Properties

Label 792.2.bp.d.667.5
Level $792$
Weight $2$
Character 792.667
Analytic conductor $6.324$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(19,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 5, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.bp (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 264)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 667.5
Character \(\chi\) \(=\) 792.667
Dual form 792.2.bp.d.19.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.445083 + 1.34235i) q^{2} +(-1.60380 - 1.19491i) q^{4} +(-1.48262 - 2.04066i) q^{5} +(1.07225 + 3.30005i) q^{7} +(2.31782 - 1.62103i) q^{8} +(3.39916 - 1.08194i) q^{10} +(-2.55602 - 2.11348i) q^{11} +(-1.89429 - 1.37628i) q^{13} +(-4.90706 - 0.0294599i) q^{14} +(1.14437 + 3.83281i) q^{16} +(2.12874 + 2.92996i) q^{17} +(6.47486 + 2.10381i) q^{19} +(-0.0605712 + 5.04441i) q^{20} +(3.97466 - 2.49039i) q^{22} +7.17148i q^{23} +(-0.421018 + 1.29576i) q^{25} +(2.69056 - 1.93024i) q^{26} +(2.22359 - 6.57388i) q^{28} +(0.252424 + 0.776881i) q^{29} +(-3.49999 + 4.81732i) q^{31} +(-5.65431 - 0.169779i) q^{32} +(-4.88050 + 1.55344i) q^{34} +(5.14452 - 7.08083i) q^{35} +(1.96758 - 0.639306i) q^{37} +(-5.70590 + 7.75516i) q^{38} +(-6.74440 - 2.32649i) q^{40} +(4.24917 + 1.38064i) q^{41} +5.90629i q^{43} +(1.57392 + 6.44382i) q^{44} +(-9.62663 - 3.19190i) q^{46} +(6.31309 + 2.05125i) q^{47} +(-4.07750 + 2.96248i) q^{49} +(-1.55197 - 1.14187i) q^{50} +(1.39353 + 4.47079i) q^{52} +(-8.16553 + 11.2389i) q^{53} +(-0.523272 + 8.34943i) q^{55} +(7.83476 + 5.91076i) q^{56} +(-1.15520 - 0.00693530i) q^{58} +(2.47252 + 7.60962i) q^{59} +(-7.77810 + 5.65112i) q^{61} +(-4.90875 - 6.84232i) q^{62} +(2.74454 - 7.51449i) q^{64} +5.90609i q^{65} +9.83888 q^{67} +(0.0869678 - 7.24274i) q^{68} +(7.21521 + 10.0573i) q^{70} +(-3.94907 - 5.43543i) q^{71} +(4.23299 - 1.37538i) q^{73} +(-0.0175648 + 2.92573i) q^{74} +(-7.87053 - 11.1110i) q^{76} +(4.23389 - 10.7012i) q^{77} +(-10.7142 - 7.78432i) q^{79} +(6.12478 - 8.01787i) q^{80} +(-3.74453 + 5.08937i) q^{82} +(-2.34985 - 3.23429i) q^{83} +(2.82292 - 8.68806i) q^{85} +(-7.92830 - 2.62879i) q^{86} +(-9.35038 - 0.755279i) q^{88} -2.99301 q^{89} +(2.51064 - 7.72697i) q^{91} +(8.56930 - 11.5016i) q^{92} +(-5.56334 + 7.56140i) q^{94} +(-5.30663 - 16.3321i) q^{95} +(-5.74003 - 4.17037i) q^{97} +(-2.16185 - 6.79198i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{4} - 4 q^{11} + 16 q^{14} + 20 q^{16} - 25 q^{20} + 3 q^{22} - 4 q^{25} - 4 q^{26} - 25 q^{28} - 26 q^{38} - 65 q^{40} + 60 q^{41} + 43 q^{44} - 5 q^{46} - 12 q^{49} + 80 q^{50} - 15 q^{52}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.445083 + 1.34235i −0.314721 + 0.949184i
\(3\) 0 0
\(4\) −1.60380 1.19491i −0.801901 0.597457i
\(5\) −1.48262 2.04066i −0.663049 0.912609i 0.336529 0.941673i \(-0.390747\pi\)
−0.999578 + 0.0290646i \(0.990747\pi\)
\(6\) 0 0
\(7\) 1.07225 + 3.30005i 0.405273 + 1.24730i 0.920667 + 0.390349i \(0.127646\pi\)
−0.515394 + 0.856953i \(0.672354\pi\)
\(8\) 2.31782 1.62103i 0.819472 0.573120i
\(9\) 0 0
\(10\) 3.39916 1.08194i 1.07491 0.342138i
\(11\) −2.55602 2.11348i −0.770668 0.637237i
\(12\) 0 0
\(13\) −1.89429 1.37628i −0.525381 0.381712i 0.293246 0.956037i \(-0.405264\pi\)
−0.818627 + 0.574325i \(0.805264\pi\)
\(14\) −4.90706 0.0294599i −1.31147 0.00787349i
\(15\) 0 0
\(16\) 1.14437 + 3.83281i 0.286091 + 0.958202i
\(17\) 2.12874 + 2.92996i 0.516296 + 0.710620i 0.984965 0.172753i \(-0.0552664\pi\)
−0.468669 + 0.883374i \(0.655266\pi\)
\(18\) 0 0
\(19\) 6.47486 + 2.10381i 1.48544 + 0.482647i 0.935732 0.352712i \(-0.114741\pi\)
0.549704 + 0.835360i \(0.314741\pi\)
\(20\) −0.0605712 + 5.04441i −0.0135441 + 1.12797i
\(21\) 0 0
\(22\) 3.97466 2.49039i 0.847401 0.530953i
\(23\) 7.17148i 1.49536i 0.664061 + 0.747679i \(0.268832\pi\)
−0.664061 + 0.747679i \(0.731168\pi\)
\(24\) 0 0
\(25\) −0.421018 + 1.29576i −0.0842036 + 0.259152i
\(26\) 2.69056 1.93024i 0.527663 0.378551i
\(27\) 0 0
\(28\) 2.22359 6.57388i 0.420220 1.24235i
\(29\) 0.252424 + 0.776881i 0.0468740 + 0.144263i 0.971754 0.235995i \(-0.0758350\pi\)
−0.924880 + 0.380259i \(0.875835\pi\)
\(30\) 0 0
\(31\) −3.49999 + 4.81732i −0.628617 + 0.865217i −0.997945 0.0640823i \(-0.979588\pi\)
0.369328 + 0.929299i \(0.379588\pi\)
\(32\) −5.65431 0.169779i −0.999550 0.0300130i
\(33\) 0 0
\(34\) −4.88050 + 1.55344i −0.836999 + 0.266413i
\(35\) 5.14452 7.08083i 0.869583 1.19688i
\(36\) 0 0
\(37\) 1.96758 0.639306i 0.323469 0.105101i −0.142782 0.989754i \(-0.545605\pi\)
0.466250 + 0.884653i \(0.345605\pi\)
\(38\) −5.70590 + 7.75516i −0.925619 + 1.25805i
\(39\) 0 0
\(40\) −6.74440 2.32649i −1.06638 0.367850i
\(41\) 4.24917 + 1.38064i 0.663609 + 0.215620i 0.621405 0.783489i \(-0.286562\pi\)
0.0422040 + 0.999109i \(0.486562\pi\)
\(42\) 0 0
\(43\) 5.90629i 0.900700i 0.892852 + 0.450350i \(0.148701\pi\)
−0.892852 + 0.450350i \(0.851299\pi\)
\(44\) 1.57392 + 6.44382i 0.237278 + 0.971442i
\(45\) 0 0
\(46\) −9.62663 3.19190i −1.41937 0.470620i
\(47\) 6.31309 + 2.05125i 0.920859 + 0.299205i 0.730819 0.682571i \(-0.239138\pi\)
0.190040 + 0.981776i \(0.439138\pi\)
\(48\) 0 0
\(49\) −4.07750 + 2.96248i −0.582500 + 0.423211i
\(50\) −1.55197 1.14187i −0.219482 0.161485i
\(51\) 0 0
\(52\) 1.39353 + 4.47079i 0.193248 + 0.619987i
\(53\) −8.16553 + 11.2389i −1.12162 + 1.54378i −0.318540 + 0.947909i \(0.603192\pi\)
−0.803081 + 0.595870i \(0.796808\pi\)
\(54\) 0 0
\(55\) −0.523272 + 8.34943i −0.0705580 + 1.12584i
\(56\) 7.83476 + 5.91076i 1.04696 + 0.789859i
\(57\) 0 0
\(58\) −1.15520 0.00693530i −0.151685 0.000910649i
\(59\) 2.47252 + 7.60962i 0.321894 + 0.990689i 0.972823 + 0.231550i \(0.0743796\pi\)
−0.650929 + 0.759139i \(0.725620\pi\)
\(60\) 0 0
\(61\) −7.77810 + 5.65112i −0.995883 + 0.723552i −0.961202 0.275847i \(-0.911042\pi\)
−0.0346817 + 0.999398i \(0.511042\pi\)
\(62\) −4.90875 6.84232i −0.623411 0.868975i
\(63\) 0 0
\(64\) 2.74454 7.51449i 0.343067 0.939311i
\(65\) 5.90609i 0.732561i
\(66\) 0 0
\(67\) 9.83888 1.20201 0.601006 0.799245i \(-0.294767\pi\)
0.601006 + 0.799245i \(0.294767\pi\)
\(68\) 0.0869678 7.24274i 0.0105464 0.878312i
\(69\) 0 0
\(70\) 7.21521 + 10.0573i 0.862382 + 1.20208i
\(71\) −3.94907 5.43543i −0.468669 0.645067i 0.507609 0.861587i \(-0.330529\pi\)
