1.05396i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 11.3137i 0.546869i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 37.5233 1.80326 0.901628 0.432512i \(-0.142373\pi\)
0.901628 + 0.432512i \(0.142373\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −18.6192 −0.891696
\(437\) 69.9358i 3.34548i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) − 14.1421i − 0.669650i
\(447\) 0 0
\(448\) 0 0
\(449\) − 13.6036i − 0.641992i −0.947081 0.320996i \(-0.895982\pi\)
0.947081 0.320996i \(-0.104018\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) − 40.6751i − 1.91320i
\(453\) 0 0
\(454\) 32.0000 1.50183
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 6.63325i − 0.308941i −0.987997 0.154471i \(-0.950633\pi\)
0.987997 0.154471i \(-0.0493672\pi\)
\(462\) 0 0
\(463\) 9.38083 0.435964 0.217982 0.975953i \(-0.430053\pi\)
0.217982 + 0.975953i \(0.430053\pi\)
\(464\) − 26.5330i − 1.23176i
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 10.9766i − 0.504707i
\(474\) 0 0
\(475\) 43.4521 1.99372
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 22.0000 1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) −34.0000 −1.54069 −0.770344 0.637629i \(-0.779915\pi\)
−0.770344 + 0.637629i \(0.779915\pi\)
\(488\) 41.5508i 1.88091i
\(489\) 0 0
\(490\) 0 0
\(491\) − 39.5980i − 1.78703i −0.449032 0.893516i \(-0.648231\pi\)
0.449032 0.893516i \(-0.351769\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 33.0655i 1.48769i
\(495\) 0 0
\(496\) 37.5233 1.68485
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 37.7459i − 1.67801i
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274i 1.00000i
\(513\) 0 0
\(514\) 7.23834 0.319269
\(515\) 0 0
\(516\) 0 0
\(517\) 1.45208 0.0638624
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 44.9178i − 1.96788i −0.178490 0.983942i \(-0.557121\pi\)
0.178490 0.983942i \(-0.442879\pi\)
\(522\) 0 0
\(523\) 27.3096 1.19416 0.597082 0.802180i \(-0.296327\pi\)
0.597082 + 0.802180i \(0.296327\pi\)
\(524\) − 22.6274i − 0.988483i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −41.7617 −1.81572
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 23.2164i − 1.00000i
\(540\) 0 0
\(541\) −30.8329 −1.32561 −0.662805 0.748792i \(-0.730634\pi\)
−0.662805 + 0.748792i \(0.730634\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −36.8329 −1.57486 −0.787431 0.616403i \(-0.788589\pi\)
−0.787431 + 0.616403i \(0.788589\pi\)
\(548\) − 6.73401i − 0.287663i
\(549\) 0 0
\(550\) −23.4521 −1.00000
\(551\) 57.6457i 2.45579i
\(552\) 0 0
\(553\) 0 0
\(554\) 35.9947i 1.52927i
\(555\) 0 0
\(556\) 41.3808 1.75494
\(557\) − 46.4327i − 1.96742i −0.179766 0.983709i \(-0.557534\pi\)
0.179766 0.983709i \(-0.442466\pi\)
\(558\) 0 0
\(559\) −8.90416 −0.376606
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 33.1662i 1.39779i 0.715224 + 0.698895i \(0.246325\pi\)
−0.715224 + 0.698895i \(0.753675\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 27.5094i 1.15631i
\(567\) 0 0
\(568\) −46.7617 −1.96208
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −24.8329 −1.03922 −0.519612 0.854402i \(-0.673924\pi\)
−0.519612 + 0.854402i \(0.673924\pi\)
\(572\) − 17.8462i − 0.746187i
\(573\) 0 0
\(574\) 0 0
\(575\) 40.2373i 1.67801i
\(576\) 0 0
\(577\) 37.5233 1.56212 0.781058 0.624458i \(-0.214680\pi\)
0.781058 + 0.624458i \(0.214680\pi\)
\(578\) − 24.0416i − 1.00000i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −46.9042 −1.93759
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −81.5233 −3.35911
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 28.2843i 1.15857i
\(597\) 0 0
\(598\) −30.6192 −1.25211
\(599\) 23.2668i 0.950654i 0.879809 + 0.475327i \(0.157670\pi\)
−0.879809 + 0.475327i \(0.842330\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) − 49.1604i − 1.99372i
\(609\) 0 0
\(610\) 0 0
\(611\) − 1.17791i − 0.0476533i
\(612\) 0 0
\(613\) 49.4521 1.99735 0.998675 0.0514548i \(-0.0163858\pi\)
0.998675 + 0.0514548i \(0.0163858\pi\)
\(614\) 44.4800i 1.79506i
\(615\) 0 0
\(616\) 0 0
\(617\) 45.7934i 1.84357i 0.387698 + 0.921787i \(0.373271\pi\)
−0.387698 + 0.921787i \(0.626729\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −24.6192 −0.987139
