Properties

Label 792.2.f.h.397.16
Level $792$
Weight $2$
Character 792.397
Analytic conductor $6.324$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(397,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.397"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,4,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: 20.0.74831334220841134637329678336.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2x^{18} + 5x^{16} - 8x^{14} + 28x^{12} - 64x^{10} + 112x^{8} - 128x^{6} + 320x^{4} - 512x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 397.16
Root \(-1.13849 + 0.838954i\) of defining polynomial
Character \(\chi\) \(=\) 792.397
Dual form 792.2.f.h.397.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.13849 + 0.838954i) q^{2} +(0.592314 + 1.91028i) q^{4} +3.89064i q^{5} -1.77496 q^{7} +(-0.928292 + 2.67175i) q^{8} +(-3.26407 + 4.42945i) q^{10} +1.00000i q^{11} -5.27974i q^{13} +(-2.02077 - 1.48911i) q^{14} +(-3.29833 + 2.26297i) q^{16} -2.76137 q^{17} +4.13356i q^{19} +(-7.43221 + 2.30448i) q^{20} +(-0.838954 + 1.13849i) q^{22} +6.91533 q^{23} -10.1371 q^{25} +(4.42945 - 6.01092i) q^{26} +(-1.05133 - 3.39067i) q^{28} -1.74643i q^{29} +5.35581 q^{31} +(-5.65364 - 0.190780i) q^{32} +(-3.14379 - 2.31666i) q^{34} -6.90573i q^{35} -3.18176i q^{37} +(-3.46787 + 4.70601i) q^{38} +(-10.3948 - 3.61165i) q^{40} -2.49796 q^{41} +2.49796i q^{43} +(-1.91028 + 0.592314i) q^{44} +(7.87303 + 5.80164i) q^{46} +11.5487 q^{47} -3.84952 q^{49} +(-11.5410 - 8.50456i) q^{50} +(10.0858 - 3.12726i) q^{52} +9.61571i q^{53} -3.89064 q^{55} +(1.64768 - 4.74226i) q^{56} +(1.46517 - 1.98829i) q^{58} +9.27499i q^{59} +13.8896i q^{61} +(6.09753 + 4.49328i) q^{62} +(-6.27655 - 4.96034i) q^{64} +20.5416 q^{65} +3.84858i q^{67} +(-1.63560 - 5.27499i) q^{68} +(5.79359 - 7.86210i) q^{70} +7.62071 q^{71} -10.7678 q^{73} +(2.66935 - 3.62240i) q^{74} +(-7.89626 + 2.44837i) q^{76} -1.77496i q^{77} -0.281256 q^{79} +(-8.80440 - 12.8326i) q^{80} +(-2.84390 - 2.09568i) q^{82} +0.313040i q^{83} -10.7435i q^{85} +(-2.09568 + 2.84390i) q^{86} +(-2.67175 - 0.928292i) q^{88} -2.47638 q^{89} +9.37132i q^{91} +(4.09605 + 13.2102i) q^{92} +(13.1480 + 9.68879i) q^{94} -16.0822 q^{95} +11.7005 q^{97} +(-4.38263 - 3.22957i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{4} + 8 q^{10} - 12 q^{16} - 12 q^{25} + 24 q^{28} + 40 q^{31} - 24 q^{34} - 32 q^{40} + 40 q^{46} + 36 q^{49} + 56 q^{52} - 16 q^{55} + 24 q^{58} + 4 q^{64} + 56 q^{70} - 56 q^{73} - 8 q^{76}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.13849 + 0.838954i 0.805033 + 0.593230i
\(3\) 0 0
\(4\) 0.592314 + 1.91028i 0.296157 + 0.955139i
\(5\) 3.89064i 1.73995i 0.493097 + 0.869974i \(0.335865\pi\)
−0.493097 + 0.869974i \(0.664135\pi\)
\(6\) 0 0
\(7\) −1.77496 −0.670872 −0.335436 0.942063i \(-0.608884\pi\)
−0.335436 + 0.942063i \(0.608884\pi\)
\(8\) −0.928292 + 2.67175i −0.328201 + 0.944608i
\(9\) 0 0
\(10\) −3.26407 + 4.42945i −1.03219 + 1.40072i
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 5.27974i 1.46434i −0.681124 0.732168i \(-0.738509\pi\)
0.681124 0.732168i \(-0.261491\pi\)
\(14\) −2.02077 1.48911i −0.540074 0.397981i
\(15\) 0 0
\(16\) −3.29833 + 2.26297i −0.824582 + 0.565742i
\(17\) −2.76137 −0.669731 −0.334865 0.942266i \(-0.608691\pi\)
−0.334865 + 0.942266i \(0.608691\pi\)
\(18\) 0 0
\(19\) 4.13356i 0.948304i 0.880443 + 0.474152i \(0.157245\pi\)
−0.880443 + 0.474152i \(0.842755\pi\)
\(20\) −7.43221 + 2.30448i −1.66189 + 0.515298i
\(21\) 0 0
\(22\) −0.838954 + 1.13849i −0.178866 + 0.242727i
\(23\) 6.91533 1.44195 0.720973 0.692963i \(-0.243695\pi\)
0.720973 + 0.692963i \(0.243695\pi\)
\(24\) 0 0
\(25\) −10.1371 −2.02742
\(26\) 4.42945 6.01092i 0.868687 1.17884i
\(27\) 0 0
\(28\) −1.05133 3.39067i −0.198683 0.640776i
\(29\) 1.74643i 0.324303i −0.986766 0.162152i \(-0.948157\pi\)
0.986766 0.162152i \(-0.0518434\pi\)
\(30\) 0 0
\(31\) 5.35581 0.961933 0.480966 0.876739i \(-0.340286\pi\)
0.480966 + 0.876739i \(0.340286\pi\)
\(32\) −5.65364 0.190780i −0.999431 0.0337255i
\(33\) 0 0
\(34\) −3.14379 2.31666i −0.539156 0.397304i
\(35\) 6.90573i 1.16728i
\(36\) 0 0
\(37\) 3.18176i 0.523079i −0.965193 0.261539i \(-0.915770\pi\)
0.965193 0.261539i \(-0.0842301\pi\)
\(38\) −3.46787 + 4.70601i −0.562562 + 0.763416i
\(39\) 0 0
\(40\) −10.3948 3.61165i −1.64357 0.571053i
\(41\) −2.49796 −0.390116 −0.195058 0.980792i \(-0.562490\pi\)
−0.195058 + 0.980792i \(0.562490\pi\)
\(42\) 0 0
\(43\) 2.49796i 0.380936i 0.981693 + 0.190468i \(0.0610005\pi\)
−0.981693 + 0.190468i \(0.938999\pi\)
\(44\) −1.91028 + 0.592314i −0.287985 + 0.0892947i
\(45\) 0 0
\(46\) 7.87303 + 5.80164i 1.16082 + 0.855406i
\(47\) 11.5487 1.68455 0.842273 0.539052i \(-0.181217\pi\)
0.842273 + 0.539052i \(0.181217\pi\)
\(48\) 0 0
\(49\) −3.84952 −0.549931
\(50\) −11.5410 8.50456i −1.63214 1.20273i
\(51\) 0 0
\(52\) 10.0858 3.12726i 1.39864 0.433673i
\(53\) 9.61571i 1.32082i 0.750905 + 0.660410i \(0.229617\pi\)
−0.750905 + 0.660410i \(0.770383\pi\)
\(54\) 0 0
\(55\) −3.89064 −0.524614
\(56\) 1.64768 4.74226i 0.220181 0.633711i
\(57\) 0 0
\(58\) 1.46517 1.98829i 0.192386 0.261075i
\(59\) 9.27499i 1.20750i 0.797173 + 0.603750i \(0.206328\pi\)
−0.797173 + 0.603750i \(0.793672\pi\)
\(60\) 0 0
\(61\) 13.8896i 1.77839i 0.457532 + 0.889193i \(0.348733\pi\)
−0.457532 + 0.889193i \(0.651267\pi\)
\(62\) 6.09753 + 4.49328i 0.774388 + 0.570647i
\(63\) 0 0
\(64\) −6.27655 4.96034i −0.784568 0.620042i
\(65\) 20.5416 2.54787
\(66\) 0 0