−0.976278 + 0.216520i \(0.930529\pi\)
\(72\) 0 0
\(73\) 4.23299 1.37538i 0.495434 0.160976i −0.0506336 0.998717i \(-0.516124\pi\)
0.546068 + 0.837741i \(0.316124\pi\)
\(74\) −0.0175648 + 2.92573i −0.00204187 + 0.340109i
\(75\) 0 0
\(76\) −7.87053 11.1110i −0.902812 1.27452i
\(77\) 4.23389 10.7012i 0.482497 1.21951i
\(78\) 0 0
\(79\) −10.7142 7.78432i −1.20544 0.875804i −0.210632 0.977565i \(-0.567552\pi\)
−0.994809 + 0.101761i \(0.967552\pi\)
\(80\) 6.12478 8.01787i 0.684771 0.896425i
\(81\) 0 0
\(82\) −3.74453 + 5.08937i −0.413515 + 0.562027i
\(83\) −2.34985 3.23429i −0.257929 0.355009i 0.660339 0.750967i \(-0.270412\pi\)
−0.918269 + 0.395958i \(0.870412\pi\)
\(84\) 0 0
\(85\) 2.82292 8.68806i 0.306189 0.942352i
\(86\) −7.92830 2.62879i −0.854930 0.283469i
\(87\) 0 0
\(88\) −9.35038 0.755279i −0.996754 0.0805130i
\(89\) −2.99301 −0.317259 −0.158629 0.987338i \(-0.550708\pi\)
−0.158629 + 0.987338i \(0.550708\pi\)
\(90\) 0 0
\(91\) 2.51064 7.72697i 0.263187 0.810006i
\(92\) 8.56930 11.5016i 0.893411 1.19913i
\(93\) 0 0
\(94\) −5.56334 + 7.56140i −0.573815 + 0.779899i
\(95\) −5.30663 16.3321i −0.544449 1.67564i
\(96\) 0 0
\(97\) −5.74003 4.17037i −0.582811 0.423437i 0.256925 0.966431i \(-0.417291\pi\)
−0.839737 + 0.542994i \(0.817291\pi\)
\(98\) −2.16185 6.79198i −0.218380 0.686094i
\(99\) 0 0
\(100\) 2.22355 1.57506i 0.222355 0.157506i
\(101\) 5.16038 + 3.74924i 0.513477 + 0.373063i 0.814141 0.580667i \(-0.197208\pi\)
−0.300664 + 0.953730i \(0.597208\pi\)
\(102\) 0 0
\(103\) 10.1308 3.29171i 0.998220 0.324341i 0.236066 0.971737i \(-0.424142\pi\)
0.762154 + 0.647396i \(0.224142\pi\)
\(104\) −6.62160 0.119271i −0.649301 0.0116955i
\(105\) 0 0
\(106\) −11.4522 15.9632i −1.11233 1.55048i
\(107\) 11.5148 + 3.74138i 1.11318 + 0.361693i 0.807159 0.590334i \(-0.201004\pi\)
0.306016 + 0.952026i \(0.401004\pi\)
\(108\) 0 0
\(109\) 3.51815 0.336977 0.168489 0.985704i \(-0.446111\pi\)
0.168489 + 0.985704i \(0.446111\pi\)
\(110\) −10.9750 4.41860i −1.04642 0.421297i
\(111\) 0 0
\(112\) −11.4214 + 7.88620i −1.07922 + 0.745176i
\(113\) −5.13684 + 15.8096i −0.483233 + 1.48724i 0.351290 + 0.936267i \(0.385743\pi\)
−0.834523 + 0.550973i \(0.814257\pi\)
\(114\) 0 0
\(115\) 14.6345 10.6326i 1.36468 0.991495i
\(116\) 0.523467 1.54759i 0.0486027 0.143690i
\(117\) 0 0
\(118\) −11.3152 0.0679319i −1.04165 0.00625364i
\(119\) −7.38648 + 10.1666i −0.677118 + 0.931972i
\(120\) 0 0
\(121\) 2.06643 + 10.8042i 0.187857 + 0.982196i
\(122\) −4.12388 12.9561i −0.373358 1.17299i
\(123\) 0 0
\(124\) 11.3696 3.54385i 1.02102 0.318247i
\(125\) −8.72626 + 2.83533i −0.780500 + 0.253600i
\(126\) 0 0
\(127\) 16.1834 11.7579i 1.43605 1.04335i 0.447195 0.894436i \(-0.352423\pi\)
0.988850 0.148912i \(-0.0475771\pi\)
\(128\) 8.86552 + 7.02870i 0.783609 + 0.621255i
\(129\) 0 0
\(130\) −7.92804 2.62870i −0.695335 0.230552i
\(131\) 15.4240i 1.34760i −0.738914 0.673800i \(-0.764661\pi\)
0.738914 0.673800i \(-0.235339\pi\)
\(132\) 0 0
\(133\) 23.6232i 2.04839i
\(134\) −4.37912 + 13.2072i −0.378298 + 1.14093i
\(135\) 0 0
\(136\) 9.68358 + 3.34036i 0.830360 + 0.286434i
\(137\) 1.08264 0.786586i 0.0924965 0.0672026i −0.540576 0.841295i \(-0.681794\pi\)
0.633072 + 0.774093i \(0.281794\pi\)
\(138\) 0 0
\(139\) −3.79325 + 1.23250i −0.321740 + 0.104540i −0.465434 0.885083i \(-0.654102\pi\)
0.143694 + 0.989622i \(0.454102\pi\)
\(140\) −16.7118 + 5.20899i −1.41240 + 0.440240i
\(141\) 0 0
\(142\) 9.05391 2.88182i 0.759787 0.241837i
\(143\) 1.93309 + 7.52133i 0.161653 + 0.628965i
\(144\) 0 0
\(145\) 1.21110 1.66693i 0.100576 0.138431i
\(146\) −0.0377883 + 6.29431i −0.00312739 + 0.520921i
\(147\) 0 0
\(148\) −3.91953 1.32577i −0.322183 0.108978i
\(149\) 3.78076 2.74688i 0.309732 0.225033i −0.422050 0.906573i \(-0.638689\pi\)
0.731781 + 0.681539i \(0.238689\pi\)
\(150\) 0 0
\(151\) −0.220305 + 0.678030i −0.0179282 + 0.0551773i −0.959620 0.281298i \(-0.909235\pi\)
0.941692 + 0.336476i \(0.109235\pi\)
\(152\) 18.4179 5.61969i 1.49389 0.455817i
\(153\) 0 0
\(154\) 12.4803 + 10.4463i 1.00569 + 0.841784i
\(155\) 15.0197 1.20641
\(156\) 0 0
\(157\) 10.9722 + 3.56508i 0.875676 + 0.284524i 0.712161 0.702016i \(-0.247717\pi\)
0.163515 + 0.986541i \(0.447717\pi\)
\(158\) 15.2180 10.9175i 1.21068 0.868551i
\(159\) 0 0
\(160\) 8.03674 + 11.7902i 0.635360 + 0.932098i
\(161\) −23.6663 + 7.68963i −1.86516 + 0.606028i
\(162\) 0 0
\(163\) −11.0431 8.02330i −0.864964 0.628433i 0.0642670 0.997933i \(-0.479529\pi\)
−0.929231 + 0.369500i \(0.879529\pi\)
\(164\) −5.16509 7.29167i −0.403326 0.569383i
\(165\) 0 0
\(166\) 5.38742 1.71479i 0.418145 0.133094i
\(167\) 9.54231 + 6.93290i 0.738406 + 0.536484i 0.892212 0.451618i \(-0.149153\pi\)
−0.153805 + 0.988101i \(0.549153\pi\)
\(168\) 0 0
\(169\) −2.32304 7.14959i −0.178696 0.549968i
\(170\) 10.4060 + 7.65625i 0.798102 + 0.587208i
\(171\) 0 0
\(172\) 7.05750 9.47252i 0.538129 0.722273i
\(173\) 1.50776 4.64040i 0.114633 0.352803i −0.877238 0.480057i \(-0.840616\pi\)
0.991870 + 0.127253i \(0.0406161\pi\)
\(174\) 0 0
\(175\) −4.72751 −0.357366
\(176\) 5.17554 12.2153i 0.390121 0.920764i
\(177\) 0 0
\(178\) 1.33214 4.01767i 0.0998481 0.301137i
\(179\) 4.50804 13.8743i 0.336946 1.03701i −0.628809 0.777560i \(-0.716457\pi\)
0.965755 0.259455i \(-0.0835428\pi\)
\(180\) 0 0
\(181\) −4.01377 5.52448i −0.298341 0.410631i 0.633360 0.773857i \(-0.281675\pi\)
−0.931701 + 0.363226i \(0.881675\pi\)
\(182\) 9.25485 + 6.80930i 0.686015 + 0.504739i
\(183\) 0 0
\(184\) 11.6252 + 16.6222i 0.857019 + 1.22540i
\(185\) −4.22179 3.06731i −0.310392 0.225513i
\(186\) 0 0
\(187\) 0.751312 11.9881i 0.0549414 0.876655i
\(188\) −7.67389 10.8334i −0.559676 0.790107i
\(189\) 0 0
\(190\) 24.2853 + 0.145798i 1.76184 + 0.0105773i
\(191\) 11.3228 3.67901i 0.819291 0.266204i 0.130763 0.991414i \(-0.458257\pi\)
0.688528 + 0.725210i \(0.258257\pi\)
\(192\) 0 0
\(193\) 6.94660 + 9.56117i 0.500027 + 0.688228i 0.982198 0.187849i \(-0.0601516\pi\)
−0.482171 + 0.876077i \(0.660152\pi\)
\(194\) 8.15288 5.84896i 0.585343 0.419931i
\(195\) 0 0
\(196\) 10.0794 + 0.121029i 0.719958 + 0.00864495i
\(197\) −7.10914 −0.506505 −0.253253 0.967400i \(-0.581500\pi\)
−0.253253 + 0.967400i \(0.581500\pi\)
\(198\) 0 0
\(199\) 24.2455i 1.71872i 0.511370 + 0.859361i \(0.329138\pi\)
−0.511370 + 0.859361i \(0.670862\pi\)
