Properties

Label 787.4.a.b.1.17
Level $787$
Weight $4$
Character 787.1
Self dual yes
Analytic conductor $46.435$
Analytic rank $0$
Dimension $103$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [787,4,Mod(1,787)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("787.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(787, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 787 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 787.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [103] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4345031745\)
Analytic rank: \(0\)
Dimension: \(103\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Character \(\chi\) \(=\) 787.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.20325 q^{2} -6.09175 q^{3} +9.66730 q^{4} -9.51255 q^{5} +25.6051 q^{6} +0.938997 q^{7} -7.00807 q^{8} +10.1094 q^{9} +39.9836 q^{10} -16.6420 q^{11} -58.8908 q^{12} -87.0560 q^{13} -3.94684 q^{14} +57.9480 q^{15} -47.8817 q^{16} +28.6558 q^{17} -42.4924 q^{18} +121.447 q^{19} -91.9606 q^{20} -5.72013 q^{21} +69.9503 q^{22} +41.2891 q^{23} +42.6914 q^{24} -34.5115 q^{25} +365.918 q^{26} +102.893 q^{27} +9.07756 q^{28} -264.938 q^{29} -243.570 q^{30} +9.41489 q^{31} +257.323 q^{32} +101.379 q^{33} -120.447 q^{34} -8.93225 q^{35} +97.7308 q^{36} -335.824 q^{37} -510.473 q^{38} +530.324 q^{39} +66.6646 q^{40} -440.138 q^{41} +24.0431 q^{42} -218.351 q^{43} -160.883 q^{44} -96.1663 q^{45} -173.548 q^{46} -51.5437 q^{47} +291.684 q^{48} -342.118 q^{49} +145.060 q^{50} -174.564 q^{51} -841.597 q^{52} -359.565 q^{53} -432.486 q^{54} +158.307 q^{55} -6.58055 q^{56} -739.827 q^{57} +1113.60 q^{58} -370.972 q^{59} +560.201 q^{60} -112.796 q^{61} -39.5731 q^{62} +9.49271 q^{63} -698.540 q^{64} +828.125 q^{65} -426.120 q^{66} -260.955 q^{67} +277.024 q^{68} -251.523 q^{69} +37.5445 q^{70} -788.550 q^{71} -70.8475 q^{72} +2.67867 q^{73} +1411.55 q^{74} +210.235 q^{75} +1174.07 q^{76} -15.6268 q^{77} -2229.08 q^{78} -466.853 q^{79} +455.477 q^{80} -899.754 q^{81} +1850.01 q^{82} +1495.54 q^{83} -55.2982 q^{84} -272.589 q^{85} +917.783 q^{86} +1613.93 q^{87} +116.628 q^{88} -1406.43 q^{89} +404.211 q^{90} -81.7454 q^{91} +399.154 q^{92} -57.3532 q^{93} +216.651 q^{94} -1155.27 q^{95} -1567.55 q^{96} -1436.21 q^{97} +1438.01 q^{98} -168.241 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 103 q + 27 q^{2} + 25 q^{3} + 439 q^{4} + 169 q^{5} + 45 q^{6} + 80 q^{7} + 327 q^{8} + 1114 q^{9} + 61 q^{10} + 241 q^{11} + 264 q^{12} + 291 q^{13} + 341 q^{14} + 278 q^{15} + 2003 q^{16} + 504 q^{17}+ \cdots + 6933 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.20325 −1.48607 −0.743036 0.669251i \(-0.766615\pi\)
−0.743036 + 0.669251i \(0.766615\pi\)
\(3\) −6.09175 −1.17236 −0.586179 0.810182i \(-0.699368\pi\)
−0.586179 + 0.810182i \(0.699368\pi\)
\(4\) 9.66730 1.20841
\(5\) −9.51255 −0.850828 −0.425414 0.904999i \(-0.639871\pi\)
−0.425414 + 0.904999i \(0.639871\pi\)
\(6\) 25.6051 1.74221
\(7\) 0.938997 0.0507011 0.0253505 0.999679i \(-0.491930\pi\)
0.0253505 + 0.999679i \(0.491930\pi\)
\(8\) −7.00807 −0.309716
\(9\) 10.1094 0.374423
\(10\) 39.9836 1.26439
\(11\) −16.6420 −0.456158 −0.228079 0.973643i \(-0.573245\pi\)
−0.228079 + 0.973643i \(0.573245\pi\)
\(12\) −58.8908 −1.41669
\(13\) −87.0560 −1.85731 −0.928654 0.370947i \(-0.879033\pi\)
−0.928654 + 0.370947i \(0.879033\pi\)
\(14\) −3.94684 −0.0753455
\(15\) 57.9480 0.997475
\(16\) −47.8817 −0.748152
\(17\) 28.6558 0.408826 0.204413 0.978885i \(-0.434471\pi\)
0.204413 + 0.978885i \(0.434471\pi\)
\(18\) −42.4924 −0.556420
\(19\) 121.447 1.46642 0.733208 0.680004i \(-0.238022\pi\)
0.733208 + 0.680004i \(0.238022\pi\)
\(20\) −91.9606 −1.02815
\(21\) −5.72013 −0.0594398
\(22\) 69.9503 0.677885
\(23\) 41.2891 0.374320 0.187160 0.982329i \(-0.440072\pi\)
0.187160 + 0.982329i \(0.440072\pi\)
\(24\) 42.6914 0.363098
\(25\) −34.5115 −0.276092
\(26\) 365.918 2.76009
\(27\) 102.893 0.733400
\(28\) 9.07756 0.0612678
\(29\) −264.938 −1.69647 −0.848236 0.529619i \(-0.822335\pi\)
−0.848236 + 0.529619i \(0.822335\pi\)
\(30\) −243.570 −1.48232
\(31\) 9.41489 0.0545472 0.0272736 0.999628i \(-0.491317\pi\)
0.0272736 + 0.999628i \(0.491317\pi\)
\(32\) 257.323 1.42152
\(33\) 101.379 0.534781
\(34\) −120.447 −0.607546
\(35\) −8.93225 −0.0431379
\(36\) 97.7308 0.452457
\(37\) −335.824 −1.49214 −0.746070 0.665868i \(-0.768061\pi\)
−0.746070 + 0.665868i \(0.768061\pi\)
\(38\) −510.473 −2.17920
\(39\) 530.324 2.17743
\(40\) 66.6646 0.263515
\(41\) −440.138 −1.67654 −0.838268 0.545259i \(-0.816431\pi\)
−0.838268 + 0.545259i \(0.816431\pi\)
\(42\) 24.0431 0.0883319
\(43\) −218.351 −0.774377 −0.387188 0.922001i \(-0.626554\pi\)
−0.387188 + 0.922001i \(0.626554\pi\)
\(44\) −160.883 −0.551227
\(45\) −96.1663 −0.318569
\(46\) −173.548 −0.556267
\(47\) −51.5437 −0.159966 −0.0799832 0.996796i \(-0.525487\pi\)
−0.0799832 + 0.996796i \(0.525487\pi\)
\(48\) 291.684 0.877102
\(49\) −342.118 −0.997429
\(50\) 145.060 0.410293
\(51\) −174.564 −0.479291
\(52\) −841.597 −2.24439
\(53\) −359.565 −0.931889 −0.465944 0.884814i \(-0.654285\pi\)
−0.465944 + 0.884814i \(0.654285\pi\)
