Properties

Label 787.2.a.b.1.30
Level $787$
Weight $2$
Character 787.1
Self dual yes
Analytic conductor $6.284$
Analytic rank $0$
Dimension $37$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [787,2,Mod(1,787)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("787.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(787, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 787 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 787.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [37] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.28422663907\)
Analytic rank: \(0\)
Dimension: \(37\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.30
Character \(\chi\) \(=\) 787.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.15909 q^{2} -0.193646 q^{3} +2.66166 q^{4} +1.27973 q^{5} -0.418099 q^{6} +3.30692 q^{7} +1.42857 q^{8} -2.96250 q^{9} +2.76304 q^{10} +1.74233 q^{11} -0.515419 q^{12} +3.81881 q^{13} +7.13993 q^{14} -0.247814 q^{15} -2.23890 q^{16} -5.59990 q^{17} -6.39630 q^{18} +2.43802 q^{19} +3.40620 q^{20} -0.640373 q^{21} +3.76185 q^{22} +8.57475 q^{23} -0.276637 q^{24} -3.36230 q^{25} +8.24514 q^{26} +1.15462 q^{27} +8.80189 q^{28} -5.45908 q^{29} -0.535053 q^{30} -5.25017 q^{31} -7.69113 q^{32} -0.337396 q^{33} -12.0907 q^{34} +4.23196 q^{35} -7.88516 q^{36} +8.07141 q^{37} +5.26391 q^{38} -0.739497 q^{39} +1.82818 q^{40} +3.73448 q^{41} -1.38262 q^{42} -5.12895 q^{43} +4.63749 q^{44} -3.79120 q^{45} +18.5136 q^{46} +1.97994 q^{47} +0.433555 q^{48} +3.93574 q^{49} -7.25949 q^{50} +1.08440 q^{51} +10.1643 q^{52} -6.79390 q^{53} +2.49291 q^{54} +2.22971 q^{55} +4.72418 q^{56} -0.472114 q^{57} -11.7866 q^{58} +14.3592 q^{59} -0.659596 q^{60} -12.8742 q^{61} -11.3356 q^{62} -9.79677 q^{63} -12.1280 q^{64} +4.88703 q^{65} -0.728467 q^{66} -11.5181 q^{67} -14.9050 q^{68} -1.66047 q^{69} +9.13718 q^{70} -0.363435 q^{71} -4.23214 q^{72} -8.27175 q^{73} +17.4269 q^{74} +0.651095 q^{75} +6.48918 q^{76} +5.76176 q^{77} -1.59664 q^{78} -2.27371 q^{79} -2.86519 q^{80} +8.66392 q^{81} +8.06306 q^{82} -16.4140 q^{83} -1.70445 q^{84} -7.16635 q^{85} -11.0738 q^{86} +1.05713 q^{87} +2.48905 q^{88} +18.4490 q^{89} -8.18552 q^{90} +12.6285 q^{91} +22.8230 q^{92} +1.01668 q^{93} +4.27486 q^{94} +3.12001 q^{95} +1.48936 q^{96} -5.94452 q^{97} +8.49761 q^{98} -5.16166 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 37 q + 12 q^{2} + 6 q^{3} + 42 q^{4} + 31 q^{5} + 4 q^{6} + 9 q^{7} + 36 q^{8} + 47 q^{9} + 4 q^{10} + 18 q^{11} + 15 q^{12} + 13 q^{13} + 8 q^{14} + 3 q^{15} + 48 q^{16} + 18 q^{17} + 17 q^{18} + 40 q^{20}+ \cdots - 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.15909 1.52670 0.763352 0.645982i \(-0.223552\pi\)