\(200\) 1.12462 + 3.68581i 0.0795227 + 0.260626i
\(201\) 0 0
\(202\) −7.32959 + 5.25832i −0.515708 + 0.369974i
\(203\) −2.29309 + 1.66603i −0.160943 + 0.116932i
\(204\) 0 0
\(205\) −3.48251 10.7181i −0.243229 0.748582i
\(206\) −0.0904389 + 15.0642i −0.00630118 + 1.04957i
\(207\) 0 0
\(208\) 3.10726 8.83541i 0.215450 0.612626i
\(209\) −12.1035 19.0619i −0.837216 1.31854i
\(210\) 0 0
\(211\) −15.0538 + 20.7198i −1.03635 + 1.42641i −0.136276 + 0.990671i \(0.543513\pi\)
−0.900072 + 0.435741i \(0.856487\pi\)
\(212\) 26.5254 8.26785i 1.82177 0.567839i
\(213\) 0 0
\(214\) −10.1473 + 13.7916i −0.693652 + 0.942776i
\(215\) 12.0527 8.75679i 0.821987 0.597208i
\(216\) 0 0
\(217\) −19.6503 6.38477i −1.33395 0.433426i
\(218\) −1.56587 + 4.72258i −0.106054 + 0.319854i
\(219\) 0 0
\(220\) 10.8161 12.7656i 0.729220 0.860655i
\(221\) 8.47994i 0.570422i
\(222\) 0 0
\(223\) 0.321670 + 0.104517i 0.0215406 + 0.00699897i 0.319767 0.947496i \(-0.396395\pi\)
−0.298227 + 0.954495i \(0.596395\pi\)
\(224\) −5.50256 18.8416i −0.367655 1.25890i
\(225\) 0 0
\(226\) −18.9356 13.9320i −1.25958 0.926743i
\(227\) −6.94794 + 2.25752i −0.461151 + 0.149837i −0.530373 0.847764i \(-0.677948\pi\)
0.0692224 + 0.997601i \(0.477948\pi\)
\(228\) 0 0
\(229\) −5.47704 + 7.53850i −0.361933 + 0.498158i −0.950686 0.310155i \(-0.899619\pi\)
0.588753 + 0.808313i \(0.299619\pi\)
\(230\) 7.75909 + 24.3770i 0.511619 + 1.60737i
\(231\) 0 0
\(232\) 1.84442 + 1.39148i 0.121092 + 0.0913552i
\(233\) 0.710006 0.977239i 0.0465140 0.0640211i −0.785126 0.619335i \(-0.787402\pi\)
0.831640 + 0.555314i \(0.187402\pi\)
\(234\) 0 0
\(235\) −5.17405 15.9241i −0.337518 1.03877i
\(236\) 5.12741 15.1588i 0.333766 0.986752i
\(237\) 0 0
\(238\) −10.3596 14.4402i −0.671510 0.936021i
\(239\) −5.06492 + 15.5882i −0.327623 + 1.00832i 0.642620 + 0.766185i \(0.277847\pi\)
−0.970243 + 0.242134i \(0.922153\pi\)
\(240\) 0 0
\(241\) 10.8639i 0.699808i 0.936786 + 0.349904i \(0.113786\pi\)
−0.936786 + 0.349904i \(0.886214\pi\)
\(242\) −15.4227 2.03488i −0.991408 0.130807i
\(243\) 0 0
\(244\) 19.2271 + 0.230871i 1.23089 + 0.0147800i
\(245\) 12.0908 + 3.92854i 0.772452 + 0.250985i
\(246\) 0 0
\(247\) −9.36982 12.8965i −0.596188 0.820582i
\(248\) −0.303316 + 16.8392i −0.0192606 + 1.06929i
\(249\) 0 0
\(250\) 0.0779002 12.9756i 0.00492684 0.820652i
\(251\) 4.78591 + 3.47716i 0.302084 + 0.219477i 0.728492 0.685054i \(-0.240221\pi\)
−0.426409 + 0.904531i \(0.640221\pi\)
\(252\) 0 0
\(253\) 15.1568 18.3304i 0.952897 1.15242i
\(254\) 8.58030 + 26.9570i 0.538376 + 1.69144i
\(255\) 0 0
\(256\) −13.3809 + 8.77227i −0.836303 + 0.548267i
\(257\) −5.17047 15.9131i −0.322525 0.992630i −0.972545 0.232713i \(-0.925240\pi\)
0.650021 0.759917i \(-0.274760\pi\)
\(258\) 0 0
\(259\) 4.21949 + 5.80763i 0.262186 + 0.360868i
\(260\) 7.05727 9.47221i 0.437673 0.587441i
\(261\) 0 0
\(262\) 20.7044 + 6.86495i 1.27912 + 0.424118i
\(263\) 16.8522 1.03915 0.519576 0.854424i \(-0.326090\pi\)
0.519576 + 0.854424i \(0.326090\pi\)
\(264\) 0 0
\(265\) 35.0411 2.15256
\(266\) −31.7106 10.5143i −1.94430 0.644672i
\(267\) 0 0
\(268\) −15.7796 11.7566i −0.963894 0.718149i
\(269\) 1.03833 + 1.42914i 0.0633083 + 0.0871365i 0.839497 0.543364i \(-0.182850\pi\)
−0.776189 + 0.630501i \(0.782850\pi\)
\(270\) 0 0
\(271\) −1.12583 3.46495i −0.0683893 0.210480i 0.911021 0.412359i \(-0.135295\pi\)
−0.979410 + 0.201879i \(0.935295\pi\)
\(272\) −8.79393 + 11.5120i −0.533210 + 0.698018i
\(273\) 0 0
\(274\) 0.574008 + 1.80338i 0.0346771 + 0.108946i
\(275\) 3.81469 2.42217i 0.230034 0.146062i
\(276\) 0 0
\(277\) −14.8332 10.7770i −0.891242 0.647525i 0.0449597 0.998989i \(-0.485684\pi\)
−0.936201 + 0.351464i \(0.885684\pi\)
\(278\) 0.0338628 5.64044i 0.00203095 0.338291i
\(279\) 0 0
\(280\) 0.445834 24.7515i 0.0266437 1.47918i
\(281\) −8.29184 11.4127i −0.494650 0.680827i 0.486587 0.873632i \(-0.338242\pi\)
−0.981237 + 0.192805i \(0.938242\pi\)
\(282\) 0 0
\(283\) −27.2402 8.85089i −1.61926 0.526131i −0.647496 0.762068i \(-0.724184\pi\)
−0.971768 + 0.235937i \(0.924184\pi\)
\(284\) −0.161336 + 13.4362i −0.00957351 + 0.797289i
\(285\) 0 0
\(286\) −10.9566 0.752732i −0.647879 0.0445100i
\(287\) 15.5029i 0.915106i
\(288\) 0 0
\(289\) 1.20015 3.69369i 0.0705973 0.217276i
\(290\) 1.69857 + 2.36764i 0.0997433 + 0.139033i
\(291\) 0 0
\(292\) −8.43234 2.85221i −0.493466 0.166913i
\(293\) −5.28447 16.2639i −0.308722 0.950149i −0.978262 0.207373i \(-0.933509\pi\)
0.669540 0.742776i \(-0.266491\pi\)
\(294\) 0 0
\(295\) 11.8628 16.3278i 0.690679 0.950639i
\(296\) 3.52416 4.67130i 0.204838 0.271514i
\(297\) 0 0
\(298\) 2.00452 + 6.29769i 0.116119 + 0.364815i
\(299\) 9.86997 13.5848i 0.570795 0.785632i
\(300\) 0 0
\(301\) −19.4911 + 6.33303i −1.12345 + 0.365030i
\(302\) −0.812100 0.597507i −0.0467311 0.0343826i
\(303\) 0 0
\(304\) −0.653893 + 27.2244i −0.0375034 + 1.56143i
\(305\) 23.0640 + 7.49394i 1.32064 + 0.429102i
\(306\) 0 0
\(307\) 20.4466i 1.16695i 0.812131 + 0.583476i \(0.198308\pi\)
−0.812131 + 0.583476i \(0.801692\pi\)
\(308\) −19.5773 + 12.1034i −1.11552 + 0.689656i
\(309\) 0 0
\(310\) −6.68499 + 20.1616i −0.379682 + 1.14510i
\(311\) −17.0796 5.54949i −0.968494 0.314683i −0.218286 0.975885i \(-0.570047\pi\)
−0.750208 + 0.661202i \(0.770047\pi\)
\(312\) 0 0
\(313\) −19.0162 + 13.8161i −1.07486 + 0.780931i −0.976779 0.214248i \(-0.931270\pi\)
−0.0980794 + 0.995179i \(0.531270\pi\)
\(314\) −9.66912 + 13.1418i −0.545660 + 0.741632i
\(315\) 0 0
\(316\) 7.88187 + 25.2870i 0.443390 + 1.42251i
\(317\) 19.0205 26.1795i 1.06830 1.47039i 0.196515 0.980501i \(-0.437038\pi\)
0.871785 0.489888i \(-0.162962\pi\)
\(318\) 0 0
\(319\) 0.996722 2.51921i 0.0558057 0.141049i
\(320\) −19.4036 + 5.54050i −1.08469 + 0.309723i
\(321\) 0 0
\(322\) 0.211271 35.1909i 0.0117737 1.96111i
\(323\) 7.61923 + 23.4496i 0.423945 + 1.30477i
\(324\) 0 0
\(325\) 2.58086 1.87510i 0.143160 0.104012i
\(326\) 15.6852 11.2527i 0.868721 0.623229i
\(327\) 0 0
\(328\) 12.0869 3.68796i 0.667385 0.203633i
\(329\) 23.0330i 1.26985i
\(330\) 0 0
\(331\) 4.86677 0.267502 0.133751 0.991015i \(-0.457298\pi\)
0.133751 + 0.991015i \(0.457298\pi\)
\(332\) −0.0960008 + 7.99502i −0.00526873 + 0.438784i
\(333\) 0 0
\(334\) −13.5535 + 9.72340i −0.741614 + 0.532041i
\(335\) −14.5874 20.0778i −0.796992 1.09697i