\(54\) −432.486 −1.08989
\(55\) 158.307 0.388112
\(56\) −6.58055 −0.0157029
\(57\) −739.827 −1.71917
\(58\) 1113.60 2.52108
\(59\) −370.972 −0.818584 −0.409292 0.912404i \(-0.634224\pi\)
−0.409292 + 0.912404i \(0.634224\pi\)
\(60\) 560.201 1.20536
\(61\) −112.796 −0.236755 −0.118378 0.992969i \(-0.537769\pi\)
−0.118378 + 0.992969i \(0.537769\pi\)
\(62\) −39.5731 −0.0810612
\(63\) 9.49271 0.0189836
\(64\) −698.540 −1.36434
\(65\) 828.125 1.58025
\(66\) −426.120 −0.794723
\(67\) −260.955 −0.475831 −0.237915 0.971286i \(-0.576464\pi\)
−0.237915 + 0.971286i \(0.576464\pi\)
\(68\) 277.024 0.494031
\(69\) −251.523 −0.438838
\(70\) 37.5445 0.0641060
\(71\) −788.550 −1.31808 −0.659040 0.752108i \(-0.729037\pi\)
−0.659040 + 0.752108i \(0.729037\pi\)
\(72\) −70.8475 −0.115965
\(73\) 2.67867 0.00429473 0.00214736 0.999998i \(-0.499316\pi\)
0.00214736 + 0.999998i \(0.499316\pi\)
\(74\) 1411.55 2.21743
\(75\) 210.235 0.323678
\(76\) 1174.07 1.77204
\(77\) −15.6268 −0.0231277
\(78\) −2229.08 −3.23582
\(79\) −466.853 −0.664874 −0.332437 0.943125i \(-0.607871\pi\)
−0.332437 + 0.943125i \(0.607871\pi\)
\(80\) 455.477 0.636549
\(81\) −899.754 −1.23423
\(82\) 1850.01 2.49145
\(83\) 1495.54 1.97779 0.988894 0.148622i \(-0.0474836\pi\)
0.988894 + 0.148622i \(0.0474836\pi\)
\(84\) −55.2982 −0.0718278
\(85\) −272.589 −0.347841
\(86\) 917.783 1.15078
\(87\) 1613.93 1.98887
\(88\) 116.628 0.141279
\(89\) −1406.43 −1.67507 −0.837533 0.546387i \(-0.816003\pi\)
−0.837533 + 0.546387i \(0.816003\pi\)
\(90\) 404.211 0.473417
\(91\) −81.7454 −0.0941675
\(92\) 399.154 0.452333
\(93\) −57.3532 −0.0639489
\(94\) 216.651 0.237722
\(95\) −1155.27 −1.24767
\(96\) −1567.55 −1.66654
\(97\) −1436.21 −1.50335 −0.751674 0.659534i \(-0.770754\pi\)
−0.751674 + 0.659534i \(0.770754\pi\)
\(98\) 1438.01 1.48225
\(99\) −168.241 −0.170796
\(100\) −333.633 −0.333633
\(101\) 1133.34 1.11655 0.558277 0.829654i \(-0.311463\pi\)
0.558277 + 0.829654i \(0.311463\pi\)
\(102\) 733.735 0.712261
\(103\) −417.371 −0.399270 −0.199635 0.979870i \(-0.563976\pi\)
−0.199635 + 0.979870i \(0.563976\pi\)
\(104\) 610.095 0.575237
\(105\) 54.4130 0.0505730
\(106\) 1511.34 1.38485
\(107\) 811.458 0.733145 0.366573 0.930389i \(-0.380531\pi\)
0.366573 + 0.930389i \(0.380531\pi\)
\(108\) 994.699 0.886250
\(109\) −653.827 −0.574543 −0.287272 0.957849i \(-0.592748\pi\)
−0.287272 + 0.957849i \(0.592748\pi\)
\(110\) −665.406 −0.576763
\(111\) 2045.76 1.74932
\(112\) −44.9608 −0.0379321
\(113\) 861.730 0.717387 0.358693 0.933455i \(-0.383222\pi\)
0.358693 + 0.933455i \(0.383222\pi\)
\(114\) 3109.68 2.55480
\(115\) −392.764 −0.318482
\(116\) −2561.23 −2.05004
\(117\) −880.086 −0.695419
\(118\) 1559.29 1.21647
\(119\) 26.9077 0.0207279
\(120\) −406.104 −0.308934
\(121\) −1054.04 −0.791920
\(122\) 474.110 0.351835
\(123\) 2681.21 1.96550
\(124\) 91.0166 0.0659156
\(125\) 1517.36 1.08573
\(126\) −39.9002 −0.0282111
\(127\) −2220.99 −1.55182 −0.775909 0.630845i \(-0.782708\pi\)
−0.775909 + 0.630845i \(0.782708\pi\)
\(128\) 877.551 0.605979
\(129\) 1330.14 0.907847
\(130\) −3480.81 −2.34837
\(131\) −1172.20 −0.781796 −0.390898 0.920434i \(-0.627835\pi\)
−0.390898 + 0.920434i \(0.627835\pi\)
\(132\) 980.058 0.646236
\(133\) 114.039 0.0743489
\(134\) 1096.86 0.707119
\(135\) −978.776 −0.623997
\(136\) −200.822 −0.126620
\(137\) −568.759 −0.354689 −0.177344 0.984149i \(-0.556751\pi\)
−0.177344 + 0.984149i \(0.556751\pi\)
\(138\) 1057.21 0.652145
\(139\) −892.092 −0.544362 −0.272181 0.962246i \(-0.587745\pi\)
−0.272181 + 0.962246i \(0.587745\pi\)
\(140\) −86.3507 −0.0521283
\(141\) 313.991 0.187538
\(142\) 3314.47 1.95876
\(143\) 1448.78 0.847227
\(144\) −484.057 −0.280125
\(145\) 2520.23 1.44341
\(146\) −11.2591 −0.00638227
\(147\) 2084.10 1.16934
\(148\) −3246.51 −1.80312
\(149\) 2337.40 1.28515 0.642575 0.766223i \(-0.277866\pi\)
0.642575 + 0.766223i \(0.277866\pi\)
\(150\) −883.671 −0.481010
\(151\) −1507.87 −0.812640 −0.406320 0.913731i \(-0.633188\pi\)
−0.406320 + 0.913731i \(0.633188\pi\)
\(152\) −851.111 −0.454172
\(153\) 289.693 0.153074
\(154\) 65.6831 0.0343695
\(155\) −89.5596 −0.0464103
\(156\) 5126.80 2.63123
\(157\) −1353.06 −0.687806 −0.343903 0.939005i \(-0.611749\pi\)
−0.343903 + 0.939005i \(0.611749\pi\)
\(158\) 1962.30 0.988051
\(159\) 2190.38 1.09251
\(160\) −2447.80 −1.20947
\(161\) 38.7703 0.0189784
\(162\) 3781.89 1.83416
\(163\) 3151.01 1.51415 0.757075 0.653328i \(-0.226628\pi\)
0.757075 + 0.653328i \(0.226628\pi\)
\(164\) −4254.94 −2.02595
\(165\) −964.370 −0.455006
\(166\) −6286.11 −2.93914
\(167\) 1047.49 0.485372 0.242686 0.970105i \(-0.421972\pi\)
0.242686 + 0.970105i \(0.421972\pi\)
\(168\) 40.0871 0.0184094
\(169\) 5381.75 2.44959
\(170\) 1145.76 0.516917
\(171\) 1227.76 0.549060
\(172\) −2110.86 −0.935766
\(173\) 2197.02 0.965526 0.482763 0.875751i \(-0.339633\pi\)
0.482763 + 0.875751i \(0.339633\pi\)
\(174\) −6783.76 −2.95561
\(175\) −32.4062 −0.0139982
\(176\) 796.846 0.341276
\(177\) 2259.87 0.959673
\(178\) 5911.56 2.48927
\(179\) 2804.72 1.17114 0.585572 0.810620i \(-0.300870\pi\)
0.585572 + 0.810620i \(0.300870\pi\)
\(180\) −929.668 −0.384963
\(181\) 468.135 0.192244 0.0961222 0.995370i \(-0.469356\pi\)