\(67\) 3.84858i 0.470178i 0.971974 + 0.235089i \(0.0755382\pi\)
−0.971974 + 0.235089i \(0.924462\pi\)
\(68\) −1.63560 5.27499i −0.198345 0.639686i
\(69\) 0 0
\(70\) 5.79359 7.86210i 0.692466 0.939701i
\(71\) 7.62071 0.904412 0.452206 0.891913i \(-0.350637\pi\)
0.452206 + 0.891913i \(0.350637\pi\)
\(72\) 0 0
\(73\) −10.7678 −1.26028 −0.630140 0.776481i \(-0.717003\pi\)
−0.630140 + 0.776481i \(0.717003\pi\)
\(74\) 2.66935 3.62240i 0.310306 0.421096i
\(75\) 0 0
\(76\) −7.89626 + 2.44837i −0.905763 + 0.280847i
\(77\) 1.77496i 0.202275i
\(78\) 0 0
\(79\) −0.281256 −0.0316438 −0.0158219 0.999875i \(-0.505036\pi\)
−0.0158219 + 0.999875i \(0.505036\pi\)
\(80\) −8.80440 12.8326i −0.984362 1.43473i
\(81\) 0 0
\(82\) −2.84390 2.09568i −0.314057 0.231429i
\(83\) 0.313040i 0.0343606i 0.999852 + 0.0171803i \(0.00546892\pi\)
−0.999852 + 0.0171803i \(0.994531\pi\)
\(84\) 0 0
\(85\) 10.7435i 1.16530i
\(86\) −2.09568 + 2.84390i −0.225983 + 0.306666i
\(87\) 0 0
\(88\) −2.67175 0.928292i −0.284810 0.0989563i
\(89\) −2.47638 −0.262496 −0.131248 0.991350i \(-0.541898\pi\)
−0.131248 + 0.991350i \(0.541898\pi\)
\(90\) 0 0
\(91\) 9.37132i 0.982381i
\(92\) 4.09605 + 13.2102i 0.427042 + 1.37726i
\(93\) 0 0
\(94\) 13.1480 + 9.68879i 1.35611 + 0.999322i
\(95\) −16.0822 −1.65000
\(96\) 0 0
\(97\) 11.7005 1.18800 0.594001 0.804464i \(-0.297548\pi\)
0.594001 + 0.804464i \(0.297548\pi\)
\(98\) −4.38263 3.22957i −0.442713 0.326236i
\(99\) 0 0
\(100\) −6.00434 19.3647i −0.600434 1.93647i
\(101\) 1.52771i 0.152013i −0.997107 0.0760066i \(-0.975783\pi\)
0.997107 0.0760066i \(-0.0242170\pi\)
\(102\) 0 0
\(103\) 11.6174 1.14469 0.572346 0.820012i \(-0.306033\pi\)
0.572346 + 0.820012i \(0.306033\pi\)
\(104\) 14.1062 + 4.90114i 1.38322 + 0.480596i
\(105\) 0 0
\(106\) −8.06714 + 10.9474i −0.783550 + 1.06330i
\(107\) 10.9430i 1.05790i −0.848653 0.528950i \(-0.822586\pi\)
0.848653 0.528950i \(-0.177414\pi\)
\(108\) 0 0
\(109\) 9.39172i 0.899563i −0.893139 0.449782i \(-0.851502\pi\)
0.893139 0.449782i \(-0.148498\pi\)
\(110\) −4.42945 3.26407i −0.422332 0.311217i
\(111\) 0 0
\(112\) 5.85440 4.01668i 0.553189 0.379540i
\(113\) 20.0102 1.88240 0.941199 0.337853i \(-0.109701\pi\)
0.941199 + 0.337853i \(0.109701\pi\)
\(114\) 0 0
\(115\) 26.9051i 2.50891i
\(116\) 3.33616 1.03443i 0.309755 0.0960447i
\(117\) 0 0
\(118\) −7.78129 + 10.5595i −0.716325 + 0.972078i
\(119\) 4.90132 0.449304
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) −11.6528 + 15.8132i −1.05499 + 1.43166i
\(123\) 0 0
\(124\) 3.17232 + 10.2311i 0.284883 + 0.918780i
\(125\) 19.9866i 1.78766i
\(126\) 0 0
\(127\) −4.00717 −0.355579 −0.177790 0.984069i \(-0.556895\pi\)
−0.177790 + 0.984069i \(0.556895\pi\)
\(128\) −2.98428 10.9130i −0.263776 0.964584i
\(129\) 0 0
\(130\) 23.3863 + 17.2334i 2.05112 + 1.51147i
\(131\) 11.3685i 0.993267i 0.867960 + 0.496634i \(0.165431\pi\)
−0.867960 + 0.496634i \(0.834569\pi\)
\(132\) 0 0
\(133\) 7.33691i 0.636191i
\(134\) −3.22878 + 4.38156i −0.278924 + 0.378509i
\(135\) 0 0
\(136\) 2.56336 7.37771i 0.219806 0.632633i
\(137\) 1.63560 0.139739 0.0698693 0.997556i \(-0.477742\pi\)
0.0698693 + 0.997556i \(0.477742\pi\)
\(138\) 0 0
\(139\) 14.1950i 1.20401i −0.798494 0.602003i \(-0.794369\pi\)
0.798494 0.602003i \(-0.205631\pi\)
\(140\) 13.1919 4.09036i 1.11492 0.345699i
\(141\) 0 0
\(142\) 8.67610 + 6.39343i 0.728082 + 0.536524i
\(143\) 5.27974 0.441514
\(144\) 0 0
\(145\) 6.79473 0.564271
\(146\) −12.2591 9.03372i −1.01457 0.747636i
\(147\) 0 0
\(148\) 6.07806 1.88460i 0.499613 0.154913i
\(149\) 12.2964i 1.00736i −0.863890 0.503680i \(-0.831979\pi\)
0.863890 0.503680i \(-0.168021\pi\)
\(150\) 0 0
\(151\) 20.0492 1.63158 0.815789 0.578350i \(-0.196303\pi\)
0.815789 + 0.578350i \(0.196303\pi\)
\(152\) −11.0439 3.83715i −0.895776 0.311234i
\(153\) 0 0
\(154\) 1.48911 2.02077i 0.119996 0.162838i
\(155\) 20.8376i 1.67371i
\(156\) 0 0
\(157\) 24.3493i 1.94329i −0.236447 0.971644i \(-0.575983\pi\)
0.236447 0.971644i \(-0.424017\pi\)
\(158\) −0.320207 0.235961i −0.0254743 0.0187720i
\(159\) 0 0
\(160\) 0.742257 21.9963i 0.0586806 1.73896i
\(161\) −12.2744 −0.967361
\(162\) 0 0
\(163\) 20.8050i 1.62957i −0.579762 0.814786i \(-0.696855\pi\)
0.579762 0.814786i \(-0.303145\pi\)
\(164\) −1.47958 4.77181i −0.115536 0.372616i
\(165\) 0 0
\(166\) −0.262626 + 0.356392i −0.0203837 + 0.0276614i
\(167\) −24.9601 −1.93147 −0.965736 0.259527i \(-0.916433\pi\)
−0.965736 + 0.259527i \(0.916433\pi\)
\(168\) 0 0
\(169\) −14.8756 −1.14428
\(170\) 9.01331 12.2314i 0.691289 0.938103i
\(171\) 0 0
\(172\) −4.77181 + 1.47958i −0.363847 + 0.112817i
\(173\) 5.19657i 0.395088i 0.980294 + 0.197544i \(0.0632965\pi\)
−0.980294 + 0.197544i \(0.936704\pi\)
\(174\) 0 0
\(175\) 17.9929 1.36014
\(176\) −2.26297 3.29833i −0.170578 0.248621i
\(177\) 0 0
\(178\) −2.81934 2.07757i −0.211318 0.155721i
\(179\) 3.83835i 0.286892i −0.989658 0.143446i \(-0.954182\pi\)
0.989658 0.143446i \(-0.0458183\pi\)
\(180\) 0 0
\(181\) 9.10791i 0.676986i −0.940969 0.338493i \(-0.890083\pi\)
0.940969 0.338493i \(-0.109917\pi\)
\(182\) −7.86210 + 10.6691i −0.582778 + 0.790849i
\(183\) 0 0
\(184\) −6.41945 + 18.4761i −0.473248 + 1.36207i
\(185\) 12.3791 0.910130
\(186\) 0 0
\(187\) 2.76137i 0.201931i
\(188\) 6.84043 + 22.0612i 0.498890 + 1.60898i
\(189\) 0 0
\(190\) −18.3094 13.4922i −1.32831 0.978829i
\(191\) −9.57028 −0.692481 −0.346241 0.938146i \(-0.612542\pi\)
−0.346241 + 0.938146i \(0.612542\pi\)
\(192\) 0 0
\(193\) 18.7186 1.34740 0.673698 0.739007i \(-0.264705\pi\)