\(336\) 0 0
\(337\) −22.9644 + 7.46157i −1.25095 + 0.406458i −0.858261 0.513214i \(-0.828455\pi\)
−0.392688 + 0.919672i \(0.628455\pi\)
\(338\) 10.6312 + 0.0638251i 0.578261 + 0.00347163i
\(339\) 0 0
\(340\) −14.9089 + 10.5608i −0.808548 + 0.572739i
\(341\) 19.1273 4.91600i 1.03580 0.266216i
\(342\) 0 0
\(343\) 5.50190 + 3.99737i 0.297075 + 0.215837i
\(344\) 9.57425 + 13.6897i 0.516209 + 0.738098i
\(345\) 0 0
\(346\) 5.55796 + 4.08930i 0.298798 + 0.219842i
\(347\) 0.447412 + 0.615809i 0.0240183 + 0.0330584i 0.820857 0.571133i \(-0.193496\pi\)
−0.796839 + 0.604192i \(0.793496\pi\)
\(348\) 0 0
\(349\) 6.30428 19.4026i 0.337460 1.03860i −0.628037 0.778183i \(-0.716141\pi\)
0.965497 0.260413i \(-0.0838586\pi\)
\(350\) 2.10413 6.34597i 0.112471 0.339207i
\(351\) 0 0
\(352\) 14.0937 + 12.3842i 0.751195 + 0.660080i
\(353\) −8.47666 −0.451167 −0.225583 0.974224i \(-0.572429\pi\)
−0.225583 + 0.974224i \(0.572429\pi\)
\(354\) 0 0
\(355\) −5.23686 + 16.1174i −0.277944 + 0.855422i
\(356\) 4.80020 + 3.57639i 0.254410 + 0.189548i
\(357\) 0 0
\(358\) 16.6177 + 12.2266i 0.878274 + 0.646194i
\(359\) 0.249005 + 0.766359i 0.0131420 + 0.0404469i 0.957412 0.288724i \(-0.0932309\pi\)
−0.944270 + 0.329171i \(0.893231\pi\)
\(360\) 0 0
\(361\) 22.1265 + 16.0759i 1.16455 + 0.846098i
\(362\) 9.20224 2.92903i 0.483659 0.153946i
\(363\) 0 0
\(364\) −13.2596 + 9.39253i −0.694994 + 0.492302i
\(365\) −9.08261 6.59890i −0.475406 0.345402i
\(366\) 0 0
\(367\) 18.2008 5.91378i 0.950072 0.308697i 0.207327 0.978272i \(-0.433524\pi\)
0.742745 + 0.669575i \(0.233524\pi\)
\(368\) −27.4869 + 8.20680i −1.43285 + 0.427809i
\(369\) 0 0
\(370\) 5.99644 4.30191i 0.311740 0.223645i
\(371\) −45.8444 14.8957i −2.38012 0.773349i
\(372\) 0 0
\(373\) −6.55679 −0.339498 −0.169749 0.985487i \(-0.554296\pi\)
−0.169749 + 0.985487i \(0.554296\pi\)
\(374\) 15.7578 + 6.34421i 0.814816 + 0.328051i
\(375\) 0 0
\(376\) 17.9577 5.47929i 0.926099 0.282573i
\(377\) 0.591043 1.81904i 0.0304403 0.0936855i
\(378\) 0 0
\(379\) 13.9245 10.1167i 0.715254 0.519662i −0.169610 0.985511i \(-0.554251\pi\)
0.884864 + 0.465849i \(0.154251\pi\)
\(380\) −11.0047 + 32.5345i −0.564528 + 1.66898i
\(381\) 0 0
\(382\) −0.101080 + 16.8367i −0.00517171 + 0.861438i
\(383\) −1.18431 + 1.63006i −0.0605154 + 0.0832923i −0.838202 0.545360i \(-0.816393\pi\)
0.777687 + 0.628652i \(0.216393\pi\)
\(384\) 0 0
\(385\) −28.1147 + 7.22587i −1.43286 + 0.368265i
\(386\) −15.9262 + 5.06925i −0.810624 + 0.258018i
\(387\) 0 0
\(388\) 4.22264 + 13.5473i 0.214372 + 0.687759i
\(389\) −19.3927 + 6.30107i −0.983249 + 0.319477i −0.756153 0.654395i \(-0.772923\pi\)
−0.227097 + 0.973872i \(0.572923\pi\)
\(390\) 0 0
\(391\) −21.0122 + 15.2662i −1.06263 + 0.772047i
\(392\) −4.64864 + 13.4762i −0.234792 + 0.680652i
\(393\) 0 0
\(394\) 3.16416 9.54295i 0.159408 0.480767i
\(395\) 33.4052i 1.68080i
\(396\) 0 0
\(397\) 16.0438i 0.805217i −0.915372 0.402608i \(-0.868104\pi\)
0.915372 0.402608i \(-0.131896\pi\)
\(398\) −32.5460 10.7913i −1.63138 0.540918i
\(399\) 0 0
\(400\) −5.44820 0.130858i −0.272410 0.00654291i
\(401\) −10.2918 + 7.47745i −0.513949 + 0.373406i −0.814320 0.580417i \(-0.802890\pi\)
0.300370 + 0.953823i \(0.402890\pi\)
\(402\) 0 0
\(403\) 13.2600 4.30843i 0.660527 0.214618i
\(404\) −3.79622 12.1792i −0.188869 0.605940i
\(405\) 0 0
\(406\) −1.21577 3.81964i −0.0603379 0.189566i
\(407\) −6.38033 2.52436i −0.316261 0.125128i
\(408\) 0 0
\(409\) 18.7338 25.7849i 0.926329 1.27498i −0.0349457 0.999389i \(-0.511126\pi\)
0.961274 0.275593i \(-0.0888742\pi\)
\(410\) 15.9374 + 0.0956812i 0.787091 + 0.00472536i
\(411\) 0 0
\(412\) −20.1812 6.82621i −0.994254 0.336303i
\(413\) −22.4610 + 16.3189i −1.10523 + 0.802999i
\(414\) 0 0
\(415\) −3.11613 + 9.59045i −0.152965 + 0.470777i
\(416\) 10.4772 + 8.10352i 0.513688 + 0.397308i
\(417\) 0 0
\(418\) 30.9747 7.76301i 1.51502 0.379701i
\(419\) 14.2948 0.698346 0.349173 0.937058i \(-0.386463\pi\)
0.349173 + 0.937058i \(0.386463\pi\)
\(420\) 0 0
\(421\) 7.03822 + 2.28685i 0.343022 + 0.111454i 0.475461 0.879737i \(-0.342281\pi\)
−0.132440 + 0.991191i \(0.542281\pi\)
\(422\) −21.1130 29.4295i −1.02777 1.43261i
\(423\) 0 0
\(424\) −0.707640 + 39.2862i −0.0343661 + 1.90791i
\(425\) −4.69277 + 1.52477i −0.227633 + 0.0739623i
\(426\) 0 0
\(427\) −26.9891 19.6087i −1.30609 0.948932i
\(428\) −13.9968 19.7596i −0.676561 0.955115i
\(429\) 0 0
\(430\) 6.39023 + 20.0764i 0.308164 + 0.968171i
\(431\) −7.95812 5.78191i −0.383329 0.278505i 0.379387 0.925238i \(-0.376135\pi\)
−0.762716 + 0.646733i \(0.776135\pi\)
\(432\) 0 0
\(433\) −8.69388 26.7570i −0.417801 1.28586i −0.909721 0.415220i \(-0.863705\pi\)
0.491920 0.870640i \(-0.336295\pi\)
\(434\) 17.3166 23.5358i 0.831223 1.12975i
\(435\) 0 0
\(436\) −5.64241 4.20388i −0.270223 0.201329i
\(437\) −15.0874 + 46.4344i −0.721730 + 2.22126i
\(438\) 0 0
\(439\) −32.6121 −1.55649 −0.778245 0.627960i \(-0.783890\pi\)
−0.778245 + 0.627960i \(0.783890\pi\)
\(440\) 12.3218 + 20.2007i 0.587420 + 0.963030i
\(441\) 0 0
\(442\) 11.3830 + 3.77428i 0.541436 + 0.179524i
\(443\) 5.00926 15.4169i 0.237997 0.732479i −0.758713 0.651425i \(-0.774171\pi\)
0.996710 0.0810540i \(-0.0258286\pi\)
\(444\) 0 0
\(445\) 4.43751 + 6.10771i 0.210358 + 0.289533i
\(446\) −0.283468 + 0.385275i −0.0134226 + 0.0182433i
\(447\) 0 0
\(448\) 27.7410 + 0.999692i 1.31064 + 0.0472310i
\(449\) 22.1505 + 16.0933i 1.04535 + 0.759490i 0.971322 0.237766i \(-0.0764152\pi\)
0.0740259 + 0.997256i \(0.476415\pi\)
\(450\) 0 0
\(451\) −7.94300 12.5095i −0.374021 0.589048i
\(452\) 27.1295 19.2174i 1.27607 0.903908i
\(453\) 0 0
\(454\) 0.0620249 10.3313i 0.00291097 0.484874i
\(455\) −19.4904 + 6.33282i −0.913725 + 0.296887i
\(456\) 0 0
\(457\) −2.48389 3.41878i −0.116191 0.159924i 0.746960 0.664869i \(-0.231513\pi\)
−0.863151 + 0.504945i \(0.831513\pi\)
\(458\) −7.68156 10.7074i −0.358936 0.500322i
\(459\) 0 0
\(460\) −36.1759 0.434385i −1.68671 0.0202533i
\(461\) −15.4388 −0.719059 −0.359529 0.933134i \(-0.617063\pi\)
−0.359529 + 0.933134i \(0.617063\pi\)
\(462\) 0 0
\(463\) 2.29618i 0.106712i −0.998576 0.0533562i \(-0.983008\pi\)
0.998576 0.0533562i \(-0.0169919\pi\)
\(464\) −2.68877 + 1.85653i −0.124823 + 0.0861872i
\(465\) 0 0
\(466\) 0.995785 + 1.38803i 0.0461288 + 0.0642992i