0.0961222 + 0.995370i \(0.469356\pi\)
\(182\) 343.596 0.139940
\(183\) 687.126 0.277562
\(184\) −289.357 −0.115933
\(185\) 3194.54 1.26955
\(186\) 241.070 0.0950327
\(187\) −476.889 −0.186490
\(188\) −498.288 −0.193305
\(189\) 96.6164 0.0371842
\(190\) 4855.90 1.85413
\(191\) 1023.81 0.387853 0.193927 0.981016i \(-0.437878\pi\)
0.193927 + 0.981016i \(0.437878\pi\)
\(192\) 4255.33 1.59949
\(193\) −3042.34 −1.13468 −0.567338 0.823485i \(-0.692027\pi\)
−0.567338 + 0.823485i \(0.692027\pi\)
\(194\) 6036.74 2.23409
\(195\) −5044.73 −1.85262
\(196\) −3307.36 −1.20531
\(197\) 1103.85 0.399220 0.199610 0.979875i \(-0.436033\pi\)
0.199610 + 0.979875i \(0.436033\pi\)
\(198\) 707.157 0.253816
\(199\) −1931.47 −0.688031 −0.344016 0.938964i \(-0.611787\pi\)
−0.344016 + 0.938964i \(0.611787\pi\)
\(200\) 241.859 0.0855100
\(201\) 1589.67 0.557844
\(202\) −4763.73 −1.65928
\(203\) −248.776 −0.0860129
\(204\) −1687.56 −0.579181
\(205\) 4186.83 1.42644
\(206\) 1754.31 0.593344
\(207\) 417.409 0.140154
\(208\) 4168.39 1.38955
\(209\) −2021.12 −0.668918
\(210\) −228.712 −0.0751552
\(211\) 1588.86 0.518396 0.259198 0.965824i \(-0.416542\pi\)
0.259198 + 0.965824i \(0.416542\pi\)
\(212\) −3476.03 −1.12611
\(213\) 4803.65 1.54526
\(214\) −3410.76 −1.08951
\(215\) 2077.07 0.658861
\(216\) −721.082 −0.227146
\(217\) 8.84055 0.00276560
\(218\) 2748.20 0.853813
\(219\) −16.3178 −0.00503495
\(220\) 1530.41 0.469000
\(221\) −2494.66 −0.759316
\(222\) −8598.83 −2.59962
\(223\) −3504.77 −1.05245 −0.526227 0.850344i \(-0.676394\pi\)
−0.526227 + 0.850344i \(0.676394\pi\)
\(224\) 241.626 0.0720728
\(225\) −348.891 −0.103375
\(226\) −3622.06 −1.06609
\(227\) −1438.24 −0.420525 −0.210262 0.977645i \(-0.567432\pi\)
−0.210262 + 0.977645i \(0.567432\pi\)
\(228\) −7152.12 −2.07746
\(229\) −501.597 −0.144744 −0.0723722 0.997378i \(-0.523057\pi\)
−0.0723722 + 0.997378i \(0.523057\pi\)
\(230\) 1650.89 0.473288
\(231\) 95.1943 0.0271140
\(232\) 1856.70 0.525424
\(233\) −3385.65 −0.951937 −0.475969 0.879462i \(-0.657902\pi\)
−0.475969 + 0.879462i \(0.657902\pi\)
\(234\) 3699.22 1.03344
\(235\) 490.312 0.136104
\(236\) −3586.30 −0.989186
\(237\) 2843.95 0.779470
\(238\) −113.100 −0.0308032
\(239\) −7125.62 −1.92853 −0.964263 0.264946i \(-0.914646\pi\)
−0.964263 + 0.264946i \(0.914646\pi\)
\(240\) −2774.65 −0.746263
\(241\) −2039.04 −0.545005 −0.272502 0.962155i \(-0.587851\pi\)
−0.272502 + 0.962155i \(0.587851\pi\)
\(242\) 4430.41 1.17685
\(243\) 2702.96 0.713560
\(244\) −1090.43 −0.286098
\(245\) 3254.42 0.848641
\(246\) −11269.8 −2.92087
\(247\) −10572.7 −2.72359
\(248\) −65.9802 −0.0168941
\(249\) −9110.43 −2.31868
\(250\) −6377.84 −1.61348
\(251\) 2361.01 0.593729 0.296864 0.954920i \(-0.404059\pi\)
0.296864 + 0.954920i \(0.404059\pi\)
\(252\) 91.7689 0.0229401
\(253\) −687.132 −0.170749
\(254\) 9335.37 2.30611
\(255\) 1660.55 0.407794
\(256\) 1899.76 0.463808
\(257\) −7881.69 −1.91302 −0.956510 0.291699i \(-0.905780\pi\)
−0.956510 + 0.291699i \(0.905780\pi\)
\(258\) −5590.90 −1.34913
\(259\) −315.338 −0.0756531
\(260\) 8005.73 1.90959
\(261\) −2678.36 −0.635198
\(262\) 4927.03 1.16181
\(263\) 6933.28 1.62557 0.812784 0.582566i \(-0.197951\pi\)
0.812784 + 0.582566i \(0.197951\pi\)
\(264\) −710.469 −0.165630
\(265\) 3420.38 0.792877
\(266\) −479.333 −0.110488
\(267\) 8567.60 1.96378
\(268\) −2522.73 −0.575000
\(269\) 4326.07 0.980539 0.490269 0.871571i \(-0.336898\pi\)
0.490269 + 0.871571i \(0.336898\pi\)
\(270\) 4114.04 0.927305
\(271\) 3839.78 0.860701 0.430351 0.902662i \(-0.358390\pi\)
0.430351 + 0.902662i \(0.358390\pi\)
\(272\) −1372.09 −0.305864
\(273\) 497.972 0.110398
\(274\) 2390.63 0.527093
\(275\) 574.339 0.125942
\(276\) −2431.55 −0.530297
\(277\) 3688.07 0.799981 0.399991 0.916519i \(-0.369013\pi\)
0.399991 + 0.916519i \(0.369013\pi\)
\(278\) 3749.69 0.808961
\(279\) 95.1791 0.0204237
\(280\) 62.5978 0.0133605
\(281\) −7909.61 −1.67917 −0.839586 0.543226i \(-0.817203\pi\)
−0.839586 + 0.543226i \(0.817203\pi\)
\(282\) −1319.78 −0.278695
\(283\) −7038.40 −1.47841 −0.739204 0.673482i \(-0.764798\pi\)
−0.739204 + 0.673482i \(0.764798\pi\)
\(284\) −7623.15 −1.59278
\(285\) 7037.63 1.46271
\(286\) −6089.60 −1.25904
\(287\) −413.288 −0.0850021
\(288\) 2601.39 0.532251
\(289\) −4091.85 −0.832861
\(290\) −10593.2 −2.14500
\(291\) 8749.02 1.76246
\(292\) 25.8955 0.00518980
\(293\) 7861.96 1.56758 0.783790 0.621026i \(-0.213284\pi\)
0.783790 + 0.621026i \(0.213284\pi\)
\(294\) −8759.99 −1.73773
\(295\) 3528.89 0.696474
\(296\) 2353.48 0.462139
\(297\) −1712.35 −0.334547
\(298\) −9824.67 −1.90983
\(299\) −3594.47 −0.695228
\(300\) 2032.41 0.391137
\(301\) −205.031 −0.0392617
\(302\) 6337.95 1.20764
\(303\) −6904.05 −1.30900
\(304\) −5815.11 −1.09710
\(305\) 1072.98 0.201438
\(306\) −1217.65 −0.227479
\(307\) 5864.39 1.09022 0.545111 0.838364i \(-0.316487\pi\)
0.545111 + 0.838364i \(0.316487\pi\)
\(308\) −151.069 −0.0279478
\(309\) 2542.52 0.468087
\(310\) 376.441 0.0689691
\(311\) 5679.35 1.03552 0.517759 0.855526i \(-0.326766\pi\)
0.517759 + 0.855526i \(0.326766\pi\)
\(312\) −3716.54 −0.674384
\(313\) −9075.35 −1.63888 −0.819439 0.573166i \(-0.805715\pi\)