0.673698 + 0.739007i \(0.264705\pi\)
\(194\) 13.3208 + 9.81614i 0.956381 + 0.704758i
\(195\) 0 0
\(196\) −2.28012 7.35365i −0.162866 0.525261i
\(197\) 23.1078i 1.64636i 0.567778 + 0.823182i \(0.307803\pi\)
−0.567778 + 0.823182i \(0.692197\pi\)
\(198\) 0 0
\(199\) −10.2068 −0.723538 −0.361769 0.932268i \(-0.617827\pi\)
−0.361769 + 0.932268i \(0.617827\pi\)
\(200\) 9.41019 27.0838i 0.665401 1.91512i
\(201\) 0 0
\(202\) 1.28168 1.73928i 0.0901787 0.122376i
\(203\) 3.09984i 0.217566i
\(204\) 0 0
\(205\) 9.71869i 0.678782i
\(206\) 13.2262 + 9.74643i 0.921516 + 0.679066i
\(207\) 0 0
\(208\) 11.9479 + 17.4143i 0.828436 + 1.20746i
\(209\) −4.13356 −0.285925
\(210\) 0 0
\(211\) 10.3079i 0.709624i −0.934938 0.354812i \(-0.884545\pi\)
0.934938 0.354812i \(-0.115455\pi\)
\(212\) −18.3687 + 5.69552i −1.26157 + 0.391170i
\(213\) 0 0
\(214\) 9.18066 12.4585i 0.627577 0.851644i
\(215\) −9.71869 −0.662809
\(216\) 0 0
\(217\) −9.50635 −0.645333
\(218\) 7.87922 10.6924i 0.533648 0.724178i
\(219\) 0 0
\(220\) −2.30448 7.43221i −0.155368 0.501080i
\(221\) 14.5793i 0.980711i
\(222\) 0 0
\(223\) 27.9184 1.86956 0.934779 0.355231i \(-0.115598\pi\)
0.934779 + 0.355231i \(0.115598\pi\)
\(224\) 10.0350 + 0.338627i 0.670490 + 0.0226255i
\(225\) 0 0
\(226\) 22.7813 + 16.7876i 1.51539 + 1.11669i
\(227\) 4.00000i 0.265489i −0.991150 0.132745i \(-0.957621\pi\)
0.991150 0.132745i \(-0.0423790\pi\)
\(228\) 0 0
\(229\) 7.86372i 0.519649i 0.965656 + 0.259825i \(0.0836648\pi\)
−0.965656 + 0.259825i \(0.916335\pi\)
\(230\) −22.5721 + 30.6311i −1.48836 + 2.01976i
\(231\) 0 0
\(232\) 4.66603 + 1.62120i 0.306340 + 0.106437i
\(233\) −14.0363 −0.919548 −0.459774 0.888036i \(-0.652070\pi\)
−0.459774 + 0.888036i \(0.652070\pi\)
\(234\) 0 0
\(235\) 44.9317i 2.93102i
\(236\) −17.7178 + 5.49370i −1.15333 + 0.357610i
\(237\) 0 0
\(238\) 5.58010 + 4.11198i 0.361704 + 0.266540i
\(239\) 14.1038 0.912302 0.456151 0.889903i \(-0.349228\pi\)
0.456151 + 0.889903i \(0.349228\pi\)
\(240\) 0 0
\(241\) 4.79473 0.308855 0.154428 0.988004i \(-0.450647\pi\)
0.154428 + 0.988004i \(0.450647\pi\)
\(242\) −1.13849 0.838954i −0.0731848 0.0539300i
\(243\) 0 0
\(244\) −26.5331 + 8.22702i −1.69861 + 0.526681i
\(245\) 14.9771i 0.956852i
\(246\) 0 0
\(247\) 21.8241 1.38864
\(248\) −4.97176 + 14.3094i −0.315707 + 0.908649i
\(249\) 0 0
\(250\) 16.7678 22.7545i 1.06049 1.43912i
\(251\) 3.79797i 0.239726i 0.992790 + 0.119863i \(0.0382455\pi\)
−0.992790 + 0.119863i \(0.961755\pi\)
\(252\) 0 0
\(253\) 6.91533i 0.434763i
\(254\) −4.56212 3.36183i −0.286253 0.210940i
\(255\) 0 0
\(256\) 5.75795 14.9280i 0.359872 0.933002i
\(257\) −10.0615 −0.627617 −0.313808 0.949486i \(-0.601605\pi\)
−0.313808 + 0.949486i \(0.601605\pi\)
\(258\) 0 0
\(259\) 5.64750i 0.350919i
\(260\) 12.1671 + 39.2401i 0.754569 + 2.43357i
\(261\) 0 0
\(262\) −9.53761 + 12.9429i −0.589236 + 0.799613i
\(263\) 19.3534 1.19338 0.596691 0.802471i \(-0.296482\pi\)
0.596691 + 0.802471i \(0.296482\pi\)
\(264\) 0 0
\(265\) −37.4113 −2.29816
\(266\) 6.15532 8.35299i 0.377407 0.512154i
\(267\) 0 0
\(268\) −7.35185 + 2.27956i −0.449086 + 0.139247i
\(269\) 2.15219i 0.131221i 0.997845 + 0.0656107i \(0.0208995\pi\)
−0.997845 + 0.0656107i \(0.979100\pi\)
\(270\) 0 0
\(271\) −20.6117 −1.25207 −0.626035 0.779795i \(-0.715323\pi\)
−0.626035 + 0.779795i \(0.715323\pi\)
\(272\) 9.10791 6.24890i 0.552248 0.378895i
\(273\) 0 0
\(274\) 1.86211 + 1.37219i 0.112494 + 0.0828971i
\(275\) 10.1371i 0.611290i
\(276\) 0 0
\(277\) 11.6381i 0.699265i −0.936887 0.349633i \(-0.886306\pi\)
0.936887 0.349633i \(-0.113694\pi\)
\(278\) 11.9090 16.1609i 0.714252 0.969265i
\(279\) 0 0
\(280\) 18.4504 + 6.41054i 1.10262 + 0.383103i
\(281\) −0.509825 −0.0304136 −0.0152068 0.999884i \(-0.504841\pi\)
−0.0152068 + 0.999884i \(0.504841\pi\)
\(282\) 0 0
\(283\) 28.0309i 1.66626i 0.553076 + 0.833131i \(0.313454\pi\)
−0.553076 + 0.833131i \(0.686546\pi\)
\(284\) 4.51385 + 14.5577i 0.267848 + 0.863840i
\(285\) 0 0
\(286\) 6.01092 + 4.42945i 0.355433 + 0.261919i
\(287\) 4.43379 0.261718
\(288\) 0 0
\(289\) −9.37483 −0.551460
\(290\) 7.73572 + 5.70046i 0.454257 + 0.334743i
\(291\) 0 0
\(292\) −6.37794 20.5696i −0.373241 1.20374i
\(293\) 2.58472i 0.151001i 0.997146 + 0.0755004i \(0.0240554\pi\)
−0.997146 + 0.0755004i \(0.975945\pi\)
\(294\) 0 0
\(295\) −36.0857 −2.10099
\(296\) 8.50089 + 2.95361i 0.494104 + 0.171675i
\(297\) 0 0
\(298\) 10.3161 13.9993i 0.597596 0.810959i
\(299\) 36.5111i 2.11149i
\(300\) 0 0
\(301\) 4.43379i 0.255559i
\(302\) 22.8257 + 16.8203i 1.31347 + 0.967900i
\(303\) 0 0
\(304\) −9.35412 13.6338i −0.536496 0.781955i
\(305\) −54.0396 −3.09430
\(306\) 0 0
\(307\) 13.0982i 0.747556i −0.927518 0.373778i \(-0.878062\pi\)
0.927518 0.373778i \(-0.121938\pi\)
\(308\) 3.39067 1.05133i 0.193201 0.0599053i
\(309\) 0 0
\(310\) −17.4817 + 23.7233i −0.992896 + 1.34739i
\(311\) −16.8181 −0.953665 −0.476832 0.878994i \(-0.658215\pi\)
−0.476832 + 0.878994i \(0.658215\pi\)
\(312\) 0 0
\(313\) −5.02609 −0.284091 −0.142046 0.989860i \(-0.545368\pi\)
−0.142046 + 0.989860i \(0.545368\pi\)
\(314\) 20.4280 27.7215i 1.15282 1.56441i
\(315\) 0 0
\(316\) −0.166592 0.537277i −0.00937152 0.0302242i
\(317\) 3.45321i 0.193952i 0.995287 + 0.0969759i \(0.0309170\pi\)
−0.995287 + 0.0969759i \(0.969083\pi\)
\(318\) 0 0
\(319\) 1.74643 0.0977812
\(320\) 19.2989 24.4198i 1.07884 1.36511i
\(321\) 0 0
\(322\) −13.9743 10.2977i −0.778758 0.573868i
\(323\) 11.4143i 0.635109i
\(324\) 0 0
\(325\) 53.5212i 2.96882i
\(326\) 17.4544 23.6862i 0.966710 1.31186i