\(467\) −29.1415 + 21.1725i −1.34851 + 0.979748i −0.349422 + 0.936965i \(0.613622\pi\)
−0.999084 + 0.0427822i \(0.986378\pi\)
\(468\) 0 0
\(469\) 10.5498 + 32.4688i 0.487143 + 1.49927i
\(470\) 23.6785 + 0.142156i 1.09221 + 0.00655716i
\(471\) 0 0
\(472\) 18.0662 + 13.6297i 0.831566 + 0.627357i
\(473\) 12.4828 15.0966i 0.573960 0.694140i
\(474\) 0 0
\(475\) −5.45207 + 7.50413i −0.250158 + 0.344313i
\(476\) 23.9947 7.47905i 1.09979 0.342802i
\(477\) 0 0
\(478\) −18.6705 13.7370i −0.853971 0.628314i
\(479\) 9.19805 6.68277i 0.420270 0.305344i −0.357477 0.933922i \(-0.616363\pi\)
0.777746 + 0.628578i \(0.216363\pi\)
\(480\) 0 0
\(481\) −4.60703 1.49692i −0.210063 0.0682535i
\(482\) −14.5832 4.83535i −0.664246 0.220244i
\(483\) 0 0
\(484\) 9.59589 19.7969i 0.436177 0.899861i
\(485\) 17.8965i 0.812638i
\(486\) 0 0
\(487\) −6.15510 1.99991i −0.278914 0.0906247i 0.166220 0.986089i \(-0.446844\pi\)
−0.445134 + 0.895464i \(0.646844\pi\)
\(488\) −8.86757 + 25.7068i −0.401416 + 1.16369i
\(489\) 0 0
\(490\) −10.6549 + 14.4815i −0.481338 + 0.654209i
\(491\) −15.3305 + 4.98117i −0.691854 + 0.224797i −0.633778 0.773515i \(-0.718497\pi\)
−0.0580762 + 0.998312i \(0.518497\pi\)
\(492\) 0 0
\(493\) −1.73889 + 2.39337i −0.0783156 + 0.107792i
\(494\) 21.4819 6.83758i 0.966516 0.307637i
\(495\) 0 0
\(496\) −22.4692 7.90202i −1.00889 0.354811i
\(497\) 13.7028 18.8603i 0.614655 0.846000i
\(498\) 0 0
\(499\) 5.50777 + 16.9512i 0.246562 + 0.758839i 0.995376 + 0.0960588i \(0.0306237\pi\)
−0.748814 + 0.662780i \(0.769376\pi\)
\(500\) 17.3832 + 5.87981i 0.777399 + 0.262953i
\(501\) 0 0
\(502\) −6.79769 + 4.87673i −0.303396 + 0.217659i
\(503\) 9.28405 28.5734i 0.413955 1.27402i −0.499227 0.866471i \(-0.666382\pi\)
0.913182 0.407552i \(-0.133618\pi\)
\(504\) 0 0
\(505\) 16.0893i 0.715963i
\(506\) 17.8598 + 28.5042i 0.793965 + 1.26717i
\(507\) 0 0
\(508\) −40.0047 0.480360i −1.77492 0.0213125i
\(509\) 11.9982 + 3.89847i 0.531813 + 0.172797i 0.562600 0.826729i \(-0.309801\pi\)
−0.0307867 + 0.999526i \(0.509801\pi\)
\(510\) 0 0
\(511\) 9.07767 + 12.4943i 0.401572 + 0.552717i
\(512\) −5.81986 21.8662i −0.257204 0.966357i
\(513\) 0 0
\(514\) 23.6622 + 0.142058i 1.04369 + 0.00626589i
\(515\) −21.7374 15.7932i −0.957866 0.695930i
\(516\) 0 0
\(517\) −11.8011 18.5856i −0.519012 0.817394i
\(518\) −9.67389 + 3.07915i −0.425046 + 0.135290i
\(519\) 0 0
\(520\) 9.57394 + 13.6892i 0.419845 + 0.600313i
\(521\) 7.21311 + 22.1997i 0.316012 + 0.972585i 0.975336 + 0.220726i \(0.0708426\pi\)
−0.659324 + 0.751859i \(0.729157\pi\)
\(522\) 0 0
\(523\) 0.325225 + 0.447634i 0.0142211 + 0.0195737i 0.816068 0.577955i \(-0.196149\pi\)
−0.801847 + 0.597529i \(0.796149\pi\)
\(524\) −18.4303 + 24.7370i −0.805132 + 1.08064i
\(525\) 0 0
\(526\) −7.50063 + 22.6216i −0.327043 + 0.986347i
\(527\) −21.5652 −0.939393
\(528\) 0 0
\(529\) −28.4301 −1.23609
\(530\) −15.5962 + 47.0374i −0.677455 + 2.04317i
\(531\) 0 0
\(532\) 28.2277 37.8870i 1.22382 1.64261i
\(533\) −6.14901 8.46338i −0.266343 0.366590i
\(534\) 0 0
\(535\) −9.43720 29.0447i −0.408006 1.25571i
\(536\) 22.8047 15.9491i 0.985014 0.688896i
\(537\) 0 0
\(538\) −2.38055 + 0.757719i −0.102633 + 0.0326676i
\(539\) 16.6833 + 1.04557i 0.718600 + 0.0450358i
\(540\) 0 0
\(541\) 25.0174 + 18.1762i 1.07558 + 0.781457i 0.976908 0.213662i \(-0.0685392\pi\)
0.0986763 + 0.995120i \(0.468539\pi\)
\(542\) 5.15225 + 0.0309319i 0.221308 + 0.00132864i
\(543\) 0 0
\(544\) −11.5391 16.9283i −0.494735 0.725796i
\(545\) −5.21608 7.17932i −0.223433 0.307528i
\(546\) 0 0
\(547\) 23.4570 + 7.62163i 1.00295 + 0.325878i 0.764043 0.645165i \(-0.223212\pi\)
0.238905 + 0.971043i \(0.423212\pi\)
\(548\) −2.67625 0.0321353i −0.114324 0.00137275i
\(549\) 0 0
\(550\) 1.55355 + 6.19871i 0.0662434 + 0.264314i
\(551\) 5.56125i 0.236917i
\(552\) 0 0
\(553\) 14.2003 43.7041i 0.603860 1.85849i
\(554\) 21.0685 15.1147i 0.895113 0.642163i
\(555\) 0 0
\(556\) 7.55636 + 2.55592i 0.320461 + 0.108395i
\(557\) 10.6572 + 32.7996i 0.451562 + 1.38976i 0.875125 + 0.483898i \(0.160779\pi\)
−0.423563 + 0.905867i \(0.639221\pi\)
\(558\) 0 0
\(559\) 8.12871 11.1882i 0.343808 0.473211i
\(560\) 33.0267 + 11.6149i 1.39563 + 0.490820i
\(561\) 0 0
\(562\) 19.0104 6.05093i 0.801907 0.255243i
\(563\) −1.49049 + 2.05149i −0.0628168 + 0.0864600i −0.839270 0.543716i \(-0.817017\pi\)
0.776453 + 0.630175i \(0.217017\pi\)
\(564\) 0 0
\(565\) 39.8779 12.9571i 1.67767 0.545110i
\(566\) 24.0052 32.6265i 1.00901 1.37140i
\(567\) 0 0
\(568\) −17.9642 6.19677i −0.753761 0.260011i
\(569\) 15.2106 + 4.94221i 0.637660 + 0.207188i 0.609965 0.792428i \(-0.291183\pi\)
0.0276946 + 0.999616i \(0.491183\pi\)
\(570\) 0 0
\(571\) 8.45680i 0.353906i 0.984219 + 0.176953i \(0.0566241\pi\)
−0.984219 + 0.176953i \(0.943376\pi\)
\(572\) 5.88704 14.3726i 0.246149 0.600949i
\(573\) 0 0
\(574\) −20.8103 6.90007i −0.868604 0.288003i
\(575\) −9.29252 3.01932i −0.387525 0.125914i
\(576\) 0 0
\(577\) −38.8626 + 28.2353i −1.61787 + 1.17545i −0.800625 + 0.599166i \(0.795499\pi\)
−0.817247 + 0.576287i \(0.804501\pi\)
\(578\) 4.42406 + 3.25502i 0.184017 + 0.135391i
\(579\) 0 0
\(580\) −3.93420 + 1.22627i −0.163359 + 0.0509183i
\(581\) 8.15369 11.2226i 0.338272 0.465591i
\(582\) 0 0
\(583\) 44.6243 11.4691i 1.84815 0.475001i
\(584\) 7.58176 10.0497i 0.313735 0.415859i
\(585\) 0 0
\(586\) 24.1839 + 0.145190i 0.999028 + 0.00599774i
\(587\) 9.41855 + 28.9873i 0.388745 + 1.19644i 0.933727 + 0.357987i \(0.116537\pi\)
−0.544981 + 0.838448i \(0.683463\pi\)
\(588\) 0 0
\(589\) −32.7967 + 23.8282i −1.35136 + 0.981824i
\(590\) 16.6376 + 23.1912i 0.684960 + 0.954768i
\(591\) 0 0
\(592\) 4.70197 + 6.80977i 0.193250 + 0.279880i
\(593\) 8.98372i 0.368917i −0.982840 0.184459i \(-0.940947\pi\)
0.982840 0.184459i \(-0.0590532\pi\)
\(594\) 0 0
\(595\) 31.6979 1.29949
\(596\) −9.34587 0.112221i −0.382822 0.00459676i
\(597\) 0 0
\(598\) 13.8427 + 19.2953i 0.566068 + 0.789045i
\(599\) 21.8522 + 30.0770i 0.892857 + 1.22891i 0.972691 + 0.232104i \(0.0745608\pi\)
−0.0798345 + 0.996808i \(0.525439\pi\)
\(600\) 0 0
\(601\) 11.6000 3.76907i 0.473175 0.153744i −0.0627156 0.998031i \(-0.519976\pi\)
0.535890 + 0.844288i \(0.319976\pi\)
\(602\) 0.173999 28.9825i 0.00709165 1.18124i
\(603\) 0 0
\(604\) 1.16351 0.824181i 0.0473427 0.0335355i