−0.819439 + 0.573166i \(0.805715\pi\)
\(314\) 5687.23 1.02213
\(315\) −90.2999 −0.0161518
\(316\) −4513.20 −0.803442
\(317\) 8276.10 1.46635 0.733174 0.680042i \(-0.238038\pi\)
0.733174 + 0.680042i \(0.238038\pi\)
\(318\) −9206.72 −1.62355
\(319\) 4409.08 0.773860
\(320\) 6644.89 1.16082
\(321\) −4943.20 −0.859509
\(322\) −162.961 −0.0282034
\(323\) 3480.17 0.599510
\(324\) −8698.19 −1.49146
\(325\) 3004.43 0.512788
\(326\) −13244.5 −2.25014
\(327\) 3982.95 0.673570
\(328\) 3084.51 0.519249
\(329\) −48.3994 −0.00811047
\(330\) 4053.48 0.676173
\(331\) −7209.68 −1.19722 −0.598610 0.801040i \(-0.704280\pi\)
−0.598610 + 0.801040i \(0.704280\pi\)
\(332\) 14457.8 2.38998
\(333\) −3394.99 −0.558691
\(334\) −4402.85 −0.721298
\(335\) 2482.34 0.404850
\(336\) 273.890 0.0444700
\(337\) 10949.0 1.76983 0.884914 0.465754i \(-0.154217\pi\)
0.884914 + 0.465754i \(0.154217\pi\)
\(338\) −22620.9 −3.64027
\(339\) −5249.44 −0.841034
\(340\) −2635.20 −0.420335
\(341\) −156.682 −0.0248822
\(342\) −5160.59 −0.815943
\(343\) −643.324 −0.101272
\(344\) 1530.22 0.239837
\(345\) 2392.62 0.373375
\(346\) −9234.60 −1.43484
\(347\) −11588.2 −1.79276 −0.896380 0.443287i \(-0.853812\pi\)
−0.896380 + 0.443287i \(0.853812\pi\)
\(348\) 15602.4 2.40338
\(349\) −3930.79 −0.602895 −0.301448 0.953483i \(-0.597470\pi\)
−0.301448 + 0.953483i \(0.597470\pi\)
\(350\) 136.211 0.0208023
\(351\) −8957.47 −1.36215
\(352\) −4282.37 −0.648440
\(353\) 7323.65 1.10424 0.552122 0.833763i \(-0.313818\pi\)
0.552122 + 0.833763i \(0.313818\pi\)
\(354\) −9498.79 −1.42614
\(355\) 7501.12 1.12146
\(356\) −13596.3 −2.02417
\(357\) −163.915 −0.0243006
\(358\) −11789.0 −1.74041
\(359\) 9276.20 1.36373 0.681865 0.731478i \(-0.261169\pi\)
0.681865 + 0.731478i \(0.261169\pi\)
\(360\) 673.940 0.0986660
\(361\) 7890.45 1.15038
\(362\) −1967.69 −0.285689
\(363\) 6420.98 0.928413
\(364\) −790.257 −0.113793
\(365\) −25.4810 −0.00365407
\(366\) −2888.16 −0.412477
\(367\) 1993.53 0.283545 0.141773 0.989899i \(-0.454720\pi\)
0.141773 + 0.989899i \(0.454720\pi\)
\(368\) −1976.99 −0.280049
\(369\) −4449.54 −0.627733
\(370\) −13427.5 −1.88665
\(371\) −337.631 −0.0472478
\(372\) −554.450 −0.0772766
\(373\) 360.662 0.0500654 0.0250327 0.999687i \(-0.492031\pi\)
0.0250327 + 0.999687i \(0.492031\pi\)
\(374\) 2004.48 0.277137
\(375\) −9243.38 −1.27287
\(376\) 361.222 0.0495441
\(377\) 23064.4 3.15087
\(378\) −406.103 −0.0552584
\(379\) −13068.6 −1.77121 −0.885607 0.464436i \(-0.846257\pi\)
−0.885607 + 0.464436i \(0.846257\pi\)
\(380\) −11168.4 −1.50770
\(381\) 13529.7 1.81929
\(382\) −4303.31 −0.576378
\(383\) −9535.38 −1.27215 −0.636077 0.771625i \(-0.719444\pi\)
−0.636077 + 0.771625i \(0.719444\pi\)
\(384\) −5345.82 −0.710424
\(385\) 148.650 0.0196777
\(386\) 12787.7 1.68621
\(387\) −2207.40 −0.289944
\(388\) −13884.3 −1.81667
\(389\) −10588.9 −1.38015 −0.690074 0.723739i \(-0.742422\pi\)
−0.690074 + 0.723739i \(0.742422\pi\)
\(390\) 21204.2 2.75312
\(391\) 1183.17 0.153032
\(392\) 2397.59 0.308920
\(393\) 7140.73 0.916545
\(394\) −4639.77 −0.593270
\(395\) 4440.96 0.565693
\(396\) −1626.43 −0.206392
\(397\) −2540.16 −0.321126 −0.160563 0.987026i \(-0.551331\pi\)
−0.160563 + 0.987026i \(0.551331\pi\)
\(398\) 8118.45 1.02246
\(399\) −694.695 −0.0871635
\(400\) 1652.47 0.206559
\(401\) −8703.51 −1.08387 −0.541936 0.840420i \(-0.682308\pi\)
−0.541936 + 0.840420i \(0.682308\pi\)
\(402\) −6681.78 −0.828997
\(403\) −819.623 −0.101311
\(404\) 10956.4 1.34926
\(405\) 8558.95 1.05012
\(406\) 1045.67 0.127821
\(407\) 5588.78 0.680652
\(408\) 1223.36 0.148444
\(409\) −10946.4 −1.32339 −0.661694 0.749774i \(-0.730162\pi\)
−0.661694 + 0.749774i \(0.730162\pi\)
\(410\) −17598.3 −2.11980
\(411\) 3464.74 0.415822
\(412\) −4034.85 −0.482483
\(413\) −348.342 −0.0415031
\(414\) −1754.47 −0.208279
\(415\) −14226.4 −1.68276
\(416\) −22401.6 −2.64021
\(417\) 5434.40 0.638187
\(418\) 8495.28 0.994061
\(419\) −4553.41 −0.530904 −0.265452 0.964124i \(-0.585521\pi\)
−0.265452 + 0.964124i \(0.585521\pi\)
\(420\) 526.027 0.0611131
\(421\) 5225.23 0.604898 0.302449 0.953166i \(-0.402196\pi\)
0.302449 + 0.953166i \(0.402196\pi\)
\(422\) −6678.37 −0.770374
\(423\) −521.077 −0.0598951
\(424\) 2519.86 0.288621
\(425\) −988.954 −0.112874
\(426\) −20190.9 −2.29637
\(427\) −105.915 −0.0120037
\(428\) 7844.60 0.885942
\(429\) −8825.63 −0.993253
\(430\) −8730.45 −0.979116
\(431\) 7113.34 0.794983 0.397491 0.917606i \(-0.369881\pi\)
0.397491 + 0.917606i \(0.369881\pi\)
\(432\) −4926.70 −0.548695
\(433\) 14674.0 1.62860 0.814302 0.580442i \(-0.197120\pi\)
0.814302 + 0.580442i \(0.197120\pi\)
\(434\) −37.1590 −0.00410989
\(435\) −15352.6 −1.69219
\(436\) −6320.74 −0.694285
\(437\) 5014.45 0.548910
\(438\) 68.5878 0.00748231
\(439\) 9523.73 1.03540 0.517702 0.855561i \(-0.326787\pi\)
0.517702 + 0.855561i \(0.326787\pi\)
\(440\) −1109.43 −0.120204
\(441\) −3458.62 −0.373460
\(442\) 10485.7 1.12840
\(443\) 5309.60 0.569451 0.284725 0.958609i \(-0.408098\pi\)
0.284725 + 0.958609i \(0.408098\pi\)
\(444\) 19776.9 2.11390
\(445\) 13378.7 1.42519
\(446\) 14731.4 1.56402
\(447\) −14238.9 −1.50665