0.763352 + 0.645982i \(0.223552\pi\)
\(3\) −0.193646 −0.111802 −0.0559008 0.998436i \(-0.517803\pi\)
−0.0559008 + 0.998436i \(0.517803\pi\)
\(4\) 2.66166 1.33083
\(5\) 1.27973 0.572312 0.286156 0.958183i \(-0.407622\pi\)
0.286156 + 0.958183i \(0.407622\pi\)
\(6\) −0.418099 −0.170688
\(7\) 3.30692 1.24990 0.624950 0.780665i \(-0.285119\pi\)
0.624950 + 0.780665i \(0.285119\pi\)
\(8\) 1.42857 0.505076
\(9\) −2.96250 −0.987500
\(10\) 2.76304 0.873751
\(11\) 1.74233 0.525333 0.262667 0.964887i \(-0.415398\pi\)
0.262667 + 0.964887i \(0.415398\pi\)
\(12\) −0.515419 −0.148789
\(13\) 3.81881 1.05915 0.529573 0.848264i \(-0.322352\pi\)
0.529573 + 0.848264i \(0.322352\pi\)
\(14\) 7.13993 1.90823
\(15\) −0.247814 −0.0639854
\(16\) −2.23890 −0.559725
\(17\) −5.59990 −1.35817 −0.679087 0.734057i \(-0.737624\pi\)
−0.679087 + 0.734057i \(0.737624\pi\)
\(18\) −6.39630 −1.50762
\(19\) 2.43802 0.559321 0.279661 0.960099i \(-0.409778\pi\)
0.279661 + 0.960099i \(0.409778\pi\)
\(20\) 3.40620 0.761648
\(21\) −0.640373 −0.139741
\(22\) 3.76185 0.802029
\(23\) 8.57475 1.78796 0.893979 0.448109i \(-0.147902\pi\)
0.893979 + 0.448109i \(0.147902\pi\)
\(24\) −0.276637 −0.0564683
\(25\) −3.36230 −0.672459
\(26\) 8.24514 1.61700
\(27\) 1.15462 0.222206
\(28\) 8.80189 1.66340
\(29\) −5.45908 −1.01373 −0.506863 0.862027i \(-0.669195\pi\)
−0.506863 + 0.862027i \(0.669195\pi\)
\(30\) −0.535053 −0.0976868
\(31\) −5.25017 −0.942959 −0.471479 0.881877i \(-0.656280\pi\)
−0.471479 + 0.881877i \(0.656280\pi\)
\(32\) −7.69113 −1.35961
\(33\) −0.337396 −0.0587331
\(34\) −12.0907 −2.07353
\(35\) 4.23196 0.715332
\(36\) −7.88516 −1.31419
\(37\) 8.07141 1.32693 0.663466 0.748207i \(-0.269085\pi\)
0.663466 + 0.748207i \(0.269085\pi\)
\(38\) 5.26391 0.853919
\(39\) −0.739497 −0.118414
\(40\) 1.82818 0.289061
\(41\) 3.73448 0.583227 0.291614 0.956536i \(-0.405808\pi\)
0.291614 + 0.956536i \(0.405808\pi\)
\(42\) −1.38262 −0.213343
\(43\) −5.12895 −0.782157 −0.391078 0.920357i \(-0.627898\pi\)
−0.391078 + 0.920357i \(0.627898\pi\)
\(44\) 4.63749 0.699128
\(45\) −3.79120 −0.565158
\(46\) 18.5136 2.72968
\(47\) 1.97994 0.288804 0.144402 0.989519i \(-0.453874\pi\)
0.144402 + 0.989519i \(0.453874\pi\)