\(605\) 18.9838 20.2354i 0.771803 0.822684i
\(606\) 0 0
\(607\) −1.25260 0.910065i −0.0508414 0.0369384i 0.562074 0.827087i \(-0.310003\pi\)
−0.612916 + 0.790148i \(0.710003\pi\)
\(608\) −36.2537 12.9949i −1.47028 0.527012i
\(609\) 0 0
\(610\) −20.3249 + 27.6245i −0.822929 + 1.11848i
\(611\) −9.13573 12.5742i −0.369592 0.508700i
\(612\) 0 0
\(613\) −7.12202 + 21.9193i −0.287656 + 0.885314i 0.697934 + 0.716162i \(0.254103\pi\)
−0.985590 + 0.169152i \(0.945897\pi\)
\(614\) −27.4465 9.10045i −1.10765 0.367264i
\(615\) 0 0
\(616\) −7.53350 31.6666i −0.303533 1.27588i
\(617\) 42.0365 1.69233 0.846163 0.532925i \(-0.178907\pi\)
0.846163 + 0.532925i \(0.178907\pi\)
\(618\) 0 0
\(619\) −9.13452 + 28.1132i −0.367147 + 1.12996i 0.581478 + 0.813562i \(0.302475\pi\)
−0.948625 + 0.316401i \(0.897525\pi\)
\(620\) −24.0886 17.9472i −0.967420 0.720776i
\(621\) 0 0
\(622\) 15.0512 20.4568i 0.603497 0.820242i
\(623\) −3.20927 9.87710i −0.128577 0.395718i
\(624\) 0 0
\(625\) 24.2349 + 17.6077i 0.969395 + 0.704307i
\(626\) −10.0822 31.6757i −0.402966 1.26601i
\(627\) 0 0
\(628\) −13.3373 18.8285i −0.532215 0.751339i
\(629\) 6.06162 + 4.40402i 0.241693 + 0.175600i
\(630\) 0 0
\(631\) 4.94570 1.60696i 0.196885 0.0639719i −0.208915 0.977934i \(-0.566993\pi\)
0.405800 + 0.913962i \(0.366993\pi\)
\(632\) −37.4521 0.674604i −1.48977 0.0268343i
\(633\) 0 0
\(634\) 26.6764 + 37.1843i 1.05945 + 1.47678i
\(635\) −47.9878 15.5922i −1.90434 0.618757i
\(636\) 0 0
\(637\) 11.8012 0.467579
\(638\) 2.93804 + 2.45921i 0.116318 + 0.0973609i
\(639\) 0 0
\(640\) 1.19892 28.5124i 0.0473916 1.12705i
\(641\) −11.3041 + 34.7903i −0.446484 + 1.37414i 0.434365 + 0.900737i \(0.356973\pi\)
−0.880848 + 0.473398i \(0.843027\pi\)
\(642\) 0 0
\(643\) −3.35634 + 2.43852i −0.132361 + 0.0961660i −0.651996 0.758223i \(-0.726068\pi\)
0.519635 + 0.854389i \(0.326068\pi\)
\(644\) 47.1445 + 15.9465i 1.85775 + 0.628379i
\(645\) 0 0
\(646\) −34.8687 0.209337i −1.37189 0.00823624i
\(647\) 9.87192 13.5875i 0.388105 0.534181i −0.569604 0.821919i \(-0.692903\pi\)
0.957709 + 0.287738i \(0.0929033\pi\)
\(648\) 0 0
\(649\) 9.76298 24.6759i 0.383230 0.968615i
\(650\) 1.36835 + 4.29899i 0.0536710 + 0.168620i
\(651\) 0 0
\(652\) 8.12384 + 26.0633i 0.318154 + 1.02072i
\(653\) 14.1761 4.60608i 0.554752 0.180250i −0.0182065 0.999834i \(-0.505796\pi\)
0.572958 + 0.819584i \(0.305796\pi\)
\(654\) 0 0
\(655\) −31.4750 + 22.8679i −1.22983 + 0.893524i
\(656\) −0.429122 + 17.8662i −0.0167544 + 0.697559i
\(657\) 0 0
\(658\) −30.9183 10.2516i −1.20532 0.399649i
\(659\) 6.39469i 0.249102i −0.992213 0.124551i \(-0.960251\pi\)
0.992213 0.124551i \(-0.0397490\pi\)
\(660\) 0 0
\(661\) 4.15586i 0.161644i −0.996729 0.0808221i \(-0.974245\pi\)
0.996729 0.0808221i \(-0.0257546\pi\)
\(662\) −2.16612 + 6.53291i −0.0841885 + 0.253909i
\(663\) 0 0
\(664\) −10.6894 3.68731i −0.414828 0.143095i
\(665\) 48.2068 35.0243i 1.86938 1.35818i
\(666\) 0 0
\(667\) −5.57139 + 1.81025i −0.215725 + 0.0700933i
\(668\) −7.01978 22.5212i −0.271603 0.871372i
\(669\) 0 0
\(670\) 33.4440 10.6451i 1.29205 0.411254i
\(671\) 31.8244 + 1.99449i 1.22857 + 0.0769964i
\(672\) 0 0
\(673\) 26.3682 36.2928i 1.01642 1.39898i 0.101739 0.994811i \(-0.467559\pi\)
0.914683 0.404173i \(-0.132441\pi\)
\(674\) 0.205005 34.1472i 0.00789650 1.31530i
\(675\) 0 0
\(676\) −4.81744 + 14.2424i −0.185286 + 0.547783i
\(677\) 21.4231 15.5648i 0.823357 0.598204i −0.0943152 0.995542i \(-0.530066\pi\)
0.917672 + 0.397339i \(0.130066\pi\)
\(678\) 0 0
\(679\) 7.60769 23.4141i 0.291957 0.898550i
\(680\) −7.54057 24.7133i −0.289168 0.947714i
\(681\) 0 0
\(682\) −1.91426 + 27.8636i −0.0733007 + 1.06695i
\(683\) 21.1898 0.810805 0.405402 0.914138i \(-0.367131\pi\)
0.405402 + 0.914138i \(0.367131\pi\)
\(684\) 0 0
\(685\) −3.21030 1.04309i −0.122659 0.0398544i
\(686\) −7.81466 + 5.60631i −0.298365 + 0.214050i
\(687\) 0 0
\(688\) −22.6377 + 6.75895i −0.863053 + 0.257683i
\(689\) 30.9357 10.0516i 1.17856 0.382936i
\(690\) 0 0
\(691\) 14.6736 + 10.6610i 0.558210 + 0.405564i 0.830804 0.556566i \(-0.187881\pi\)
−0.272593 + 0.962129i \(0.587881\pi\)
\(692\) −7.96302 + 5.64065i −0.302709 + 0.214425i
\(693\) 0 0
\(694\) −1.02577 + 0.326497i −0.0389376 + 0.0123936i
\(695\) 8.13908 + 5.91338i 0.308733 + 0.224307i
\(696\) 0 0
\(697\) 5.00017 + 15.3889i 0.189395 + 0.582898i
\(698\) 23.2391 + 17.0983i 0.879613 + 0.647180i
\(699\) 0 0
\(700\) 7.58200 + 5.64897i 0.286573 + 0.213511i
\(701\) 12.5199 38.5324i 0.472871 1.45535i −0.375937 0.926645i \(-0.622679\pi\)
0.848808 0.528702i \(-0.177321\pi\)
\(702\) 0 0
\(703\) 14.0848 0.531219
\(704\) −22.8968 + 13.4066i −0.862955 + 0.505281i
\(705\) 0 0
\(706\) 3.77281 11.3786i 0.141992 0.428241i
\(707\) −6.83945 + 21.0497i −0.257224 + 0.791654i
\(708\) 0 0
\(709\) −21.0524 28.9761i −0.790638 1.08822i −0.994028 0.109122i \(-0.965196\pi\)
0.203390 0.979098i \(-0.434804\pi\)
\(710\) −19.3043 14.2033i −0.724479 0.533039i
\(711\) 0 0
\(712\) −6.93726 + 4.85176i −0.259985 + 0.181827i
\(713\) −34.5473 25.1001i −1.29381 0.940007i
\(714\) 0 0
\(715\) 12.4824 15.0961i 0.466815 0.564561i
\(716\) −23.8086 + 16.8649i −0.889769 + 0.630272i
\(717\) 0 0
\(718\) −1.13955 0.00684137i −0.0425276 0.000255318i
\(719\) −1.96438 + 0.638267i −0.0732592 + 0.0238034i −0.345417 0.938449i \(-0.612263\pi\)
0.272158 + 0.962253i \(0.412263\pi\)
\(720\) 0 0
\(721\) 21.7256 + 29.9027i 0.809104 + 1.11364i
\(722\) −31.4275 + 22.5464i −1.16961 + 0.839091i
\(723\) 0 0
\(724\) −0.163979 + 13.6563i −0.00609422 + 0.507531i
\(725\) −1.11293 −0.0413331
\(726\) 0 0
\(727\) 48.1161i 1.78453i 0.451514 + 0.892264i \(0.350884\pi\)
−0.451514 + 0.892264i \(0.649116\pi\)
\(728\) −6.70642 21.9795i −0.248557 0.814615i
\(729\) 0 0
\(730\) 12.9005 9.25498i 0.477471 0.342542i
\(731\) −17.3052 + 12.5730i −0.640056 + 0.465028i
\(732\) 0 0
\(733\) −5.26347 16.1993i −0.194411 0.598335i −0.999983 0.00583726i \(-0.998142\pi\)
0.805572 0.592498i \(-0.201858\pi\)
\(734\) −0.162480 + 27.0639i −0.00599724 + 0.998946i
\(735\) 0 0
\(736\) 1.21757 40.5497i 0.0448801 1.49468i
\(737\) −25.1483 20.7943i −0.926351 0.765966i
\(738\) 0 0
\(739\) −21.1621 + 29.1272i −0.778462 + 1.07146i 0.216988 + 0.976174i \(0.430377\pi\)
−0.995450 + 0.0952870i \(0.969623\pi\)
\(740\) 3.10575 + 9.96402i 0.114170 + 0.366285i
\(741\) 0 0