\(448\) −655.927 −0.0691733
\(449\) −264.529 −0.0278038 −0.0139019 0.999903i \(-0.504425\pi\)
−0.0139019 + 0.999903i \(0.504425\pi\)
\(450\) 1466.48 0.153623
\(451\) 7324.75 0.764765
\(452\) 8330.60 0.866899
\(453\) 9185.57 0.952705
\(454\) 6045.27 0.624931
\(455\) 777.606 0.0801203
\(456\) 5184.75 0.532453
\(457\) −4776.41 −0.488908 −0.244454 0.969661i \(-0.578609\pi\)
−0.244454 + 0.969661i \(0.578609\pi\)
\(458\) 2108.34 0.215101
\(459\) 2948.49 0.299833
\(460\) −3796.97 −0.384858
\(461\) −5640.16 −0.569823 −0.284912 0.958554i \(-0.591964\pi\)
−0.284912 + 0.958554i \(0.591964\pi\)
\(462\) −400.125 −0.0402933
\(463\) 16112.5 1.61730 0.808652 0.588288i \(-0.200198\pi\)
0.808652 + 0.588288i \(0.200198\pi\)
\(464\) 12685.7 1.26922
\(465\) 545.575 0.0544095
\(466\) 14230.7 1.41465
\(467\) −3908.61 −0.387300 −0.193650 0.981071i \(-0.562033\pi\)
−0.193650 + 0.981071i \(0.562033\pi\)
\(468\) −8508.05 −0.840352
\(469\) −245.036 −0.0241251
\(470\) −2060.90 −0.202260
\(471\) 8242.48 0.806355
\(472\) 2599.80 0.253528
\(473\) 3633.79 0.353238
\(474\) −11953.8 −1.15835
\(475\) −4191.33 −0.404866
\(476\) 260.125 0.0250479
\(477\) −3635.00 −0.348921
\(478\) 29950.7 2.86593
\(479\) −858.414 −0.0818830 −0.0409415 0.999162i \(-0.513036\pi\)
−0.0409415 + 0.999162i \(0.513036\pi\)
\(480\) 14911.4 1.41793
\(481\) 29235.5 2.77136
\(482\) 8570.59 0.809916
\(483\) −236.179 −0.0222495
\(484\) −10189.8 −0.956965
\(485\) 13662.0 1.27909
\(486\) −11361.2 −1.06040
\(487\) 13348.6 1.24206 0.621028 0.783789i \(-0.286715\pi\)
0.621028 + 0.783789i \(0.286715\pi\)
\(488\) 790.482 0.0733268
\(489\) −19195.2 −1.77513
\(490\) −13679.1 −1.26114
\(491\) −11664.9 −1.07216 −0.536081 0.844166i \(-0.680096\pi\)
−0.536081 + 0.844166i \(0.680096\pi\)
\(492\) 25920.0 2.37513
\(493\) −7591.99 −0.693562
\(494\) 44439.8 4.04745
\(495\) 1600.40 0.145318
\(496\) −450.801 −0.0408096
\(497\) −740.446 −0.0668281
\(498\) 38293.4 3.44572
\(499\) 5742.96 0.515211 0.257606 0.966250i \(-0.417066\pi\)
0.257606 + 0.966250i \(0.417066\pi\)
\(500\) 14668.8 1.31201
\(501\) −6381.04 −0.569029
\(502\) −9923.93 −0.882324
\(503\) 20819.6 1.84552 0.922762 0.385371i \(-0.125927\pi\)
0.922762 + 0.385371i \(0.125927\pi\)
\(504\) −66.5256 −0.00587953
\(505\) −10781.0 −0.949996
\(506\) 2888.19 0.253746
\(507\) −32784.3 −2.87180
\(508\) −21471.0 −1.87524
\(509\) −7623.78 −0.663886 −0.331943 0.943299i \(-0.607704\pi\)
−0.331943 + 0.943299i \(0.607704\pi\)
\(510\) −6979.69 −0.606012
\(511\) 2.51527 0.000217747 0
\(512\) −15005.6 −1.29523
\(513\) 12496.1 1.07547
\(514\) 33128.7 2.84289
\(515\) 3970.26 0.339710
\(516\) 12858.8 1.09705
\(517\) 857.789 0.0729700
\(518\) 1325.44 0.112426
\(519\) −13383.7 −1.13194
\(520\) −5803.55 −0.489428
\(521\) −16462.3 −1.38431 −0.692156 0.721748i \(-0.743339\pi\)
−0.692156 + 0.721748i \(0.743339\pi\)
\(522\) 11257.8 0.943950
\(523\) 6342.62 0.530294 0.265147 0.964208i \(-0.414580\pi\)
0.265147 + 0.964208i \(0.414580\pi\)
\(524\) −11332.0 −0.944732
\(525\) 197.410 0.0164108
\(526\) −29142.3 −2.41571
\(527\) 269.791 0.0223004
\(528\) −4854.19 −0.400097
\(529\) −10462.2 −0.859884
\(530\) −14376.7 −1.17827
\(531\) −3750.31 −0.306496
\(532\) 1102.45 0.0898441
\(533\) 38316.6 3.11384
\(534\) −36011.7 −2.91831
\(535\) −7719.03 −0.623781
\(536\) 1828.79 0.147372
\(537\) −17085.7 −1.37300
\(538\) −18183.5 −1.45715
\(539\) 5693.52 0.454986
\(540\) −9462.12 −0.754046
\(541\) 11333.9 0.900704 0.450352 0.892851i \(-0.351299\pi\)
0.450352 + 0.892851i \(0.351299\pi\)
\(542\) −16139.6 −1.27906
\(543\) −2851.76 −0.225379
\(544\) 7373.80 0.581157
\(545\) 6219.55 0.488838
\(546\) −2093.10 −0.164059
\(547\) 9917.03 0.775176 0.387588 0.921833i \(-0.373308\pi\)
0.387588 + 0.921833i \(0.373308\pi\)
\(548\) −5498.36 −0.428610
\(549\) −1140.30 −0.0886465
\(550\) −2414.09 −0.187158
\(551\) −32175.9 −2.48773
\(552\) 1762.69 0.135915
\(553\) −438.373 −0.0337098
\(554\) −15501.9 −1.18883
\(555\) −19460.4 −1.48837
\(556\) −8624.12 −0.657813
\(557\) −10130.9 −0.770667 −0.385334 0.922777i \(-0.625914\pi\)
−0.385334 + 0.922777i \(0.625914\pi\)
\(558\) −400.061 −0.0303512
\(559\) 19008.8 1.43826
\(560\) 427.692 0.0322737
\(561\) 2905.09 0.218633
\(562\) 33246.0 2.49537
\(563\) −10063.3 −0.753316 −0.376658 0.926352i \(-0.622927\pi\)
−0.376658 + 0.926352i \(0.622927\pi\)
\(564\) 3035.45 0.226623
\(565\) −8197.24 −0.610373
\(566\) 29584.1 2.19702
\(567\) −844.866 −0.0625768
\(568\) 5526.21 0.408230
\(569\) −18809.4 −1.38582 −0.692911 0.721023i \(-0.743672\pi\)
−0.692911 + 0.721023i \(0.743672\pi\)
\(570\) −29580.9 −2.17370
\(571\) 11953.2 0.876050 0.438025 0.898963i \(-0.355678\pi\)
0.438025 + 0.898963i \(0.355678\pi\)
\(572\) 14005.8 1.02380
\(573\) −6236.76 −0.454703
\(574\) 1737.15 0.126319
\(575\) −1424.95 −0.103347
\(576\) −7061.84 −0.510839
\(577\) −8032.69 −0.579559 −0.289779 0.957093i \(-0.593582\pi\)
−0.289779 + 0.957093i \(0.593582\pi\)
\(578\) 17199.0 1.23769
\(579\) 18533.2 1.33025
\(580\) 24363.8 1.74423
\(581\) 1404.30 0.100276
\(582\) −36774.3 −2.61915
\(583\) 5983.88 0.425089
\(584\) −18.7723 −0.00133014
\(585\) 8371.86 0.591682
\(586\) −33045.8 −2.32954
\(587\) 18441.3 1.29668 0.648341 0.761350i \(-0.275463\pi\)