\(327\) 0 0
\(328\) 2.31884 6.67395i 0.128037 0.368507i
\(329\) −20.4984 −1.13011
\(330\) 0 0
\(331\) 4.99593i 0.274601i −0.990529 0.137301i \(-0.956157\pi\)
0.990529 0.137301i \(-0.0438426\pi\)
\(332\) −0.597993 + 0.185418i −0.0328191 + 0.0101761i
\(333\) 0 0
\(334\) −28.4168 20.9404i −1.55490 1.14581i
\(335\) −14.9734 −0.818086
\(336\) 0 0
\(337\) 34.0563 1.85517 0.927583 0.373616i \(-0.121882\pi\)
0.927583 + 0.373616i \(0.121882\pi\)
\(338\) −16.9357 12.4799i −0.921182 0.678820i
\(339\) 0 0
\(340\) 20.5231 6.36353i 1.11302 0.345111i
\(341\) 5.35581i 0.290034i
\(342\) 0 0
\(343\) 19.2575 1.03980
\(344\) −6.67395 2.31884i −0.359835 0.125024i
\(345\) 0 0
\(346\) −4.35968 + 5.91623i −0.234378 + 0.318059i
\(347\) 11.4112i 0.612584i 0.951938 + 0.306292i \(0.0990884\pi\)
−0.951938 + 0.306292i \(0.900912\pi\)
\(348\) 0 0
\(349\) 5.73177i 0.306815i 0.988163 + 0.153407i \(0.0490247\pi\)
−0.988163 + 0.153407i \(0.950975\pi\)
\(350\) 20.4848 + 15.0952i 1.09496 + 0.806875i
\(351\) 0 0
\(352\) 0.190780 5.65364i 0.0101686 0.301340i
\(353\) 13.6007 0.723890 0.361945 0.932199i \(-0.382113\pi\)
0.361945 + 0.932199i \(0.382113\pi\)
\(354\) 0 0
\(355\) 29.6495i 1.57363i
\(356\) −1.46680 4.73058i −0.0777401 0.250720i
\(357\) 0 0
\(358\) 3.22020 4.36992i 0.170193 0.230957i
\(359\) −3.62597 −0.191371 −0.0956856 0.995412i \(-0.530504\pi\)
−0.0956856 + 0.995412i \(0.530504\pi\)
\(360\) 0 0
\(361\) 1.91366 0.100719
\(362\) 7.64111 10.3693i 0.401608 0.544996i
\(363\) 0 0
\(364\) −17.9018 + 5.55076i −0.938311 + 0.290939i
\(365\) 41.8938i 2.19282i
\(366\) 0 0
\(367\) −31.8060 −1.66026 −0.830130 0.557570i \(-0.811734\pi\)
−0.830130 + 0.557570i \(0.811734\pi\)
\(368\) −22.8090 + 15.6492i −1.18900 + 0.815770i
\(369\) 0 0
\(370\) 14.0935 + 10.3855i 0.732685 + 0.539916i
\(371\) 17.0675i 0.886101i
\(372\) 0 0
\(373\) 14.9984i 0.776589i −0.921535 0.388294i \(-0.873064\pi\)
0.921535 0.388294i \(-0.126936\pi\)
\(374\) 2.31666 3.14379i 0.119792 0.162562i
\(375\) 0 0
\(376\) −10.7205 + 30.8552i −0.552869 + 1.59123i
\(377\) −9.22068 −0.474889
\(378\) 0 0
\(379\) 19.2153i 0.987026i −0.869738 0.493513i \(-0.835713\pi\)
0.869738 0.493513i \(-0.164287\pi\)
\(380\) −9.52572 30.7215i −0.488659 1.57598i
\(381\) 0 0
\(382\) −10.8957 8.02902i −0.557471 0.410801i
\(383\) 6.37652 0.325825 0.162913 0.986641i \(-0.447911\pi\)
0.162913 + 0.986641i \(0.447911\pi\)
\(384\) 0 0
\(385\) 6.90573 0.351949
\(386\) 21.3109 + 15.7041i 1.08470 + 0.799315i
\(387\) 0 0
\(388\) 6.93034 + 22.3511i 0.351835 + 1.13471i
\(389\) 17.7726i 0.901104i 0.892750 + 0.450552i \(0.148773\pi\)
−0.892750 + 0.450552i \(0.851227\pi\)
\(390\) 0 0
\(391\) −19.0958 −0.965716
\(392\) 3.57348 10.2850i 0.180488 0.519469i
\(393\) 0 0
\(394\) −19.3864 + 26.3080i −0.976672 + 1.32538i
\(395\) 1.09427i 0.0550585i
\(396\) 0 0
\(397\) 23.9120i 1.20011i 0.799960 + 0.600053i \(0.204854\pi\)
−0.799960 + 0.600053i \(0.795146\pi\)
\(398\) −11.6203 8.56299i −0.582472 0.429224i
\(399\) 0 0
\(400\) 33.4355 22.9399i 1.67177 1.14700i
\(401\) −16.1230 −0.805145 −0.402572 0.915388i \(-0.631884\pi\)
−0.402572 + 0.915388i \(0.631884\pi\)
\(402\) 0 0
\(403\) 28.2773i 1.40859i
\(404\) 2.91836 0.904885i 0.145194 0.0450197i
\(405\) 0 0
\(406\) −2.60062 + 3.52913i −0.129067 + 0.175148i
\(407\) 3.18176 0.157714
\(408\) 0 0
\(409\) −8.08555 −0.399805 −0.199902 0.979816i \(-0.564062\pi\)
−0.199902 + 0.979816i \(0.564062\pi\)
\(410\) 8.15353 11.0646i 0.402674 0.546442i
\(411\) 0 0
\(412\) 6.88112 + 22.1924i 0.339009 + 1.09334i
\(413\) 16.4627i 0.810078i
\(414\) 0 0
\(415\) −1.21792 −0.0597856
\(416\) −1.00727 + 29.8497i −0.0493854 + 1.46350i
\(417\) 0 0
\(418\) −4.70601 3.46787i −0.230179 0.169619i
\(419\) 20.8868i 1.02039i −0.860060 0.510193i \(-0.829574\pi\)
0.860060 0.510193i \(-0.170426\pi\)
\(420\) 0 0
\(421\) 23.6241i 1.15137i −0.817672 0.575685i \(-0.804736\pi\)
0.817672 0.575685i \(-0.195264\pi\)
\(422\) 8.64783 11.7354i 0.420970 0.571271i
\(423\) 0 0
\(424\) −25.6908 8.92619i −1.24766 0.433494i
\(425\) 27.9923 1.35783
\(426\) 0 0
\(427\) 24.6535i 1.19307i
\(428\) 20.9042 6.48169i 1.01044 0.313304i
\(429\) 0 0
\(430\) −11.0646 8.15353i −0.533583 0.393198i
\(431\) 23.2865 1.12167 0.560836 0.827927i \(-0.310480\pi\)
0.560836 + 0.827927i \(0.310480\pi\)
\(432\) 0 0
\(433\) −19.8518 −0.954019 −0.477009 0.878898i \(-0.658279\pi\)
−0.477009 + 0.878898i \(0.658279\pi\)
\(434\) −10.8229 7.97539i −0.519515 0.382831i
\(435\) 0 0
\(436\) 17.9408 5.56284i 0.859208 0.266412i
\(437\) 28.5850i 1.36740i
\(438\) 0 0
\(439\) −11.9661 −0.571109 −0.285554 0.958362i \(-0.592178\pi\)
−0.285554 + 0.958362i \(0.592178\pi\)
\(440\) 3.61165 10.3948i 0.172179 0.495555i
\(441\) 0 0
\(442\) −12.2314 + 16.5984i −0.581787 + 0.789505i
\(443\) 10.9365i 0.519608i −0.965661 0.259804i \(-0.916342\pi\)
0.965661 0.259804i \(-0.0836580\pi\)
\(444\) 0 0
\(445\) 9.63473i 0.456730i
\(446\) 31.7848 + 23.4223i 1.50506 + 1.10908i
\(447\) 0 0
\(448\) 11.1406 + 8.80440i 0.526345 + 0.415969i
\(449\) −11.3951 −0.537767 −0.268884 0.963173i \(-0.586655\pi\)
−0.268884 + 0.963173i \(0.586655\pi\)
\(450\) 0 0
\(451\) 2.49796i 0.117625i
\(452\) 11.8523 + 38.2250i 0.557485 + 1.79795i
\(453\) 0 0
\(454\) 3.35581 4.55396i 0.157496 0.213728i
\(455\) −36.4604 −1.70929
\(456\) 0 0
\(457\) 21.8591 1.02253 0.511263 0.859424i \(-0.329178\pi\)
0.511263 + 0.859424i \(0.329178\pi\)
\(458\) −6.59730 + 8.95276i −0.308271 + 0.418335i
\(459\) 0 0
\(460\) −51.3962 + 15.9363i −2.39636 + 0.743032i