\(742\) 40.3998 54.9093i 1.48312 2.01579i
\(743\) 22.7550 16.5325i 0.834801 0.606519i −0.0861124 0.996285i \(-0.527444\pi\)
0.920914 + 0.389767i \(0.127444\pi\)
\(744\) 0 0
\(745\) −11.2109 3.64263i −0.410735 0.133456i
\(746\) 2.91831 8.80150i 0.106847 0.322246i
\(747\) 0 0
\(748\) −15.5297 + 18.3288i −0.567821 + 0.670166i
\(749\) 42.0110i 1.53505i
\(750\) 0 0
\(751\) −11.6316 3.77933i −0.424443 0.137910i 0.0890039 0.996031i \(-0.471632\pi\)
−0.513447 + 0.858121i \(0.671632\pi\)
\(752\) −0.637556 + 26.5443i −0.0232493 + 0.967970i
\(753\) 0 0
\(754\) 2.17873 + 1.60301i 0.0793446 + 0.0583782i
\(755\) 1.71026 0.555696i 0.0622426 0.0202238i
\(756\) 0 0
\(757\) 16.0896 22.1455i 0.584788 0.804891i −0.409423 0.912345i \(-0.634270\pi\)
0.994210 + 0.107454i \(0.0342698\pi\)
\(758\) 7.38265 + 23.1943i 0.268150 + 0.842456i
\(759\) 0 0
\(760\) −38.7746 29.2527i −1.40650 1.06111i
\(761\) 19.5189 26.8654i 0.707559 0.973871i −0.292287 0.956331i \(-0.594416\pi\)
0.999846 0.0175405i \(-0.00558359\pi\)
\(762\) 0 0
\(763\) 3.77234 + 11.6101i 0.136568 + 0.420313i
\(764\) −22.5557 7.62939i −0.816036 0.276022i
\(765\) 0 0
\(766\) −1.66100 2.31527i −0.0600143 0.0836541i
\(767\) 5.78932 17.8177i 0.209040 0.643360i
\(768\) 0 0
\(769\) 0.555847i 0.0200443i 0.999950 + 0.0100222i \(0.00319021\pi\)
−0.999950 + 0.0100222i \(0.996810\pi\)
\(770\) 2.81370 40.9558i 0.101399 1.47594i
\(771\) 0 0
\(772\) 0.283797 23.6348i 0.0102141 0.850636i
\(773\) −45.7223 14.8561i −1.64452 0.534336i −0.666976 0.745079i \(-0.732412\pi\)
−0.977541 + 0.210743i \(0.932412\pi\)
\(774\) 0 0
\(775\) −4.76854 6.56333i −0.171291 0.235762i
\(776\) −20.0646 0.361413i −0.720278 0.0129740i
\(777\) 0 0
\(778\) 0.173121 28.8363i 0.00620668 1.03383i
\(779\) 24.6082 + 17.8789i 0.881681 + 0.640578i
\(780\) 0 0
\(781\) −1.39377 + 22.2393i −0.0498731 + 0.795786i
\(782\) −11.1405 35.0004i −0.398382 1.25161i
\(783\) 0 0
\(784\) −16.0208 12.2381i −0.572170 0.437076i
\(785\) −8.99252 27.6761i −0.320957 0.987803i
\(786\) 0 0
\(787\) −16.6523 22.9199i −0.593589 0.817005i 0.401513 0.915853i \(-0.368484\pi\)
−0.995103 + 0.0988478i \(0.968484\pi\)
\(788\) 11.4017 + 8.49481i 0.406167 + 0.302615i
\(789\) 0 0
\(790\) −44.8414 14.8681i −1.59539 0.528982i
\(791\) −57.6804 −2.05088
\(792\) 0 0
\(793\) 22.5115 0.799406
\(794\) 21.5364 + 7.14083i 0.764299 + 0.253419i
\(795\) 0 0
\(796\) 28.9713 38.8851i 1.02686 1.37824i
\(797\) 8.84278 + 12.1710i 0.313227 + 0.431121i 0.936384 0.350976i \(-0.114150\pi\)
−0.623157 + 0.782097i \(0.714150\pi\)
\(798\) 0 0
\(799\) 7.42887 + 22.8637i 0.262815 + 0.808860i
\(800\) 2.60056 7.25514i 0.0919436 0.256508i
\(801\) 0 0
\(802\) −5.45663 17.1433i −0.192680 0.605351i
\(803\) −13.7264 5.43083i −0.484395 0.191650i
\(804\) 0 0
\(805\) 50.7800 + 36.8938i 1.78976 + 1.30034i
\(806\) −0.118373 + 19.7171i −0.00416952 + 0.694506i
\(807\) 0 0
\(808\) 18.0384 + 0.324916i 0.634590 + 0.0114305i
\(809\) 9.96096 + 13.7101i 0.350209 + 0.482021i 0.947388 0.320087i \(-0.103712\pi\)
−0.597179 + 0.802108i \(0.703712\pi\)
\(810\) 0 0
\(811\) 33.3596 + 10.8392i 1.17141 + 0.380616i 0.829171 0.558996i \(-0.188813\pi\)
0.342244 + 0.939611i \(0.388813\pi\)
\(812\) 5.66841 + 0.0680639i 0.198922 + 0.00238857i
\(813\) 0 0
\(814\) 6.22835 7.44108i 0.218304 0.260810i
\(815\) 34.4307i 1.20606i
\(816\) 0 0
\(817\) −12.4257 + 38.2424i −0.434720 + 1.33793i
\(818\) 26.2743 + 36.6238i 0.918658 + 1.28052i
\(819\) 0 0
\(820\) −7.22189 + 21.3510i −0.252199 + 0.745608i
\(821\) −11.1149 34.2081i −0.387913 1.19387i −0.934345 0.356369i \(-0.884015\pi\)
0.546433 0.837503i \(-0.315985\pi\)
\(822\) 0 0
\(823\) −0.919281 + 1.26528i −0.0320441 + 0.0441050i −0.824738 0.565514i \(-0.808678\pi\)
0.792694 + 0.609619i \(0.208678\pi\)
\(824\) 18.1454 24.0519i 0.632127 0.837888i
\(825\) 0 0
\(826\) −11.9086 37.4137i −0.414354 1.30179i
\(827\) −9.04149 + 12.4445i −0.314403 + 0.432739i −0.936748 0.350004i \(-0.886180\pi\)
0.622345 + 0.782743i \(0.286180\pi\)
\(828\) 0 0
\(829\) −13.5176 + 4.39213i −0.469485 + 0.152545i −0.534199 0.845359i \(-0.679387\pi\)
0.0647137 + 0.997904i \(0.479387\pi\)
\(830\) −11.4868 8.45148i −0.398713 0.293355i
\(831\) 0 0
\(832\) −15.5410 + 10.4573i −0.538787 + 0.362543i
\(833\) −17.3599 5.64057i −0.601485 0.195434i
\(834\) 0 0
\(835\) 29.7514i 1.02959i
\(836\) −3.36564 + 45.0341i −0.116403 + 1.55754i
\(837\) 0 0
\(838\) −6.36237 + 19.1886i −0.219784 + 0.662859i
\(839\) 6.85229 + 2.22644i 0.236567 + 0.0768653i 0.424901 0.905240i \(-0.360309\pi\)
−0.188334 + 0.982105i \(0.560309\pi\)
\(840\) 0 0
\(841\) 22.9217 16.6536i 0.790402 0.574261i
\(842\) −6.20235 + 8.42990i −0.213747 + 0.290514i
\(843\) 0 0
\(844\) 48.9018 15.2425i 1.68327 0.524668i
\(845\) −11.1457 + 15.3407i −0.383422 + 0.527735i
\(846\) 0 0
\(847\) −33.4386 + 18.4041i −1.14896 + 0.632372i
\(848\) −52.4208 18.4355i −1.80014 0.633078i
\(849\) 0 0
\(850\) 0.0418928 6.97798i 0.00143691 0.239343i
\(851\) 4.58477 + 14.1105i 0.157164 + 0.483701i
\(852\) 0 0
\(853\) −8.69578 + 6.31785i −0.297738 + 0.216319i −0.726617 0.687043i \(-0.758909\pi\)
0.428879 + 0.903362i \(0.358909\pi\)
\(854\) 38.3341 27.5013i 1.31177 0.941074i
\(855\) 0 0
\(856\) 32.7540 9.99395i 1.11951 0.341586i
\(857\) 27.6087i 0.943094i −0.881841 0.471547i \(-0.843696\pi\)
0.881841 0.471547i \(-0.156304\pi\)
\(858\) 0 0
\(859\) −19.0214 −0.649002 −0.324501 0.945885i \(-0.605196\pi\)
−0.324501 + 0.945885i \(0.605196\pi\)
\(860\) −29.7937 0.357751i −1.01596 0.0121992i
\(861\) 0 0
\(862\) 11.3034 8.10914i 0.384994 0.276198i
\(863\) 22.7170 + 31.2673i 0.773297 + 1.06435i 0.995990 + 0.0894633i \(0.0285152\pi\)
−0.222693 + 0.974889i \(0.571485\pi\)
\(864\) 0 0
\(865\) −11.7049 + 3.80315i −0.397978 + 0.129311i
\(866\) 39.7868 + 0.238863i 1.35201 + 0.00811688i
\(867\) 0 0
\(868\) 23.8859 + 33.7203i 0.810742 + 1.14454i
\(869\) 10.9337 + 42.5410i 0.370899 + 1.44311i
\(870\) 0 0
\(871\) −18.6377 13.5411i −0.631514 0.458822i
\(872\) 8.15442 5.70301i 0.276143 0.193128i
\(873\) 0 0
\(874\) −55.6160 40.9197i −1.88124 1.38413i
\(875\) −18.7135 25.7569i −0.632632 0.870743i
\(876\) 0 0
\(877\) −10.2280 + 31.4786i −0.345376 + 1.06296i 0.616007 + 0.787741i \(0.288749\pi\)
−0.961382 + 0.275216i \(0.911251\pi\)
\(878\) 14.5151 43.7768i 0.489860 1.47740i
\(879\) 0 0
\(880\) −32.6006 + 7.54920i −1.09897 + 0.254484i