0.648341 + 0.761350i \(0.275463\pi\)
\(588\) 20147.6 1.41305
\(589\) 1143.41 0.0799890
\(590\) −14832.8 −1.03501
\(591\) −6724.40 −0.468028
\(592\) 16079.8 1.11635
\(593\) −16045.6 −1.11115 −0.555575 0.831466i \(-0.687502\pi\)
−0.555575 + 0.831466i \(0.687502\pi\)
\(594\) 7197.41 0.497161
\(595\) −255.961 −0.0176359
\(596\) 22596.3 1.55299
\(597\) 11766.0 0.806619
\(598\) 15108.4 1.03316
\(599\) 3229.06 0.220260 0.110130 0.993917i \(-0.464873\pi\)
0.110130 + 0.993917i \(0.464873\pi\)
\(600\) −1473.34 −0.100248
\(601\) 8862.75 0.601529 0.300765 0.953698i \(-0.402758\pi\)
0.300765 + 0.953698i \(0.402758\pi\)
\(602\) 861.795 0.0583458
\(603\) −2638.10 −0.178162
\(604\) −14577.0 −0.982005
\(605\) 10026.6 0.673787
\(606\) 29019.4 1.94527
\(607\) −7207.53 −0.481952 −0.240976 0.970531i \(-0.577467\pi\)
−0.240976 + 0.970531i \(0.577467\pi\)
\(608\) 31251.2 2.08455
\(609\) 1515.48 0.100838
\(610\) −4509.99 −0.299351
\(611\) 4487.19 0.297107
\(612\) 2800.55 0.184976
\(613\) 1955.74 0.128861 0.0644303 0.997922i \(-0.479477\pi\)
0.0644303 + 0.997922i \(0.479477\pi\)
\(614\) −24649.5 −1.62015
\(615\) −25505.1 −1.67230
\(616\) 109.513 0.00716302
\(617\) −12462.2 −0.813140 −0.406570 0.913620i \(-0.633275\pi\)
−0.406570 + 0.913620i \(0.633275\pi\)
\(618\) −10686.8 −0.695612
\(619\) −14381.1 −0.933807 −0.466904 0.884308i \(-0.654630\pi\)
−0.466904 + 0.884308i \(0.654630\pi\)
\(620\) −865.799 −0.0560828
\(621\) 4248.37 0.274527
\(622\) −23871.7 −1.53886
\(623\) −1320.63 −0.0849276
\(624\) −25392.8 −1.62905
\(625\) −10120.0 −0.647681
\(626\) 38145.9 2.43549
\(627\) 12312.2 0.784212
\(628\) −13080.4 −0.831154
\(629\) −9623.31 −0.610026
\(630\) 379.553 0.0240028
\(631\) −5639.32 −0.355781 −0.177891 0.984050i \(-0.556927\pi\)
−0.177891 + 0.984050i \(0.556927\pi\)
\(632\) 3271.74 0.205922
\(633\) −9678.93 −0.607745
\(634\) −34786.5 −2.17910
\(635\) 21127.3 1.32033
\(636\) 21175.1 1.32020
\(637\) 29783.5 1.85253
\(638\) −18532.5 −1.15001
\(639\) −7971.78 −0.493519
\(640\) −8347.74 −0.515584
\(641\) 1238.65 0.0763240 0.0381620 0.999272i \(-0.487850\pi\)
0.0381620 + 0.999272i \(0.487850\pi\)
\(642\) 20777.5 1.27729
\(643\) −9532.14 −0.584621 −0.292310 0.956324i \(-0.594424\pi\)
−0.292310 + 0.956324i \(0.594424\pi\)
\(644\) 374.804 0.0229338
\(645\) −12653.0 −0.772421
\(646\) −14628.0 −0.890915
\(647\) −2040.31 −0.123976 −0.0619882 0.998077i \(-0.519744\pi\)
−0.0619882 + 0.998077i \(0.519744\pi\)
\(648\) 6305.54 0.382261
\(649\) 6173.70 0.373404
\(650\) −12628.4 −0.762040
\(651\) −53.8544 −0.00324228
\(652\) 30461.8 1.82972
\(653\) −19533.3 −1.17059 −0.585295 0.810820i \(-0.699021\pi\)
−0.585295 + 0.810820i \(0.699021\pi\)
\(654\) −16741.3 −1.00097
\(655\) 11150.6 0.665174
\(656\) 21074.5 1.25430
\(657\) 27.0798 0.00160804
\(658\) 203.435 0.0120527
\(659\) 14112.2 0.834192 0.417096 0.908863i \(-0.363048\pi\)
0.417096 + 0.908863i \(0.363048\pi\)
\(660\) −9322.85 −0.549835
\(661\) −28892.4 −1.70013 −0.850064 0.526679i \(-0.823437\pi\)
−0.850064 + 0.526679i \(0.823437\pi\)
\(662\) 30304.1 1.77916
\(663\) 15196.8 0.890191
\(664\) −10480.8 −0.612552
\(665\) −1084.80 −0.0632581
\(666\) 14270.0 0.830256
\(667\) −10939.0 −0.635024
\(668\) 10126.4 0.586529
\(669\) 21350.2 1.23385
\(670\) −10433.9 −0.601637
\(671\) 1877.15 0.107998
\(672\) −1471.92 −0.0844951
\(673\) 10386.7 0.594917 0.297458 0.954735i \(-0.403861\pi\)
0.297458 + 0.954735i \(0.403861\pi\)
\(674\) −46021.5 −2.63009
\(675\) −3551.00 −0.202486
\(676\) 52027.0 2.96012
\(677\) −6282.45 −0.356653 −0.178327 0.983971i \(-0.557068\pi\)
−0.178327 + 0.983971i \(0.557068\pi\)
\(678\) 22064.7 1.24984
\(679\) −1348.60 −0.0762214
\(680\) 1910.33 0.107732
\(681\) 8761.38 0.493006
\(682\) 658.575 0.0369767
\(683\) −9052.95 −0.507176 −0.253588 0.967312i \(-0.581611\pi\)
−0.253588 + 0.967312i \(0.581611\pi\)
\(684\) 11869.1 0.663491
\(685\) 5410.34 0.301779
\(686\) 2704.05 0.150497
\(687\) 3055.61 0.169692
\(688\) 10455.0 0.579352
\(689\) 31302.3 1.73080
\(690\) −10056.8 −0.554863
\(691\) −22872.6 −1.25921 −0.629604 0.776916i \(-0.716783\pi\)
−0.629604 + 0.776916i \(0.716783\pi\)
\(692\) 21239.2 1.16675
\(693\) −157.977 −0.00865955
\(694\) 48708.1 2.66417
\(695\) 8486.07 0.463158
\(696\) −11310.6 −0.615985
\(697\) −12612.5 −0.685412
\(698\) 16522.1 0.895946
\(699\) 20624.5 1.11601
\(700\) −313.280 −0.0169155
\(701\) 30455.4 1.64092 0.820460 0.571705i \(-0.193718\pi\)
0.820460 + 0.571705i \(0.193718\pi\)
\(702\) 37650.5 2.02425
\(703\) −40784.9 −2.18810
\(704\) 11625.1 0.622353
\(705\) −2986.86 −0.159562
\(706\) −30783.1 −1.64099
\(707\) 1064.21 0.0566105
\(708\) 21846.8 1.15968
\(709\) −5436.94 −0.287995 −0.143998 0.989578i \(-0.545996\pi\)
−0.143998 + 0.989578i \(0.545996\pi\)
\(710\) −31529.1 −1.66657
\(711\) −4719.61 −0.248944
\(712\) 9856.33 0.518794
\(713\) 388.732 0.0204181
\(714\) 688.975 0.0361124
\(715\) −13781.6 −0.720844
\(716\) 27114.1 1.41523
\(717\) 43407.5 2.26092
\(718\) −38990.2 −2.02660
\(719\) 23256.8 1.20630 0.603151 0.797627i \(-0.293912\pi\)
0.603151 + 0.797627i \(0.293912\pi\)
\(720\) 4604.61 0.238338
\(721\) −391.910 −0.0202434
\(722\) −33165.5 −1.70955