\(461\) 28.5151i 1.32808i −0.747696 0.664041i \(-0.768840\pi\)
0.747696 0.664041i \(-0.231160\pi\)
\(462\) 0 0
\(463\) −17.6442 −0.819998 −0.409999 0.912086i \(-0.634471\pi\)
−0.409999 + 0.912086i \(0.634471\pi\)
\(464\) 3.95211 + 5.76029i 0.183472 + 0.267415i
\(465\) 0 0
\(466\) −15.9802 11.7758i −0.740266 0.545503i
\(467\) 21.5357i 0.996553i 0.867018 + 0.498276i \(0.166034\pi\)
−0.867018 + 0.498276i \(0.833966\pi\)
\(468\) 0 0
\(469\) 6.83107i 0.315429i
\(470\) −37.6956 + 51.1542i −1.73877 + 2.35957i
\(471\) 0 0
\(472\) −24.7805 8.60990i −1.14061 0.396303i
\(473\) −2.49796 −0.114857
\(474\) 0 0
\(475\) 41.9023i 1.92261i
\(476\) 2.90312 + 9.36289i 0.133064 + 0.429147i
\(477\) 0 0
\(478\) 16.0571 + 11.8325i 0.734433 + 0.541204i
\(479\) −2.70358 −0.123530 −0.0617649 0.998091i \(-0.519673\pi\)
−0.0617649 + 0.998091i \(0.519673\pi\)
\(480\) 0 0
\(481\) −16.7989 −0.765963
\(482\) 5.45874 + 4.02255i 0.248639 + 0.183222i
\(483\) 0 0
\(484\) −0.592314 1.91028i −0.0269234 0.0868308i
\(485\) 45.5223i 2.06706i
\(486\) 0 0
\(487\) −31.3542 −1.42080 −0.710398 0.703800i \(-0.751485\pi\)
−0.710398 + 0.703800i \(0.751485\pi\)
\(488\) −37.1097 12.8936i −1.67988 0.583668i
\(489\) 0 0
\(490\) 12.5651 17.0513i 0.567633 0.770297i
\(491\) 15.9035i 0.717716i 0.933392 + 0.358858i \(0.116834\pi\)
−0.933392 + 0.358858i \(0.883166\pi\)
\(492\) 0 0
\(493\) 4.82254i 0.217196i
\(494\) 24.8465 + 18.3094i 1.11790 + 0.823780i
\(495\) 0 0
\(496\) −17.6652 + 12.1200i −0.793193 + 0.544206i
\(497\) −13.5265 −0.606745
\(498\) 0 0
\(499\) 19.0802i 0.854149i 0.904216 + 0.427074i \(0.140456\pi\)
−0.904216 + 0.427074i \(0.859544\pi\)
\(500\) 38.1800 11.8383i 1.70746 0.529427i
\(501\) 0 0
\(502\) −3.18632 + 4.32394i −0.142212 + 0.192987i
\(503\) 16.8051 0.749301 0.374650 0.927166i \(-0.377763\pi\)
0.374650 + 0.927166i \(0.377763\pi\)
\(504\) 0 0
\(505\) 5.94378 0.264495
\(506\) −5.80164 + 7.87303i −0.257915 + 0.349999i
\(507\) 0 0
\(508\) −2.37350 7.65482i −0.105307 0.339628i
\(509\) 35.1514i 1.55806i −0.626988 0.779029i \(-0.715712\pi\)
0.626988 0.779029i \(-0.284288\pi\)
\(510\) 0 0
\(511\) 19.1125 0.845487
\(512\) 19.0793 12.1647i 0.843193 0.537611i
\(513\) 0 0
\(514\) −11.4549 8.44110i −0.505252 0.372321i
\(515\) 45.1990i 1.99171i
\(516\) 0 0
\(517\) 11.5487i 0.507909i
\(518\) −4.73799 + 6.42962i −0.208175 + 0.282501i
\(519\) 0 0
\(520\) −19.0686 + 54.8820i −0.836213 + 2.40674i
\(521\) 44.8575 1.96524 0.982622 0.185620i \(-0.0594294\pi\)
0.982622 + 0.185620i \(0.0594294\pi\)
\(522\) 0 0
\(523\) 26.2365i 1.14724i −0.819120 0.573622i \(-0.805538\pi\)
0.819120 0.573622i \(-0.194462\pi\)
\(524\) −21.7169 + 6.73370i −0.948709 + 0.294163i
\(525\) 0 0
\(526\) 22.0336 + 16.2366i 0.960712 + 0.707950i
\(527\) −14.7894 −0.644236
\(528\) 0 0
\(529\) 24.8218 1.07921
\(530\) −42.5923 31.3863i −1.85009 1.36334i
\(531\) 0 0
\(532\) 14.0155 4.34575i 0.607651 0.188412i
\(533\) 13.1886i 0.571261i
\(534\) 0 0
\(535\) 42.5753 1.84069
\(536\) −10.2824 3.57260i −0.444134 0.154313i
\(537\) 0 0
\(538\) −1.80559 + 2.45024i −0.0778444 + 0.105638i
\(539\) 3.84952i 0.165810i
\(540\) 0 0
\(541\) 5.93131i 0.255007i −0.991838 0.127503i \(-0.959304\pi\)
0.991838 0.127503i \(-0.0406964\pi\)
\(542\) −23.4662 17.2922i −1.00796 0.742765i
\(543\) 0 0
\(544\) 15.6118 + 0.526815i 0.669350 + 0.0225870i
\(545\) 36.5398 1.56519
\(546\) 0 0
\(547\) 19.0782i 0.815724i −0.913043 0.407862i \(-0.866274\pi\)
0.913043 0.407862i \(-0.133726\pi\)
\(548\) 0.968787 + 3.12445i 0.0413845 + 0.133470i
\(549\) 0 0
\(550\) 8.50456 11.5410i 0.362635 0.492109i
\(551\) 7.21897 0.307538
\(552\) 0 0
\(553\) 0.499218 0.0212289
\(554\) 9.76382 13.2498i 0.414825 0.562932i
\(555\) 0 0
\(556\) 27.1165 8.40791i 1.14999 0.356575i
\(557\) 24.4027i 1.03398i −0.855993 0.516988i \(-0.827053\pi\)
0.855993 0.516988i \(-0.172947\pi\)
\(558\) 0 0
\(559\) 13.1886 0.557818
\(560\) 15.6275 + 22.7774i 0.660381 + 0.962520i
\(561\) 0 0
\(562\) −0.580430 0.427720i −0.0244840 0.0180423i
\(563\) 25.5895i 1.07847i 0.842156 + 0.539233i \(0.181286\pi\)
−0.842156 + 0.539233i \(0.818714\pi\)
\(564\) 0 0
\(565\) 77.8524i 3.27527i
\(566\) −23.5166 + 31.9128i −0.988476 + 1.34140i
\(567\) 0 0
\(568\) −7.07425 + 20.3607i −0.296829 + 0.854315i
\(569\) 15.1100 0.633444 0.316722 0.948518i \(-0.397418\pi\)
0.316722 + 0.948518i \(0.397418\pi\)
\(570\) 0 0
\(571\) 20.3026i 0.849635i 0.905279 + 0.424818i \(0.139662\pi\)
−0.905279 + 0.424818i \(0.860338\pi\)
\(572\) 3.12726 + 10.0858i 0.130757 + 0.421707i
\(573\) 0 0
\(574\) 5.04782 + 3.71974i 0.210692 + 0.155259i
\(575\) −70.1014 −2.92343
\(576\) 0 0
\(577\) −7.82627 −0.325812 −0.162906 0.986642i \(-0.552087\pi\)
−0.162906 + 0.986642i \(0.552087\pi\)
\(578\) −10.6731 7.86505i −0.443944 0.327143i
\(579\) 0 0
\(580\) 4.02461 + 12.9798i 0.167113 + 0.538958i
\(581\) 0.555633i 0.0230515i
\(582\) 0 0
\(583\) −9.61571 −0.398242
\(584\) 9.99571 28.7690i 0.413625 1.19047i
\(585\) 0 0
\(586\) −2.16846 + 2.94267i −0.0895782 + 0.121561i
\(587\) 35.7361i 1.47499i 0.675353 + 0.737494i \(0.263991\pi\)
−0.675353 + 0.737494i \(0.736009\pi\)
\(588\) 0 0
\(589\) 22.1386i 0.912205i
\(590\) −41.0831 30.2742i −1.69137 1.24637i
\(591\) 0 0
\(592\) 7.20023 + 10.4945i 0.295928 + 0.431321i
\(593\) 3.78102 0.155268 0.0776340 0.996982i \(-0.475263\pi\)
0.0776340 + 0.996982i \(0.475263\pi\)
\(594\) 0 0
\(595\) 19.0693i 0.781765i
\(596\) 23.4896 7.28333i 0.962170 0.298337i
\(597\) 0 0
\(598\) 30.6311 41.5675i 1.25260 1.69982i
\(599\) 14.0329 0.573368 0.286684 0.958025i \(-0.407447\pi\)