\(48\) 0.433555 0.0625782
\(49\) 3.93574 0.562249
\(50\) −7.25949 −1.02665
\(51\) 1.08440 0.151846
\(52\) 10.1643 1.40954
\(53\) −6.79390 −0.933214 −0.466607 0.884465i \(-0.654524\pi\)
−0.466607 + 0.884465i \(0.654524\pi\)
\(54\) 2.49291 0.339243
\(55\) 2.22971 0.300654
\(56\) 4.72418 0.631295
\(57\) −0.472114 −0.0625330
\(58\) −11.7866 −1.54766
\(59\) 14.3592 1.86940 0.934702 0.355433i \(-0.115667\pi\)
0.934702 + 0.355433i \(0.115667\pi\)
\(60\) −0.659596 −0.0851535
\(61\) −12.8742 −1.64838 −0.824189 0.566315i \(-0.808368\pi\)
−0.824189 + 0.566315i \(0.808368\pi\)
\(62\) −11.3356 −1.43962
\(63\) −9.79677 −1.23428
\(64\) −12.1280 −1.51600
\(65\) 4.88703 0.606162
\(66\) −0.728467 −0.0896681
\(67\) −11.5181 −1.40716 −0.703582 0.710615i \(-0.748417\pi\)
−0.703582 + 0.710615i \(0.748417\pi\)
\(68\) −14.9050 −1.80750
\(69\) −1.66047 −0.199897
\(70\) 9.13718 1.09210
\(71\) −0.363435 −0.0431318 −0.0215659 0.999767i \(-0.506865\pi\)
−0.0215659 + 0.999767i \(0.506865\pi\)
\(72\) −4.23214 −0.498763
\(73\) −8.27175 −0.968136 −0.484068 0.875030i \(-0.660841\pi\)
−0.484068 + 0.875030i \(0.660841\pi\)
\(74\) 17.4269 2.02583
\(75\) 0.651095 0.0751820
\(76\) 6.48918 0.744360
\(77\) 5.76176 0.656614
\(78\) −1.59664 −0.180784
\(79\) −2.27371 −0.255812 −0.127906 0.991786i \(-0.540826\pi\)
−0.127906 + 0.991786i \(0.540826\pi\)
\(80\) −2.86519 −0.320337
\(81\) 8.66392 0.962657
\(82\) 8.06306 0.890416
\(83\) −16.4140 −1.80167 −0.900836 0.434161i \(-0.857045\pi\)
−0.900836 + 0.434161i \(0.857045\pi\)
\(84\) −1.70445 −0.185971
\(85\) −7.16635 −0.777299
\(86\) −11.0738 −1.19412
\(87\) 1.05713 0.113336
\(88\) 2.48905 0.265333
\(89\) 18.4490 1.95559 0.977797 0.209553i \(-0.0672007\pi\)
0.977797 + 0.209553i \(0.0672007\pi\)
\(90\) −8.18552 −0.862830
\(91\) 12.6285 1.32383
\(92\) 22.8230 2.37946
\(93\) 1.01668 0.105424
\(94\) 4.27486 0.440918
\(95\) 3.12001 0.320106
\(96\) 1.48936 0.152007
\(97\) −5.94452 −0.603574 −0.301787 0.953375i \(-0.597583\pi\)
−0.301787 + 0.953375i \(0.597583\pi\)
\(98\) 8.49761 0.858388
\(99\) −5.16166 −0.518767
\(100\) −8.94927 −0.894927
\(101\) 2.03367 0.202358 0.101179 0.994868i \(-0.467739\pi\)
0.101179 + 0.994868i \(0.467739\pi\)
\(102\) 2.34131 0.231824
\(103\) 3.44297 0.339246 0.169623 0.985509i \(-0.445745\pi\)
0.169623 + 0.985509i \(0.445745\pi\)
\(104\) 5.45544 0.534950
\(105\) −0.819503 −0.0799753
\(106\) −14.6686 −1.42474
\(107\) −7.10757 −0.687114 −0.343557 0.939132i \(-0.611632\pi\)