\(723\) 12421.3 0.638940
\(724\) 4525.60 0.232310
\(725\) 9143.39 0.468382
\(726\) −26989.0 −1.37969
\(727\) 32105.1 1.63784 0.818921 0.573907i \(-0.194573\pi\)
0.818921 + 0.573907i \(0.194573\pi\)
\(728\) 572.877 0.0291652
\(729\) 7827.60 0.397683
\(730\) 107.103 0.00543022
\(731\) −6257.02 −0.316586
\(732\) 6642.65 0.335409
\(733\) −28243.0 −1.42316 −0.711582 0.702603i \(-0.752021\pi\)
−0.711582 + 0.702603i \(0.752021\pi\)
\(734\) −8379.28 −0.421369
\(735\) −19825.1 −0.994911
\(736\) 10624.6 0.532106
\(737\) 4342.80 0.217054
\(738\) 18702.5 0.932857
\(739\) −26274.5 −1.30788 −0.653941 0.756546i \(-0.726885\pi\)
−0.653941 + 0.756546i \(0.726885\pi\)
\(740\) 30882.6 1.53414
\(741\) 64406.4 3.19302
\(742\) 1419.15 0.0702136
\(743\) 21933.1 1.08297 0.541484 0.840711i \(-0.317862\pi\)
0.541484 + 0.840711i \(0.317862\pi\)
\(744\) 401.935 0.0198060
\(745\) −22234.6 −1.09344
\(746\) −1515.95 −0.0744008
\(747\) 15119.0 0.740529
\(748\) −4610.22 −0.225356
\(749\) 761.956 0.0371713
\(750\) 38852.2 1.89158
\(751\) 9345.76 0.454103 0.227052 0.973883i \(-0.427091\pi\)
0.227052 + 0.973883i \(0.427091\pi\)
\(752\) 2468.00 0.119679
\(753\) −14382.7 −0.696062
\(754\) −96945.5 −4.68242
\(755\) 14343.7 0.691417
\(756\) 934.020 0.0449338
\(757\) −6107.50 −0.293238 −0.146619 0.989193i \(-0.546839\pi\)
−0.146619 + 0.989193i \(0.546839\pi\)
\(758\) 54930.6 2.63215
\(759\) 4185.83 0.200179
\(760\) 8096.23 0.386423
\(761\) 22807.0 1.08640 0.543201 0.839603i \(-0.317212\pi\)
0.543201 + 0.839603i \(0.317212\pi\)
\(762\) −56868.7 −2.70359
\(763\) −613.941 −0.0291300
\(764\) 9897.43 0.468686
\(765\) −2755.72 −0.130240
\(766\) 40079.6 1.89051
\(767\) 32295.3 1.52036
\(768\) −11572.8 −0.543749
\(769\) 19477.8 0.913378 0.456689 0.889626i \(-0.349035\pi\)
0.456689 + 0.889626i \(0.349035\pi\)
\(770\) −624.814 −0.0292425
\(771\) 48013.3 2.24274
\(772\) −29411.2 −1.37116
\(773\) 28994.8 1.34912 0.674560 0.738220i \(-0.264333\pi\)
0.674560 + 0.738220i \(0.264333\pi\)
\(774\) 9278.25 0.430878
\(775\) −324.922 −0.0150600
\(776\) 10065.0 0.465611
\(777\) 1920.96 0.0886925
\(778\) 44507.7 2.05100
\(779\) −53453.5 −2.45850
\(780\) −48768.9 −2.23873
\(781\) 13123.0 0.601253
\(782\) −4973.16 −0.227417
\(783\) −27260.3 −1.24419
\(784\) 16381.2 0.746229
\(785\) 12871.0 0.585205
\(786\) −30014.3 −1.36205
\(787\) −787.000 −0.0356462
\(788\) 10671.3 0.482422
\(789\) −42235.8 −1.90575
\(790\) −18666.4 −0.840661
\(791\) 809.162 0.0363723
\(792\) 1179.04 0.0528983
\(793\) 9819.58 0.439727
\(794\) 10676.9 0.477216
\(795\) −20836.1 −0.929536
\(796\) −18672.1 −0.831426
\(797\) −6581.99 −0.292530 −0.146265 0.989245i \(-0.546725\pi\)
−0.146265 + 0.989245i \(0.546725\pi\)
\(798\) 2919.98 0.129531
\(799\) −1477.03 −0.0653985
\(800\) −8880.61 −0.392471
\(801\) −14218.1 −0.627183
\(802\) 36583.0 1.61071
\(803\) −44.5784 −0.00195907
\(804\) 15367.8 0.674106
\(805\) −368.805 −0.0161474
\(806\) 3445.08 0.150556
\(807\) −26353.3 −1.14954
\(808\) −7942.56 −0.345815
\(809\) −27282.8 −1.18567 −0.592837 0.805322i \(-0.701992\pi\)
−0.592837 + 0.805322i \(0.701992\pi\)
\(810\) −35975.4 −1.56055
\(811\) −40731.9 −1.76361 −0.881807 0.471611i \(-0.843673\pi\)
−0.881807 + 0.471611i \(0.843673\pi\)
\(812\) −2404.99 −0.103939
\(813\) −23391.0 −1.00905
\(814\) −23491.0 −1.01150
\(815\) −29974.2 −1.28828
\(816\) 8358.42 0.358582
\(817\) −26518.1 −1.13556
\(818\) 46010.6 1.96665
\(819\) −826.398 −0.0352585
\(820\) 40475.3 1.72373
\(821\) 20558.4 0.873927 0.436964 0.899479i \(-0.356054\pi\)
0.436964 + 0.899479i \(0.356054\pi\)
\(822\) −14563.1 −0.617942
\(823\) −23107.8 −0.978722 −0.489361 0.872081i \(-0.662770\pi\)
−0.489361 + 0.872081i \(0.662770\pi\)
\(824\) 2924.97 0.123660
\(825\) −3498.73 −0.147649
\(826\) 1464.17 0.0616766
\(827\) 23277.4 0.978760 0.489380 0.872071i \(-0.337223\pi\)
0.489380 + 0.872071i \(0.337223\pi\)
\(828\) 4035.21 0.169364
\(829\) 12147.6 0.508931 0.254465 0.967082i \(-0.418101\pi\)
0.254465 + 0.967082i \(0.418101\pi\)
\(830\) 59796.9 2.50070
\(831\) −22466.8 −0.937865
\(832\) 60812.1 2.53399
\(833\) −9803.67 −0.407775
\(834\) −22842.2 −0.948392
\(835\) −9964.28 −0.412968
\(836\) −19538.8 −0.808329
\(837\) 968.728 0.0400050
\(838\) 19139.1 0.788962
\(839\) 20481.3 0.842780 0.421390 0.906880i \(-0.361542\pi\)
0.421390 + 0.906880i \(0.361542\pi\)
\(840\) −381.330 −0.0156633
\(841\) 45802.9 1.87801
\(842\) −21962.9 −0.898923
\(843\) 48183.4 1.96859
\(844\) 15360.0 0.626436
\(845\) −51194.2 −2.08418
\(846\) 2190.22 0.0890085
\(847\) −989.745 −0.0401512
\(848\) 17216.6 0.697195
\(849\) 42876.2 1.73322
\(850\) 4156.82 0.167738
\(851\) −13865.9 −0.558538
\(852\) 46438.3 1.86731
\(853\) 31547.1 1.26630 0.633149 0.774030i \(-0.281762\pi\)
0.633149 + 0.774030i \(0.281762\pi\)
\(854\) 445.188 0.0178384
\(855\) −11679.1 −0.467156
\(856\) −5686.75 −0.227067
\(857\) 7044.06 0.280771 0.140385 0.990097i \(-0.455166\pi\)
0.140385 + 0.990097i \(0.455166\pi\)
\(858\) 37096.3 1.47605
\(859\) 6718.61 0.266864 0.133432 0.991058i \(-0.457400\pi\)
0.133432 + 0.991058i \(0.457400\pi\)
\(860\) 20079.7 0.796176
\(861\) 2517.65 0.0996529
\(862\) −29899.1 −1.18140
\(863\) −21216.3 −0.836863 −0.418431 0.908248i \(-0.637420\pi\)