0.286684 + 0.958025i \(0.407447\pi\)
\(600\) 0 0
\(601\) 15.9691 0.651393 0.325696 0.945474i \(-0.394401\pi\)
0.325696 + 0.945474i \(0.394401\pi\)
\(602\) 3.71974 5.04782i 0.151605 0.205734i
\(603\) 0 0
\(604\) 11.8754 + 38.2995i 0.483203 + 1.55838i
\(605\) 3.89064i 0.158177i
\(606\) 0 0
\(607\) −29.2838 −1.18859 −0.594296 0.804247i \(-0.702569\pi\)
−0.594296 + 0.804247i \(0.702569\pi\)
\(608\) 0.788601 23.3697i 0.0319820 0.947765i
\(609\) 0 0
\(610\) −61.5235 45.3367i −2.49101 1.83563i
\(611\) 60.9739i 2.46674i
\(612\) 0 0
\(613\) 25.4711i 1.02877i −0.857560 0.514384i \(-0.828020\pi\)
0.857560 0.514384i \(-0.171980\pi\)
\(614\) 10.9888 14.9122i 0.443472 0.601807i
\(615\) 0 0
\(616\) 4.74226 + 1.64768i 0.191071 + 0.0663870i
\(617\) −40.9704 −1.64940 −0.824702 0.565567i \(-0.808657\pi\)
−0.824702 + 0.565567i \(0.808657\pi\)
\(618\) 0 0
\(619\) 31.8239i 1.27911i −0.768745 0.639555i \(-0.779119\pi\)
0.768745 0.639555i \(-0.220881\pi\)
\(620\) −39.8055 + 12.3424i −1.59863 + 0.495682i
\(621\) 0 0
\(622\) −19.1472 14.1096i −0.767732 0.565742i
\(623\) 4.39548 0.176101
\(624\) 0 0
\(625\) 27.0753 1.08301
\(626\) −5.72215 4.21666i −0.228703 0.168532i
\(627\) 0 0
\(628\) 46.5140 14.4224i 1.85611 0.575518i
\(629\) 8.78603i 0.350322i
\(630\) 0 0
\(631\) 16.2923 0.648586 0.324293 0.945957i \(-0.394874\pi\)
0.324293 + 0.945957i \(0.394874\pi\)
\(632\) 0.261088 0.751447i 0.0103855 0.0298910i
\(633\) 0 0
\(634\) −2.89709 + 3.93144i −0.115058 + 0.156138i
\(635\) 15.5905i 0.618689i
\(636\) 0 0
\(637\) 20.3244i 0.805284i
\(638\) 1.98829 + 1.46517i 0.0787171 + 0.0580067i
\(639\) 0 0
\(640\) 42.4587 11.6108i 1.67833 0.458956i
\(641\) −43.0207 −1.69922 −0.849608 0.527415i \(-0.823161\pi\)
−0.849608 + 0.527415i \(0.823161\pi\)
\(642\) 0 0
\(643\) 20.8555i 0.822462i 0.911531 + 0.411231i \(0.134901\pi\)
−0.911531 + 0.411231i \(0.865099\pi\)
\(644\) −7.27032 23.4476i −0.286491 0.923965i
\(645\) 0 0
\(646\) 9.57607 12.9951i 0.376765 0.511284i
\(647\) −21.3212 −0.838221 −0.419110 0.907935i \(-0.637658\pi\)
−0.419110 + 0.907935i \(0.637658\pi\)
\(648\) 0 0
\(649\) −9.27499 −0.364075
\(650\) −44.9018 + 60.9333i −1.76119 + 2.39000i
\(651\) 0 0
\(652\) 39.7433 12.3231i 1.55647 0.482609i
\(653\) 16.6752i 0.652550i −0.945275 0.326275i \(-0.894206\pi\)
0.945275 0.326275i \(-0.105794\pi\)
\(654\) 0 0
\(655\) −44.2306 −1.72823
\(656\) 8.23911 5.65281i 0.321683 0.220705i
\(657\) 0 0
\(658\) −23.3372 17.1972i −0.909779 0.670417i
\(659\) 38.2694i 1.49076i 0.666638 + 0.745382i \(0.267733\pi\)
−0.666638 + 0.745382i \(0.732267\pi\)
\(660\) 0 0
\(661\) 10.7182i 0.416890i 0.978034 + 0.208445i \(0.0668402\pi\)
−0.978034 + 0.208445i \(0.933160\pi\)
\(662\) 4.19135 5.68781i 0.162902 0.221063i
\(663\) 0 0
\(664\) −0.836365 0.290592i −0.0324572 0.0112772i
\(665\) 28.5453 1.10694
\(666\) 0 0
\(667\) 12.0771i 0.467628i
\(668\) −14.7842 47.6808i −0.572019 1.84482i
\(669\) 0 0
\(670\) −17.0471 12.5620i −0.658586 0.485313i
\(671\) −13.8896 −0.536204
\(672\) 0 0
\(673\) 19.1492 0.738146 0.369073 0.929400i \(-0.379675\pi\)
0.369073 + 0.929400i \(0.379675\pi\)
\(674\) 38.7728 + 28.5717i 1.49347 + 1.10054i
\(675\) 0 0
\(676\) −8.81103 28.4166i −0.338886 1.09294i
\(677\) 26.5420i 1.02009i 0.860147 + 0.510046i \(0.170372\pi\)
−0.860147 + 0.510046i \(0.829628\pi\)
\(678\) 0 0
\(679\) −20.7678 −0.796997
\(680\) 28.7040 + 9.97312i 1.10075 + 0.382452i
\(681\) 0 0
\(682\) −4.49328 + 6.09753i −0.172057 + 0.233487i
\(683\) 17.8473i 0.682908i −0.939898 0.341454i \(-0.889081\pi\)
0.939898 0.341454i \(-0.110919\pi\)
\(684\) 0 0
\(685\) 6.36353i 0.243138i
\(686\) 21.9244 + 16.1561i 0.837078 + 0.616843i
\(687\) 0 0
\(688\) −5.65281 8.23911i −0.215512 0.314113i
\(689\) 50.7684 1.93412
\(690\) 0 0
\(691\) 24.1267i 0.917824i −0.888482 0.458912i \(-0.848239\pi\)
0.888482 0.458912i \(-0.151761\pi\)
\(692\) −9.92689 + 3.07800i −0.377364 + 0.117008i
\(693\) 0 0
\(694\) −9.57345 + 12.9915i −0.363403 + 0.493151i
\(695\) 55.2278 2.09491
\(696\) 0 0
\(697\) 6.89781 0.261273
\(698\) −4.80869 + 6.52556i −0.182012 + 0.246996i
\(699\) 0 0
\(700\) 10.6575 + 34.3715i 0.402814 + 1.29912i
\(701\) 24.1742i 0.913046i −0.889712 0.456523i \(-0.849095\pi\)
0.889712 0.456523i \(-0.150905\pi\)
\(702\) 0 0
\(703\) 13.1520 0.496038
\(704\) 4.96034 6.27655i 0.186950 0.236556i
\(705\) 0 0
\(706\) 15.4842 + 11.4103i 0.582755 + 0.429433i
\(707\) 2.71163i 0.101981i
\(708\) 0 0
\(709\) 10.3521i 0.388781i 0.980924 + 0.194391i \(0.0622729\pi\)
−0.980924 + 0.194391i \(0.937727\pi\)
\(710\) −24.8745 + 33.7556i −0.933525 + 1.26683i
\(711\) 0 0
\(712\) 2.29881 6.61629i 0.0861515 0.247956i
\(713\) 37.0372 1.38706
\(714\) 0 0
\(715\) 20.5416i 0.768211i
\(716\) 7.33232 2.27351i 0.274022 0.0849649i
\(717\) 0 0
\(718\) −4.12812 3.04202i −0.154060 0.113527i
\(719\) −11.8879 −0.443345 −0.221672 0.975121i \(-0.571152\pi\)
−0.221672 + 0.975121i \(0.571152\pi\)
\(720\) 0 0
\(721\) −20.6203 −0.767942
\(722\) 2.17868 + 1.60547i 0.0810821 + 0.0597495i
\(723\) 0 0
\(724\) 17.3986 5.39474i 0.646616 0.200494i
\(725\) 17.7037i 0.657499i
\(726\) 0 0
\(727\) 29.4190 1.09109 0.545546 0.838081i \(-0.316322\pi\)
0.545546 + 0.838081i \(0.316322\pi\)
\(728\) −25.0379 8.69932i −0.927965 0.322418i
\(729\) 0 0
\(730\) 35.1470 47.6957i 1.30085 1.76530i
\(731\) 6.89781i 0.255125i
\(732\) 0 0
\(733\) 6.29939i 0.232673i −0.993210 0.116337i \(-0.962885\pi\)
0.993210 0.116337i \(-0.0371151\pi\)
\(734\) −36.2108 26.6838i −1.33656 0.984916i
\(735\) 0 0
\(736\) −39.0968 1.31931i −1.44113 0.0486303i