−0.343557 + 0.939132i \(0.611632\pi\)
\(108\) 3.07319 0.295718
\(109\) −1.59260 −0.152544 −0.0762719 0.997087i \(-0.524302\pi\)
−0.0762719 + 0.997087i \(0.524302\pi\)
\(110\) 4.81414 0.459010
\(111\) −1.56300 −0.148353
\(112\) −7.40388 −0.699601
\(113\) 12.7500 1.19942 0.599709 0.800218i \(-0.295283\pi\)
0.599709 + 0.800218i \(0.295283\pi\)
\(114\) −1.01934 −0.0954695
\(115\) 10.9733 1.02327
\(116\) −14.5302 −1.34909
\(117\) −11.3132 −1.04591
\(118\) 31.0027 2.85403
\(119\) −18.5184 −1.69758
\(120\) −0.354020 −0.0323175
\(121\) −7.96428 −0.724025
\(122\) −27.7966 −2.51659
\(123\) −0.723167 −0.0652058
\(124\) −13.9741 −1.25492
\(125\) −10.7015 −0.957168
\(126\) −21.1521 −1.88438
\(127\) −2.27878 −0.202209 −0.101105 0.994876i \(-0.532238\pi\)
−0.101105 + 0.994876i \(0.532238\pi\)
\(128\) −10.8032 −0.954873
\(129\) 0.993200 0.0874464
\(130\) 10.5515 0.925431
\(131\) −12.1033 −1.05747 −0.528736 0.848787i \(-0.677334\pi\)
−0.528736 + 0.848787i \(0.677334\pi\)
\(132\) −0.898032 −0.0781636
\(133\) 8.06236 0.699095
\(134\) −24.8686 −2.14832
\(135\) 1.47759 0.127171
\(136\) −7.99985 −0.685982
\(137\) 11.1001 0.948345 0.474172 0.880432i \(-0.342747\pi\)
0.474172 + 0.880432i \(0.342747\pi\)
\(138\) −3.58509 −0.305183
\(139\) −8.54741 −0.724981 −0.362491 0.931987i \(-0.618074\pi\)
−0.362491 + 0.931987i \(0.618074\pi\)
\(140\) 11.2640 0.951984
\(141\) −0.383408 −0.0322887
\(142\) −0.784688 −0.0658496
\(143\) 6.65363 0.556405
\(144\) 6.63275 0.552729
\(145\) −6.98614 −0.580167
\(146\) −17.8594 −1.47806
\(147\) −0.762141 −0.0628604
\(148\) 21.4833 1.76592
\(149\) 20.7127 1.69685 0.848427 0.529312i \(-0.177550\pi\)
0.848427 + 0.529312i \(0.177550\pi\)
\(150\) 1.40577 0.114781
\(151\) −4.34623 −0.353691 −0.176846 0.984239i \(-0.556589\pi\)
−0.176846 + 0.984239i \(0.556589\pi\)
\(152\) 3.48289 0.282500
\(153\) 16.5897 1.34120
\(154\) 12.4401 1.00246
\(155\) −6.71879 −0.539666
\(156\) −1.96829 −0.157589
\(157\) −15.0456 −1.20077 −0.600386 0.799710i \(-0.704986\pi\)
−0.600386 + 0.799710i \(0.704986\pi\)
\(158\) −4.90913 −0.390549
\(159\) 1.31561 0.104335
\(160\) −9.84255 −0.778122
\(161\) 28.3560 2.23477
\(162\) 18.7061 1.46969
\(163\) 23.1107 1.81017 0.905085 0.425231i \(-0.139807\pi\)
0.905085 + 0.425231i \(0.139807\pi\)
\(164\) 9.93989 0.776175
\(165\) −0.431775 −0.0336136
\(166\) −35.4393 −2.75062
\(167\) −12.9195 −0.999740 −0.499870 0.866100i \(-0.666619\pi\)
−0.499870 + 0.866100i \(0.666619\pi\)
\(168\) −0.914818 −0.0705798