−0.418431 + 0.908248i \(0.637420\pi\)
\(864\) 26476.8 1.04255
\(865\) −20899.2 −0.821497
\(866\) −61678.3 −2.42022
\(867\) 24926.5 0.976411
\(868\) 85.4643 0.00334199
\(869\) 7769.35 0.303288
\(870\) 64530.8 2.51471
\(871\) 22717.7 0.883765
\(872\) 4582.06 0.177945
\(873\) −14519.2 −0.562888
\(874\) −21077.0 −0.815720
\(875\) 1424.80 0.0550479
\(876\) −157.749 −0.00608430
\(877\) 34202.5 1.31692 0.658458 0.752617i \(-0.271209\pi\)
0.658458 + 0.752617i \(0.271209\pi\)
\(878\) −40030.6 −1.53869
\(879\) −47893.1 −1.83776
\(880\) −7580.04 −0.290367
\(881\) −36599.5 −1.39962 −0.699811 0.714328i \(-0.746733\pi\)
−0.699811 + 0.714328i \(0.746733\pi\)
\(882\) 14537.4 0.554989
\(883\) −21908.3 −0.834964 −0.417482 0.908685i \(-0.637087\pi\)
−0.417482 + 0.908685i \(0.637087\pi\)
\(884\) −24116.6 −0.917567
\(885\) −21497.1 −0.816516
\(886\) −22317.6 −0.846245
\(887\) −51532.2 −1.95071 −0.975356 0.220638i \(-0.929186\pi\)
−0.975356 + 0.220638i \(0.929186\pi\)
\(888\) −14336.8 −0.541792
\(889\) −2085.50 −0.0786788
\(890\) −56234.0 −2.11794
\(891\) 14973.7 0.563005
\(892\) −33881.7 −1.27180
\(893\) −6259.84 −0.234577
\(894\) 59849.4 2.23900
\(895\) −26680.1 −0.996443
\(896\) 824.018 0.0307238
\(897\) 21896.6 0.815056
\(898\) 1111.88 0.0413184
\(899\) −2494.36 −0.0925378
\(900\) −3372.83 −0.124920
\(901\) −10303.6 −0.380981
\(902\) −30787.8 −1.13650
\(903\) 1249.00 0.0460288
\(904\) −6039.06 −0.222186
\(905\) −4453.16 −0.163567
\(906\) −38609.2 −1.41579
\(907\) 33617.9 1.23072 0.615361 0.788246i \(-0.289010\pi\)
0.615361 + 0.788246i \(0.289010\pi\)
\(908\) −13903.9 −0.508168
\(909\) 11457.5 0.418064
\(910\) −3268.47 −0.119065
\(911\) 19741.3 0.717956 0.358978 0.933346i \(-0.383125\pi\)
0.358978 + 0.933346i \(0.383125\pi\)
\(912\) 35424.2 1.28620
\(913\) −24888.7 −0.902185
\(914\) 20076.4 0.726553
\(915\) −6536.31 −0.236157
\(916\) −4849.09 −0.174911
\(917\) −1100.69 −0.0396379
\(918\) −12393.2 −0.445574
\(919\) 40191.8 1.44266 0.721331 0.692591i \(-0.243531\pi\)
0.721331 + 0.692591i \(0.243531\pi\)
\(920\) 2752.52 0.0986390
\(921\) −35724.4 −1.27813
\(922\) 23707.0 0.846798
\(923\) 68648.0 2.44808
\(924\) 920.272 0.0327648
\(925\) 11589.8 0.411968
\(926\) −67724.8 −2.40343
\(927\) −4219.38 −0.149496
\(928\) −68174.6 −2.41157
\(929\) −53517.9 −1.89006 −0.945030 0.326984i \(-0.893968\pi\)
−0.945030 + 0.326984i \(0.893968\pi\)
\(930\) −2293.19 −0.0808565
\(931\) −41549.3 −1.46265
\(932\) −32730.1 −1.15033
\(933\) −34597.2 −1.21400
\(934\) 16428.9 0.575555
\(935\) 4536.42 0.158671
\(936\) 6167.70 0.215382
\(937\) 5281.42 0.184137 0.0920686 0.995753i \(-0.470652\pi\)
0.0920686 + 0.995753i \(0.470652\pi\)
\(938\) 1029.95 0.0358517
\(939\) 55284.8 1.92135
\(940\) 4739.99 0.164470
\(941\) −33250.2 −1.15189 −0.575944 0.817489i \(-0.695365\pi\)
−0.575944 + 0.817489i \(0.695365\pi\)
\(942\) −34645.2 −1.19830
\(943\) −18172.9 −0.627561
\(944\) 17762.8 0.612425
\(945\) −919.068 −0.0316373
\(946\) −15273.7 −0.524938
\(947\) −6563.53 −0.225223 −0.112612 0.993639i \(-0.535922\pi\)
−0.112612 + 0.993639i \(0.535922\pi\)
\(948\) 27493.3 0.941921
\(949\) −233.195 −0.00797663
\(950\) 17617.2 0.601660
\(951\) −50415.9 −1.71908
\(952\) −188.571 −0.00641977
\(953\) 3534.69 0.120147 0.0600734 0.998194i \(-0.480867\pi\)
0.0600734 + 0.998194i \(0.480867\pi\)
\(954\) 15278.8 0.518521
\(955\) −9738.99 −0.329996
\(956\) −68885.5 −2.33046
\(957\) −26859.0 −0.907240
\(958\) 3608.13 0.121684
\(959\) −534.063 −0.0179831
\(960\) −40479.0 −1.36089
\(961\) −29702.4 −0.997025
\(962\) −122884. −4.11845
\(963\) 8203.36 0.274506
\(964\) −19712.0 −0.658590
\(965\) 28940.4 0.965415
\(966\) 992.720 0.0330644
\(967\) −29760.4 −0.989689 −0.494845 0.868981i \(-0.664775\pi\)
−0.494845 + 0.868981i \(0.664775\pi\)
\(968\) 7386.82 0.245270
\(969\) −21200.3 −0.702840
\(970\) −57424.8 −1.90082
\(971\) 1374.22 0.0454180 0.0227090 0.999742i \(-0.492771\pi\)
0.0227090 + 0.999742i \(0.492771\pi\)
\(972\) 26130.3 0.862274
\(973\) −837.672 −0.0275997
\(974\) −56107.3 −1.84578
\(975\) −18302.3 −0.601171
\(976\) 5400.87 0.177129
\(977\) 53237.7 1.74332 0.871661 0.490109i \(-0.163043\pi\)
0.871661 + 0.490109i \(0.163043\pi\)
\(978\) 80682.1 2.63797
\(979\) 23405.7 0.764095
\(980\) 31461.4 1.02551
\(981\) −6609.81 −0.215122
\(982\) 49030.7 1.59331
\(983\) −31580.2 −1.02467 −0.512335 0.858786i \(-0.671219\pi\)
−0.512335 + 0.858786i \(0.671219\pi\)
\(984\) −18790.1 −0.608746
\(985\) −10500.5 −0.339667
\(986\) 31911.0 1.03068
\(987\) 294.837 0.00950837
\(988\) −102210. −3.29122
\(989\) −9015.51 −0.289865
\(990\) −6726.86 −0.215953
\(991\) −30939.6 −0.991753 −0.495877 0.868393i \(-0.665153\pi\)
−0.495877 + 0.868393i \(0.665153\pi\)
\(992\) 2422.67 0.0775402
\(993\) 43919.6 1.40357
\(994\) 3112.28 0.0993114
\(995\) 18373.2 0.585396
\(996\) −88073.3 −2.80192
\(997\) 23213.0 0.737375 0.368687 0.929553i \(-0.379807\pi\)
0.368687 + 0.929553i \(0.379807\pi\)
\(998\) −24139.1 −0.765641
\(999\) −34554.0 −1.09434
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 787.4.a.b.1.17 103
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
787.4.a.b.1.17 103 1.1 even 1 trivial