\(737\) −3.84858 −0.141764
\(738\) 0 0
\(739\) 23.0010i 0.846104i −0.906105 0.423052i \(-0.860959\pi\)
0.906105 0.423052i \(-0.139041\pi\)
\(740\) 7.33232 + 23.6475i 0.269541 + 0.869301i
\(741\) 0 0
\(742\) 14.3188 19.4312i 0.525661 0.713340i
\(743\) 18.1445 0.665659 0.332829 0.942987i \(-0.391997\pi\)
0.332829 + 0.942987i \(0.391997\pi\)
\(744\) 0 0
\(745\) 47.8409 1.75276
\(746\) 12.5830 17.0755i 0.460696 0.625180i
\(747\) 0 0
\(748\) 5.27499 1.63560i 0.192873 0.0598034i
\(749\) 19.4234i 0.709715i
\(750\) 0 0
\(751\) 38.4541 1.40321 0.701605 0.712567i \(-0.252467\pi\)
0.701605 + 0.712567i \(0.252467\pi\)
\(752\) −38.0913 + 26.1343i −1.38905 + 0.953018i
\(753\) 0 0
\(754\) −10.4976 7.73572i −0.382301 0.281718i
\(755\) 78.0041i 2.83886i
\(756\) 0 0
\(757\) 6.81907i 0.247843i −0.992292 0.123922i \(-0.960453\pi\)
0.992292 0.123922i \(-0.0395472\pi\)
\(758\) 16.1208 21.8765i 0.585533 0.794589i
\(759\) 0 0
\(760\) 14.9290 42.9677i 0.541532 1.55860i
\(761\) −18.7256 −0.678804 −0.339402 0.940641i \(-0.610225\pi\)
−0.339402 + 0.940641i \(0.610225\pi\)
\(762\) 0 0
\(763\) 16.6699i 0.603492i
\(764\) −5.66861 18.2819i −0.205083 0.661416i
\(765\) 0 0
\(766\) 7.25960 + 5.34961i 0.262300 + 0.193289i
\(767\) 48.9695 1.76819
\(768\) 0 0
\(769\) −13.8677 −0.500081 −0.250041 0.968235i \(-0.580444\pi\)
−0.250041 + 0.968235i \(0.580444\pi\)
\(770\) 7.86210 + 5.79359i 0.283330 + 0.208786i
\(771\) 0 0
\(772\) 11.0873 + 35.7578i 0.399041 + 1.28695i
\(773\) 7.46132i 0.268365i −0.990957 0.134183i \(-0.957159\pi\)
0.990957 0.134183i \(-0.0428408\pi\)
\(774\) 0 0
\(775\) −54.2924 −1.95024
\(776\) −10.8614 + 31.2608i −0.389903 + 1.12220i
\(777\) 0 0
\(778\) −14.9103 + 20.2339i −0.534562 + 0.725419i
\(779\) 10.3255i 0.369949i
\(780\) 0 0
\(781\) 7.62071i 0.272691i
\(782\) −21.7404 16.0205i −0.777434 0.572892i
\(783\) 0 0
\(784\) 12.6970 8.71134i 0.453463 0.311119i
\(785\) 94.7346 3.38122
\(786\) 0 0
\(787\) 32.4924i 1.15823i 0.815246 + 0.579115i \(0.196602\pi\)
−0.815246 + 0.579115i \(0.803398\pi\)
\(788\) −44.1424 + 13.6871i −1.57251 + 0.487582i
\(789\) 0 0
\(790\) 0.918039 1.24581i 0.0326623 0.0443239i
\(791\) −35.5172 −1.26285
\(792\) 0 0
\(793\) 73.3336 2.60415
\(794\) −20.0610 + 27.2235i −0.711939 + 0.966126i
\(795\) 0 0
\(796\) −6.04560 19.4977i −0.214281 0.691079i
\(797\) 19.0895i 0.676186i 0.941113 + 0.338093i \(0.109782\pi\)
−0.941113 + 0.338093i \(0.890218\pi\)
\(798\) 0 0
\(799\) −31.8901 −1.12819
\(800\) 57.3115 + 1.93396i 2.02627 + 0.0683757i
\(801\) 0 0
\(802\) −18.3559 13.5265i −0.648168 0.477636i
\(803\) 10.7678i 0.379989i
\(804\) 0 0
\(805\) 47.7555i 1.68316i
\(806\) 23.7233 32.1934i 0.835619 1.13396i
\(807\) 0 0
\(808\) 4.08167 + 1.41816i 0.143593 + 0.0498908i
\(809\) −33.8216 −1.18910 −0.594552 0.804057i \(-0.702671\pi\)
−0.594552 + 0.804057i \(0.702671\pi\)
\(810\) 0 0
\(811\) 7.94357i 0.278936i 0.990227 + 0.139468i \(0.0445393\pi\)
−0.990227 + 0.139468i \(0.955461\pi\)
\(812\) −5.92156 + 1.83608i −0.207806 + 0.0644337i
\(813\) 0 0
\(814\) 3.62240 + 2.66935i 0.126965 + 0.0935608i
\(815\) 80.9447 2.83537
\(816\) 0 0
\(817\) −10.3255 −0.361243
\(818\) −9.20531 6.78340i −0.321856 0.237176i
\(819\) 0 0
\(820\) 18.5654 5.75651i 0.648332 0.201026i
\(821\) 5.39933i 0.188438i 0.995551 + 0.0942190i \(0.0300354\pi\)
−0.995551 + 0.0942190i \(0.969965\pi\)
\(822\) 0 0
\(823\) 27.0183 0.941798 0.470899 0.882187i \(-0.343930\pi\)
0.470899 + 0.882187i \(0.343930\pi\)
\(824\) −10.7843 + 31.0387i −0.375689 + 1.08129i
\(825\) 0 0
\(826\) 13.8115 18.7426i 0.480562 0.652140i
\(827\) 34.4936i 1.19946i −0.800202 0.599730i \(-0.795275\pi\)
0.800202 0.599730i \(-0.204725\pi\)
\(828\) 0 0
\(829\) 18.5048i 0.642698i 0.946961 + 0.321349i \(0.104136\pi\)
−0.946961 + 0.321349i \(0.895864\pi\)
\(830\) −1.38659 1.02178i −0.0481294 0.0354666i
\(831\) 0 0
\(832\) −26.1893 + 33.1385i −0.907950 + 1.14887i
\(833\) 10.6299 0.368306
\(834\) 0 0
\(835\) 97.1109i 3.36066i
\(836\) −2.44837 7.89626i −0.0846785 0.273098i
\(837\) 0 0
\(838\) 17.5230 23.7794i 0.605323 0.821445i
\(839\) 5.80138 0.200286 0.100143 0.994973i \(-0.468070\pi\)
0.100143 + 0.994973i \(0.468070\pi\)
\(840\) 0 0
\(841\) 25.9500 0.894827
\(842\) 19.8196 26.8958i 0.683027 0.926891i
\(843\) 0 0
\(844\) 19.6909 6.10550i 0.677790 0.210160i
\(845\) 57.8757i 1.99098i
\(846\) 0 0
\(847\) 1.77496 0.0609883
\(848\) −21.7601 31.7158i −0.747243 1.08912i
\(849\) 0 0
\(850\) 31.8689 + 23.4842i 1.09309 + 0.805503i
\(851\) 22.0030i 0.754252i
\(852\) 0 0
\(853\) 20.8231i 0.712971i −0.934301 0.356485i \(-0.883975\pi\)
0.934301 0.356485i \(-0.116025\pi\)
\(854\) 20.6832 28.0678i 0.707764 0.960460i
\(855\) 0 0
\(856\) 29.2370 + 10.1583i 0.999300 + 0.347204i
\(857\) −36.0392 −1.23107 −0.615537 0.788108i \(-0.711061\pi\)
−0.615537 + 0.788108i \(0.711061\pi\)
\(858\) 0 0
\(859\) 6.58555i 0.224696i 0.993669 + 0.112348i \(0.0358372\pi\)
−0.993669 + 0.112348i \(0.964163\pi\)
\(860\) −5.75651 18.5654i −0.196295 0.633075i
\(861\) 0 0
\(862\) 26.5115 + 19.5363i 0.902984 + 0.665410i
\(863\) 34.2086 1.16447 0.582237 0.813019i \(-0.302178\pi\)
0.582237 + 0.813019i \(0.302178\pi\)
\(864\) 0 0
\(865\) −20.2180 −0.687432
\(866\) −22.6011 16.6548i −0.768017 0.565952i
\(867\) 0 0
\(868\) −5.63074 18.1598i −0.191120 0.616383i
\(869\) 0.281256i 0.00954095i
\(870\) 0 0
\(871\) 20.3195 0.688499
\(872\) 25.0924 + 8.71826i 0.849735 + 0.295238i
\(873\) 0 0
\(874\) −23.9815 + 32.5437i −0.811185 + 1.10081i
\(875\) 35.4754i 1.19929i
\(876\) 0 0