\(169\) 1.58329 0.121791
\(170\) −15.4728 −1.18671
\(171\) −7.22265 −0.552330
\(172\) −13.6515 −1.04092
\(173\) −20.7368 −1.57659 −0.788296 0.615297i \(-0.789036\pi\)
−0.788296 + 0.615297i \(0.789036\pi\)
\(174\) 2.28243 0.173031
\(175\) −11.1189 −0.840507
\(176\) −3.90091 −0.294042
\(177\) −2.78059 −0.209002
\(178\) 39.8331 2.98562
\(179\) 18.7708 1.40300 0.701499 0.712671i \(-0.252515\pi\)
0.701499 + 0.712671i \(0.252515\pi\)
\(180\) −10.0909 −0.752128
\(181\) −6.33864 −0.471147 −0.235574 0.971856i \(-0.575697\pi\)
−0.235574 + 0.971856i \(0.575697\pi\)
\(182\) 27.2660 2.02109
\(183\) 2.49305 0.184291
\(184\) 12.2496 0.903055
\(185\) 10.3292 0.759419
\(186\) 2.19509 0.160952
\(187\) −9.75689 −0.713494
\(188\) 5.26992 0.384348
\(189\) 3.81822 0.277735
\(190\) 6.73637 0.488708
\(191\) −4.40076 −0.318428 −0.159214 0.987244i \(-0.550896\pi\)
−0.159214 + 0.987244i \(0.550896\pi\)
\(192\) 2.34854 0.169491
\(193\) 5.27295 0.379555 0.189778 0.981827i \(-0.439223\pi\)
0.189778 + 0.981827i \(0.439223\pi\)
\(194\) −12.8347 −0.921480
\(195\) −0.946355 −0.0677699
\(196\) 10.4756 0.748257
\(197\) 13.1085 0.933945 0.466973 0.884272i \(-0.345345\pi\)
0.466973 + 0.884272i \(0.345345\pi\)
\(198\) −11.1445 −0.792003
\(199\) 10.8387 0.768337 0.384168 0.923263i \(-0.374488\pi\)
0.384168 + 0.923263i \(0.374488\pi\)
\(200\) −4.80328 −0.339643
\(201\) 2.23044 0.157323
\(202\) 4.39087 0.308941
\(203\) −18.0528 −1.26706
\(204\) 2.88629 0.202081
\(205\) 4.77911 0.333788
\(206\) 7.43368 0.517929
\(207\) −25.4027 −1.76561
\(208\) −8.54993 −0.592831
\(209\) 4.24785 0.293830
\(210\) −1.76938 −0.122099
\(211\) −1.27964 −0.0880938 −0.0440469 0.999029i \(-0.514025\pi\)
−0.0440469 + 0.999029i \(0.514025\pi\)
\(212\) −18.0830 −1.24195
\(213\) 0.0703778 0.00482221
\(214\) −15.3459 −1.04902
\(215\) −6.56366 −0.447638
\(216\) 1.64945 0.112231
\(217\) −17.3619 −1.17860
\(218\) −3.43857 −0.232889
\(219\) 1.60179 0.108239
\(220\) 5.93472 0.400119
\(221\) −21.3849 −1.43851
\(222\) −3.37465 −0.226491
\(223\) 24.7788 1.65931 0.829657 0.558273i \(-0.188536\pi\)
0.829657 + 0.558273i \(0.188536\pi\)
\(224\) −25.4340 −1.69938
\(225\) 9.96081 0.664054
\(226\) 27.5283 1.83116
\(227\) 8.97561 0.595732 0.297866 0.954608i \(-0.403725\pi\)
0.297866 + 0.954608i \(0.403725\pi\)
\(228\) −1.25660 −0.0832207
\(229\) 25.7318 1.70040 0.850202 0.526457i \(-0.176480\pi\)
0.850202 + 0.526457i \(0.176480\pi\)
\(230\) 23.6924 1.56223
\(231\) −1.11574 −0.0734105