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) − 26.5330i − 1.06047i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −46.9042 −1.86723 −0.933613 0.358284i \(-0.883362\pi\)
−0.933613 + 0.358284i \(0.883362\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −18.8329 −0.746187
\(638\) − 31.1127i − 1.23176i
\(639\) 0 0
\(640\) 0 0
\(641\) − 2.49137i − 0.0984031i −0.998789 0.0492016i \(-0.984332\pi\)
0.998789 0.0492016i \(-0.0156677\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 41.9886i − 1.65074i −0.564591 0.825371i \(-0.690966\pi\)
0.564591 0.825371i \(-0.309034\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 19.0241i 0.746187i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 6.63325i − 0.258395i −0.991619 0.129197i \(-0.958760\pi\)
0.991619 0.129197i \(-0.0412401\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −18.7617 −0.728094
\(665\) 0 0
\(666\) 0 0
\(667\) −53.3808 −2.06691
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 48.7226i 1.88091i
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 11.5233 0.443205
\(677\) − 48.0833i − 1.84799i −0.382405 0.923995i \(-0.624904\pi\)
0.382405 0.923995i \(-0.375096\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 44.0000 1.68485
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 13.2383 0.504707
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 13.2665i 0.504317i
\(693\) 0 0
\(694\) −46.9042 −1.78046
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 30.1363i 1.14068i
\(699\) 0 0
\(700\) 0 0
\(701\) − 46.4327i − 1.75374i −0.480727 0.876870i \(-0.659627\pi\)
0.480727 0.876870i \(-0.340373\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 26.5330i 1.00000i
\(705\) 0 0
\(706\) 39.5233 1.48748
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 33.5233 1.25634
\(713\) − 75.4919i − 2.82719i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 14.7815i 0.551256i 0.961264 + 0.275628i \(0.0888858\pi\)
−0.961264 + 0.275628i \(0.911114\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 79.9361i 2.97491i
\(723\) 0 0
\(724\) 0 0
\(725\) 33.1662i 1.23176i
\(726\) 0 0
\(727\) −46.0000 −1.70605 −0.853023 0.521874i \(-0.825233\pi\)
−0.853023 + 0.521874i \(0.825233\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 33.3096 1.23032 0.615159 0.788403i \(-0.289092\pi\)
0.615159 + 0.788403i \(0.289092\pi\)
\(734\) 36.7696i 1.35719i
\(735\) 0 0
\(736\) 45.5233 1.67801
\(737\) 0 0
\(738\) 0 0
\(739\) −12.8329 −0.472066 −0.236033 0.971745i \(-0.575847\pi\)
−0.236033 + 0.971745i \(0.575847\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 52.9652i 1.93920i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 9.38083 0.342311 0.171156 0.985244i \(-0.445250\pi\)
0.171156 + 0.985244i \(0.445250\pi\)
\(752\) 1.75127i 0.0638624i
\(753\) 0 0
\(754\) −25.2383 −0.919126
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 50.0361i 1.81024i
\(765\) 0 0
\(766\) 47.3808 1.71194
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) −46.9042 −1.68485
\(776\) 53.0660i 1.90496i
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −54.8329 −1.96208
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 55.4521 1.97665 0.988327 0.152350i \(-0.0486842\pi\)
0.988327 + 0.152350i \(0.0486842\pi\)
\(788\) − 39.5980i − 1.41062i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 39.5233 1.40351
\(794\) 0 0
\(795\) 0 0
\(796\) −4.00000 −0.141776
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) − 28.2843i − 1.00000i
\(801\) 0 0
\(802\) 51.5233 1.81935
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) − 35.6924i − 1.25721i
\(807\) 0 0
\(808\) 8.00000 0.281439
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) −44.6904 −1.56929 −0.784646 0.619944i \(-0.787155\pi\)
−0.784646 + 0.619944i \(0.787155\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −28.7617 −1.00624
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 53.7401i 1.87554i 0.347253 + 0.937771i \(0.387115\pi\)
−0.347253 + 0.937771i \(0.612885\pi\)
\(822\) 0 0
\(823\) 50.0000 1.74289 0.871445 0.490493i \(-0.163183\pi\)
0.871445 + 0.490493i \(0.163183\pi\)
\(824\) − 26.5330i − 0.924321i
\(825\) 0 0
\(826\) 0 0
\(827\) − 46.4327i − 1.61462i −0.590124 0.807312i \(-0.700921\pi\)
0.590124 0.807312i \(-0.299079\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 21.5233 0.746187