\(877\) 22.9567i 0.775194i 0.921829 + 0.387597i \(0.126695\pi\)
−0.921829 + 0.387597i \(0.873305\pi\)
\(878\) −13.6232 10.0390i −0.459762 0.338799i
\(879\) 0 0
\(880\) 12.8326 8.80440i 0.432587 0.296796i
\(881\) −38.4940 −1.29690 −0.648448 0.761259i \(-0.724581\pi\)
−0.648448 + 0.761259i \(0.724581\pi\)
\(882\) 0 0
\(883\) 17.6384i 0.593581i −0.954943 0.296790i \(-0.904084\pi\)
0.954943 0.296790i \(-0.0959163\pi\)
\(884\) −27.8505 + 8.63553i −0.936715 + 0.290444i
\(885\) 0 0
\(886\) 9.17521 12.4511i 0.308247 0.418302i
\(887\) 43.5883 1.46355 0.731776 0.681545i \(-0.238692\pi\)
0.731776 + 0.681545i \(0.238692\pi\)
\(888\) 0 0
\(889\) 7.11257 0.238548
\(890\) 8.08309 10.9690i 0.270946 0.367683i
\(891\) 0 0
\(892\) 16.5365 + 53.3320i 0.553682 + 1.78569i
\(893\) 47.7371i 1.59746i
\(894\) 0 0
\(895\) 14.9336 0.499177
\(896\) 5.29698 + 19.3702i 0.176960 + 0.647112i
\(897\) 0 0
\(898\) −12.9732 9.55995i −0.432921 0.319020i
\(899\) 9.35354i 0.311958i
\(900\) 0 0
\(901\) 26.5526i 0.884594i
\(902\) 2.09568 2.84390i 0.0697784 0.0946917i
\(903\) 0 0
\(904\) −18.5753 + 53.4622i −0.617805 + 1.77813i
\(905\) 35.4356 1.17792
\(906\) 0 0
\(907\) 24.8519i 0.825195i −0.910913 0.412598i \(-0.864622\pi\)
0.910913 0.412598i \(-0.135378\pi\)
\(908\) 7.64111 2.36926i 0.253579 0.0786265i
\(909\) 0 0
\(910\) −41.5098 30.5886i −1.37604 1.01400i
\(911\) −15.4478 −0.511808 −0.255904 0.966702i \(-0.582373\pi\)
−0.255904 + 0.966702i \(0.582373\pi\)
\(912\) 0 0
\(913\) −0.313040 −0.0103601
\(914\) 24.8863 + 18.3388i 0.823167 + 0.606593i
\(915\) 0 0
\(916\) −15.0219 + 4.65779i −0.496338 + 0.153898i
\(917\) 20.1786i 0.666355i
\(918\) 0 0
\(919\) 7.35006 0.242456 0.121228 0.992625i \(-0.461317\pi\)
0.121228 + 0.992625i \(0.461317\pi\)
\(920\) −71.8838 24.9758i −2.36994 0.823428i
\(921\) 0 0
\(922\) 23.9229 32.4641i 0.787858 1.06915i
\(923\) 40.2354i 1.32436i
\(924\) 0 0
\(925\) 32.2539i 1.06050i
\(926\) −20.0878 14.8027i −0.660125 0.486447i
\(927\) 0 0
\(928\) −0.333184 + 9.87367i −0.0109373 + 0.324119i
\(929\) −0.143238 −0.00469947 −0.00234974 0.999997i \(-0.500748\pi\)
−0.00234974 + 0.999997i \(0.500748\pi\)
\(930\) 0 0
\(931\) 15.9122i 0.521502i
\(932\) −8.31389 26.8132i −0.272330 0.878296i
\(933\) 0 0
\(934\) −18.0674 + 24.5181i −0.591185 + 0.802258i
\(935\) 10.7435 0.351350
\(936\) 0 0
\(937\) 45.5879 1.48929 0.744645 0.667460i \(-0.232619\pi\)
0.744645 + 0.667460i \(0.232619\pi\)
\(938\) 5.73095 7.77709i 0.187122 0.253931i
\(939\) 0 0
\(940\) −85.8321 + 26.6137i −2.79953 + 0.868042i
\(941\) 6.96032i 0.226900i 0.993544 + 0.113450i \(0.0361902\pi\)
−0.993544 + 0.113450i \(0.963810\pi\)
\(942\) 0 0
\(943\) −17.2743 −0.562527
\(944\) −20.9890 30.5920i −0.683134 0.995684i
\(945\) 0 0
\(946\) −2.84390 2.09568i −0.0924633 0.0681363i
\(947\) 1.14748i 0.0372880i −0.999826 0.0186440i \(-0.994065\pi\)
0.999826 0.0186440i \(-0.00593492\pi\)
\(948\) 0 0
\(949\) 56.8514i 1.84547i
\(950\) 35.1541 47.7053i 1.14055 1.54777i
\(951\) 0 0
\(952\) −4.54986 + 13.0951i −0.147462 + 0.424416i
\(953\) 3.74999 0.121474 0.0607370 0.998154i \(-0.480655\pi\)
0.0607370 + 0.998154i \(0.480655\pi\)
\(954\) 0 0
\(955\) 37.2346i 1.20488i
\(956\) 8.35390 + 26.9423i 0.270184 + 0.871375i
\(957\) 0 0
\(958\) −3.07800 2.26818i −0.0994456 0.0732816i
\(959\) −2.90312 −0.0937467
\(960\) 0 0
\(961\) −2.31525 −0.0746856
\(962\) −19.1253 14.0935i −0.616625 0.454392i
\(963\) 0 0
\(964\) 2.83998 + 9.15926i 0.0914697 + 0.295000i
\(965\) 72.8275i 2.34440i
\(966\) 0 0
\(967\) −33.7804 −1.08630 −0.543152 0.839635i \(-0.682769\pi\)
−0.543152 + 0.839635i \(0.682769\pi\)
\(968\) 0.928292 2.67175i 0.0298364 0.0858734i
\(969\) 0 0
\(970\) −38.1911 + 51.8266i −1.22624 + 1.66405i
\(971\) 10.0269i 0.321778i −0.986973 0.160889i \(-0.948564\pi\)
0.986973 0.160889i \(-0.0514361\pi\)
\(972\) 0 0
\(973\) 25.1956i 0.807734i
\(974\) −35.6964 26.3047i −1.14379 0.842858i
\(975\) 0 0
\(976\) −31.4318 45.8126i −1.00611 1.46643i
\(977\) 2.53154 0.0809911 0.0404956 0.999180i \(-0.487106\pi\)
0.0404956 + 0.999180i \(0.487106\pi\)
\(978\) 0 0
\(979\) 2.47638i 0.0791456i
\(980\) 28.6104 8.87114i 0.913927 0.283378i
\(981\) 0 0
\(982\) −13.3423 + 18.1060i −0.425770 + 0.577785i
\(983\) 2.07297 0.0661175 0.0330588 0.999453i \(-0.489475\pi\)
0.0330588 + 0.999453i \(0.489475\pi\)
\(984\) 0 0
\(985\) −89.9042 −2.86459
\(986\) −4.04588 + 5.49040i −0.128847 + 0.174850i
\(987\) 0 0
\(988\) 12.9267 + 41.6901i 0.411254 + 1.32634i
\(989\) 17.2743i 0.549289i
\(990\) 0 0
\(991\) 21.9913 0.698578 0.349289 0.937015i \(-0.386423\pi\)
0.349289 + 0.937015i \(0.386423\pi\)
\(992\) −30.2798 1.02178i −0.961385 0.0324416i
\(993\) 0 0
\(994\) −15.3997 11.3481i −0.488450 0.359939i
\(995\) 39.7108i 1.25892i
\(996\) 0 0
\(997\) 50.5232i 1.60009i 0.599943 + 0.800043i \(0.295190\pi\)
−0.599943 + 0.800043i \(0.704810\pi\)
\(998\) −16.0074 + 21.7226i −0.506707 + 0.687618i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.f.h.397.16 yes 20
3.2 odd 2 inner 792.2.f.h.397.5 20
4.3 odd 2 3168.2.f.h.1585.19 20
8.3 odd 2 3168.2.f.h.1585.2 20
8.5 even 2 inner 792.2.f.h.397.15 yes 20
12.11 even 2 3168.2.f.h.1585.1 20
24.5 odd 2 inner 792.2.f.h.397.6 yes 20
24.11 even 2 3168.2.f.h.1585.20 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.f.h.397.5 20 3.2 odd 2 inner
792.2.f.h.397.6 yes 20 24.5 odd 2 inner
792.2.f.h.397.15 yes 20 8.5 even 2 inner
792.2.f.h.397.16 yes 20 1.1 even 1 trivial
3168.2.f.h.1585.1 20 12.11 even 2
3168.2.f.h.1585.2 20 8.3 odd 2
3168.2.f.h.1585.19 20 4.3 odd 2
3168.2.f.h.1585.20 20 24.11 even 2