\(232\) −7.79868 −0.512009
\(233\) 16.8337 1.10281 0.551406 0.834237i \(-0.314092\pi\)
0.551406 + 0.834237i \(0.314092\pi\)
\(234\) −24.4262 −1.59679
\(235\) 2.53378 0.165286
\(236\) 38.2191 2.48785
\(237\) 0.440294 0.0286002
\(238\) −39.9829 −2.59171
\(239\) −18.2138 −1.17815 −0.589075 0.808078i \(-0.700508\pi\)
−0.589075 + 0.808078i \(0.700508\pi\)
\(240\) 0.554832 0.0358142
\(241\) 2.89730 0.186632 0.0933158 0.995637i \(-0.470253\pi\)
0.0933158 + 0.995637i \(0.470253\pi\)
\(242\) −17.1956 −1.10537
\(243\) −5.14158 −0.329832
\(244\) −34.2668 −2.19371
\(245\) 5.03668 0.321782
\(246\) −1.56138 −0.0995499
\(247\) 9.31035 0.592403
\(248\) −7.50024 −0.476266
\(249\) 3.17851 0.201430
\(250\) −23.1054 −1.46131
\(251\) 15.2014 0.959502 0.479751 0.877405i \(-0.340727\pi\)
0.479751 + 0.877405i \(0.340727\pi\)
\(252\) −26.0756 −1.64261
\(253\) 14.9401 0.939273
\(254\) −4.92009 −0.308714
\(255\) 1.38774 0.0869033
\(256\) 0.931049 0.0581906
\(257\) 18.5312 1.15595 0.577974 0.816055i \(-0.303844\pi\)
0.577974 + 0.816055i \(0.303844\pi\)
\(258\) 2.14441 0.133505
\(259\) 26.6915 1.65853
\(260\) 13.0076 0.806697
\(261\) 16.1725 1.00105
\(262\) −26.1321 −1.61445
\(263\) −7.87351 −0.485501 −0.242751 0.970089i \(-0.578050\pi\)
−0.242751 + 0.970089i \(0.578050\pi\)
\(264\) −0.481994 −0.0296647
\(265\) −8.69435 −0.534089
\(266\) 17.4073 1.06731
\(267\) −3.57259 −0.218639
\(268\) −30.6573 −1.87269
\(269\) 23.1808 1.41336 0.706678 0.707535i \(-0.250193\pi\)
0.706678 + 0.707535i \(0.250193\pi\)
\(270\) 3.19025 0.194153
\(271\) 5.00036 0.303750 0.151875 0.988400i \(-0.451469\pi\)
0.151875 + 0.988400i \(0.451469\pi\)
\(272\) 12.5376 0.760205
\(273\) −2.44546 −0.148006
\(274\) 23.9661 1.44784
\(275\) −5.85824 −0.353265
\(276\) −4.41959 −0.266028
\(277\) −2.86202 −0.171962 −0.0859812 0.996297i \(-0.527402\pi\)
−0.0859812 + 0.996297i \(0.527402\pi\)
\(278\) −18.4546 −1.10683
\(279\) 15.5536 0.931172
\(280\) 6.04566 0.361297
\(281\) 21.8710 1.30471 0.652356 0.757913i \(-0.273781\pi\)
0.652356 + 0.757913i \(0.273781\pi\)
\(282\) −0.827810 −0.0492954
\(283\) 27.0630 1.60873 0.804364 0.594136i \(-0.202506\pi\)
0.804364 + 0.594136i \(0.202506\pi\)
\(284\) −0.967339 −0.0574010
\(285\) −0.604178 −0.0357884
\(286\) 14.3658 0.849466
\(287\) 12.3496 0.728976
\(288\) 22.7850 1.34262
\(289\) 14.3589 0.844639
\(290\) −15.0837 −0.885744
\(291\) 1.15113 0.0674806
\(292\) −22.0166 −1.28842
\(293\) 0.378130 0.0220906 0.0110453 0.999939i \(-0.496484\pi\)