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) − 57.6457i − 1.99372i
\(837\) 0 0
\(838\) 0 0
\(839\) 57.2079i 1.97504i 0.157508 + 0.987518i \(0.449654\pi\)
−0.157508 + 0.987518i \(0.550346\pi\)
\(840\) 0 0
\(841\) −15.0000 −0.517241
\(842\) 0 0
\(843\) 0 0
\(844\) −30.6192 −1.05396
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −10.5479 −0.361154 −0.180577 0.983561i \(-0.557796\pi\)
−0.180577 + 0.983561i \(0.557796\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −16.0000 −0.546869
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 34.3789i 1.17027i 0.810935 + 0.585136i \(0.198959\pi\)
−0.810935 + 0.585136i \(0.801041\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 53.0660i 1.80326i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) − 26.3315i − 0.891696i
\(873\) 0 0
\(874\) −98.9042 −3.34548
\(875\) 0 0
\(876\) 0 0
\(877\) −6.83291 −0.230731 −0.115365 0.993323i \(-0.536804\pi\)
−0.115365 + 0.993323i \(0.536804\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 5.99391i 0.201940i 0.994889 + 0.100970i \(0.0321946\pi\)
−0.994889 + 0.100970i \(0.967805\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 20.0000 0.669650
\(893\) − 3.80482i − 0.127324i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 19.2383 0.641992
\(899\) − 62.2254i − 2.07533i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 57.5233 1.91320
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 45.2548i 1.50183i
\(909\) 0 0
\(910\) 0 0
\(911\) 6.29619i 0.208602i 0.994546 + 0.104301i \(0.0332605\pi\)
−0.994546 + 0.104301i \(0.966739\pi\)
\(912\) 0 0
\(913\) −22.0000 −0.728094
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 9.38083 0.308941
\(923\) 44.4800i 1.46408i
\(924\) 0 0
\(925\) 0 0
\(926\) 13.2665i 0.435964i
\(927\) 0 0
\(928\) 37.5233 1.23176
\(929\) 54.2787i 1.78083i 0.455153 + 0.890413i \(0.349584\pi\)
−0.455153 + 0.890413i \(0.650416\pi\)
\(930\) 0 0
\(931\) −60.8329 −1.99372
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 14.1421i − 0.461020i −0.973070 0.230510i \(-0.925960\pi\)
0.973070 0.230510i \(-0.0740395\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 15.5233 0.504707
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 61.4505i 1.99372i
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 57.0000 1.83871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 31.1127i 1.00000i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) − 48.0833i − 1.54069i
\(975\) 0 0
\(976\) −58.7617 −1.88091
\(977\) − 61.8883i − 1.97998i −0.141126 0.989992i \(-0.545072\pi\)
0.141126 0.989992i \(-0.454928\pi\)
\(978\) 0 0
\(979\) 39.3096 1.25634
\(980\) 0 0
\(981\) 0 0
\(982\) 56.0000 1.78703
\(983\) − 50.4739i − 1.60987i −0.593365 0.804933i \(-0.702201\pi\)
0.593365 0.804933i \(-0.297799\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −46.7617 −1.48769
\(989\) − 26.6338i − 0.846904i
\(990\) 0 0
\(991\) −46.9042 −1.48996 −0.744980 0.667087i \(-0.767541\pi\)
−0.744980 + 0.667087i \(0.767541\pi\)
\(992\) 53.0660i 1.68485i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 61.4521 1.94621 0.973103 0.230369i \(-0.0739932\pi\)
0.973103 + 0.230369i \(0.0739932\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.m.b.197.3 yes 4
3.2 odd 2 inner 792.2.m.b.197.2 yes 4
4.3 odd 2 3168.2.m.b.593.3 4
8.3 odd 2 3168.2.m.a.593.2 4
8.5 even 2 792.2.m.a.197.2 4
11.10 odd 2 792.2.m.a.197.2 4
12.11 even 2 3168.2.m.b.593.1 4
24.5 odd 2 792.2.m.a.197.3 yes 4
24.11 even 2 3168.2.m.a.593.4 4
33.32 even 2 792.2.m.a.197.3 yes 4
44.43 even 2 3168.2.m.a.593.2 4
88.21 odd 2 CM 792.2.m.b.197.3 yes 4
88.43 even 2 3168.2.m.b.593.3 4
132.131 odd 2 3168.2.m.a.593.4 4
264.131 odd 2 3168.2.m.b.593.1 4
264.197 even 2 inner 792.2.m.b.197.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.m.a.197.2 4 8.5 even 2
792.2.m.a.197.2 4 11.10 odd 2
792.2.m.a.197.3 yes 4 24.5 odd 2
792.2.m.a.197.3 yes 4 33.32 even 2
792.2.m.b.197.2 yes 4 3.2 odd 2 inner
792.2.m.b.197.2 yes 4 264.197 even 2 inner
792.2.m.b.197.3 yes 4 1.1 even 1 trivial
792.2.m.b.197.3 yes 4 88.21 odd 2 CM
3168.2.m.a.593.2 4 8.3 odd 2
3168.2.m.a.593.2 4 44.43 even 2
3168.2.m.a.593.4 4 24.11 even 2
3168.2.m.a.593.4 4 132.131 odd 2
3168.2.m.b.593.1 4 12.11 even 2
3168.2.m.b.593.1 4 264.131 odd 2
3168.2.m.b.593.3 4 4.3 odd 2
3168.2.m.b.593.3 4 88.43 even 2