\(881\) 28.7554 0.968795 0.484397 0.874848i \(-0.339039\pi\)
0.484397 + 0.874848i \(0.339039\pi\)
\(882\) 0 0
\(883\) 6.72055 20.6837i 0.226164 0.696063i −0.772007 0.635614i \(-0.780747\pi\)
0.998171 0.0604484i \(-0.0192531\pi\)
\(884\) −10.1328 + 13.6001i −0.340803 + 0.457423i
\(885\) 0 0
\(886\) 18.4653 + 13.5860i 0.620355 + 0.456430i
\(887\) −11.9681 36.8340i −0.401849 1.23677i −0.923497 0.383605i \(-0.874683\pi\)
0.521648 0.853161i \(-0.325317\pi\)
\(888\) 0 0
\(889\) 56.1545 + 40.7986i 1.88336 + 1.36834i
\(890\) −10.1737 + 3.23825i −0.341025 + 0.108546i
\(891\) 0 0
\(892\) −0.391006 0.551992i −0.0130919 0.0184821i
\(893\) 36.5610 + 26.5631i 1.22347 + 0.888901i
\(894\) 0 0
\(895\) −34.9964 + 11.3710i −1.16980 + 0.380091i
\(896\) −13.6890 + 36.7932i −0.457317 + 1.22917i
\(897\) 0 0
\(898\) −31.4617 + 22.5709i −1.04989 + 0.753201i
\(899\) −4.62597 1.50307i −0.154285 0.0501302i
\(900\) 0 0
\(901\) −50.3118 −1.67613
\(902\) 20.3274 5.09453i 0.676827 0.169629i
\(903\) 0 0
\(904\) 13.7215 + 44.9706i 0.456371 + 1.49570i
\(905\) −5.32265 + 16.3814i −0.176931 + 0.544537i
\(906\) 0 0
\(907\) 6.08306 4.41960i 0.201985 0.146751i −0.482195 0.876064i \(-0.660160\pi\)
0.684180 + 0.729313i \(0.260160\pi\)
\(908\) 13.8407 + 4.68156i 0.459319 + 0.155363i
\(909\) 0 0
\(910\) 0.173993 28.9816i 0.00576781 0.960730i
\(911\) 23.6851 32.5998i 0.784723 1.08008i −0.210022 0.977697i \(-0.567354\pi\)
0.994745 0.102382i \(-0.0326463\pi\)
\(912\) 0 0
\(913\) −0.829348 + 13.2332i −0.0274474 + 0.437956i
\(914\) 5.69473 1.81261i 0.188365 0.0599557i
\(915\) 0 0
\(916\) 17.7919 5.54568i 0.587862 0.183234i
\(917\) 50.8999 16.5384i 1.68086 0.546146i
\(918\) 0 0
\(919\) 33.3429 24.2250i 1.09988 0.799109i 0.118839 0.992913i \(-0.462083\pi\)
0.981040 + 0.193804i \(0.0620826\pi\)
\(920\) 16.6844 48.3674i 0.550067 1.59462i
\(921\) 0 0
\(922\) 6.87156 20.7243i 0.226303 0.682519i
\(923\) 15.7313i 0.517802i
\(924\) 0 0
\(925\) 2.81867i 0.0926774i
\(926\) 3.08227 + 1.02199i 0.101290 + 0.0335846i
\(927\) 0 0
\(928\) −1.29538 4.43558i −0.0425231 0.145605i
\(929\) −19.2013 + 13.9506i −0.629975 + 0.457704i −0.856392 0.516327i \(-0.827299\pi\)
0.226417 + 0.974031i \(0.427299\pi\)
\(930\) 0 0
\(931\) −32.6338 + 10.6034i −1.06953 + 0.347511i
\(932\) −2.30642 + 0.718904i −0.0755495 + 0.0235485i
\(933\) 0 0
\(934\) −15.4505 48.5416i −0.505557 1.58833i
\(935\) −25.5774 + 16.2406i −0.836472 + 0.531125i
\(936\) 0 0
\(937\) 29.5054 40.6107i 0.963900 1.32669i 0.0188316 0.999823i \(-0.494005\pi\)
0.945069 0.326872i \(-0.105995\pi\)
\(938\) −48.2800 0.289853i −1.57640 0.00946402i
\(939\) 0 0
\(940\) −10.7297 + 31.7216i −0.349965 + 1.03464i
\(941\) −20.7682 + 15.0890i −0.677024 + 0.491886i −0.872369 0.488848i \(-0.837417\pi\)
0.195345 + 0.980735i \(0.437417\pi\)
\(942\) 0 0
\(943\) −9.90123 + 30.4729i −0.322428 + 0.992333i
\(944\) −26.3368 + 18.1849i −0.857189 + 0.591867i
\(945\) 0 0
\(946\) 14.7090 + 23.4755i 0.478230 + 0.763254i
\(947\) 35.3065 1.14731 0.573653 0.819098i \(-0.305526\pi\)
0.573653 + 0.819098i \(0.305526\pi\)
\(948\) 0 0
\(949\) −9.91142 3.22041i −0.321738 0.104539i
\(950\) −7.64654 10.6585i −0.248086 0.345809i
\(951\) 0 0
\(952\) −0.640127 + 35.5380i −0.0207466 + 1.15179i
\(953\) −8.87462 + 2.88354i −0.287477 + 0.0934070i −0.449206 0.893428i \(-0.648293\pi\)
0.161729 + 0.986835i \(0.448293\pi\)
\(954\) 0 0
\(955\) −24.2951 17.6514i −0.786170 0.571186i
\(956\) 26.7497 18.9483i 0.865148 0.612832i
\(957\) 0 0
\(958\) 4.87672 + 15.3214i 0.157560 + 0.495011i
\(959\) 3.75664 + 2.72936i 0.121308 + 0.0881357i
\(960\) 0 0
\(961\) −1.37715 4.23842i −0.0444241 0.136723i
\(962\) 4.05989 5.51800i 0.130896 0.177907i
\(963\) 0 0
\(964\) 12.9815 17.4236i 0.418105 0.561177i
\(965\) 9.21187 28.3512i 0.296541 0.912658i
\(966\) 0 0
\(967\) 27.3926 0.880886 0.440443 0.897781i \(-0.354821\pi\)
0.440443 + 0.897781i \(0.354821\pi\)
\(968\) 22.3034 + 21.6923i 0.716860 + 0.697217i
\(969\) 0 0
\(970\) −24.0234 7.96542i −0.771343 0.255754i
\(971\) 3.77734 11.6255i 0.121221 0.373079i −0.871973 0.489554i \(-0.837160\pi\)
0.993194 + 0.116475i \(0.0371595\pi\)
\(972\) 0 0
\(973\) −8.13465 11.1964i −0.260785 0.358939i
\(974\) 5.42411 7.37217i 0.173800 0.236219i
\(975\) 0 0
\(976\) −30.5606 23.3450i −0.978222 0.747256i
\(977\) −2.22237 1.61464i −0.0710998 0.0516570i 0.551668 0.834064i \(-0.313992\pi\)
−0.622767 + 0.782407i \(0.713992\pi\)
\(978\) 0 0
\(979\) 7.65019 + 6.32567i 0.244501 + 0.202169i
\(980\) −14.6970 20.7480i −0.469478 0.662772i
\(981\) 0 0
\(982\) 0.136857 22.7959i 0.00436727 0.727445i
\(983\) −38.0558 + 12.3651i −1.21379 + 0.394385i −0.844817 0.535055i \(-0.820291\pi\)
−0.368974 + 0.929440i \(0.620291\pi\)
\(984\) 0 0
\(985\) 10.5402 + 14.5073i 0.335838 + 0.462241i
\(986\) −2.43879 3.39944i −0.0776670 0.108260i
\(987\) 0 0
\(988\) −0.382795 + 31.8795i −0.0121783 + 1.01422i
\(989\) −42.3568 −1.34687
\(990\) 0 0
\(991\) 47.0492i 1.49457i −0.664505 0.747284i \(-0.731357\pi\)
0.664505 0.747284i \(-0.268643\pi\)
\(992\) 20.6079 26.6444i 0.654301 0.845960i
\(993\) 0 0
\(994\) 19.2182 + 26.7883i 0.609565 + 0.849675i
\(995\) 49.4768 35.9470i 1.56852 1.13960i
\(996\) 0 0
\(997\) −16.7250 51.4741i −0.529685 1.63020i −0.754862 0.655884i \(-0.772296\pi\)
0.225177 0.974318i \(-0.427704\pi\)
\(998\) −25.2058 0.151325i −0.797876 0.00479011i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.bp.d.667.5 48
3.2 odd 2 264.2.z.b.139.8 yes 48
8.3 odd 2 inner 792.2.bp.d.667.3 48
11.8 odd 10 inner 792.2.bp.d.19.3 48
12.11 even 2 1056.2.bp.a.271.10 48
24.5 odd 2 1056.2.bp.a.271.3 48
24.11 even 2 264.2.z.b.139.10 yes 48
33.8 even 10 264.2.z.b.19.10 yes 48
88.19 even 10 inner 792.2.bp.d.19.5 48
132.107 odd 10 1056.2.bp.a.943.3 48
264.107 odd 10 264.2.z.b.19.8 48
264.173 even 10 1056.2.bp.a.943.10 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.2.z.b.19.8 48 264.107 odd 10
264.2.z.b.19.10 yes 48 33.8 even 10
264.2.z.b.139.8 yes 48 3.2 odd 2
264.2.z.b.139.10 yes 48 24.11 even 2
792.2.bp.d.19.3 48 11.8 odd 10 inner
792.2.bp.d.19.5 48 88.19 even 10 inner
792.2.bp.d.667.3 48 8.3 odd 2 inner
792.2.bp.d.667.5 48 1.1 even 1 trivial
1056.2.bp.a.271.3 48 24.5 odd 2
1056.2.bp.a.271.10 48 12.11 even 2
1056.2.bp.a.943.3 48 132.107 odd 10
1056.2.bp.a.943.10 48 264.173 even 10