0.0110453 + 0.999939i \(0.496484\pi\)
\(294\) −1.64553 −0.0959692
\(295\) 18.3758 1.06988
\(296\) 11.5306 0.670202
\(297\) 2.01172 0.116732
\(298\) 44.7206 2.59060
\(299\) 32.7453 1.89371
\(300\) 1.73299 0.100054
\(301\) −16.9610 −0.977618
\(302\) −9.38389 −0.539982
\(303\) −0.393812 −0.0226239
\(304\) −5.45850 −0.313066
\(305\) −16.4755 −0.943386
\(306\) 35.8186 2.04761
\(307\) −6.52202 −0.372231 −0.186116 0.982528i \(-0.559590\pi\)
−0.186116 + 0.982528i \(0.559590\pi\)
\(308\) 15.3358 0.873840
\(309\) −0.666718 −0.0379283
\(310\) −14.5065 −0.823911
\(311\) −27.5348 −1.56136 −0.780678 0.624934i \(-0.785126\pi\)
−0.780678 + 0.624934i \(0.785126\pi\)
\(312\) −1.05642 −0.0598082
\(313\) 0.580082 0.0327882 0.0163941 0.999866i \(-0.494781\pi\)
0.0163941 + 0.999866i \(0.494781\pi\)
\(314\) −32.4848 −1.83322
\(315\) −12.5372 −0.706391
\(316\) −6.05182 −0.340442
\(317\) −23.9543 −1.34541 −0.672704 0.739912i \(-0.734867\pi\)
−0.672704 + 0.739912i \(0.734867\pi\)
\(318\) 2.84052 0.159289
\(319\) −9.51153 −0.532544
\(320\) −15.5205 −0.867625
\(321\) 1.37635 0.0768205
\(322\) 61.2231 3.41183
\(323\) −13.6527 −0.759656
\(324\) 23.0604 1.28113
\(325\) −12.8400 −0.712233
\(326\) 49.8980 2.76359
\(327\) 0.308402 0.0170547
\(328\) 5.33497 0.294574
\(329\) 6.54751 0.360976
\(330\) −0.932240 −0.0513181
\(331\) −12.1366 −0.667088 −0.333544 0.942734i \(-0.608245\pi\)
−0.333544 + 0.942734i \(0.608245\pi\)
\(332\) −43.6884 −2.39771
\(333\) −23.9116 −1.31035
\(334\) −27.8943 −1.52631
\(335\) −14.7401 −0.805336
\(336\) 1.43373 0.0782165
\(337\) 33.2107 1.80910 0.904552 0.426363i \(-0.140205\pi\)
0.904552 + 0.426363i \(0.140205\pi\)
\(338\) 3.41846 0.185940
\(339\) −2.46899 −0.134097
\(340\) −19.0743 −1.03445
\(341\) −9.14754 −0.495367
\(342\) −15.5943 −0.843245
\(343\) −10.1333 −0.547145
\(344\) −7.32706 −0.395049
\(345\) −2.12495 −0.114403
\(346\) −44.7726 −2.40699
\(347\) 8.72501 0.468383 0.234192 0.972190i \(-0.424756\pi\)
0.234192 + 0.972190i \(0.424756\pi\)
\(348\) 2.81371 0.150831
\(349\) −5.11786 −0.273953 −0.136976 0.990574i \(-0.543738\pi\)
−0.136976 + 0.990574i \(0.543738\pi\)
\(350\) −24.0066 −1.28321
\(351\) 4.40925 0.235348
\(352\) −13.4005 −0.714249
\(353\) −30.7524 −1.63679 −0.818393 0.574660i \(-0.805134\pi\)
−0.818393 + 0.574660i \(0.805134\pi\)
\(354\) −6.00355 −0.319085
\(355\) −0.465098 −0.0246849
\(356\) 49.1050 2.60256
\(357\) 3.58602 0.189792
\(358\) 40.5278 2.14196
\(359\) 27.2437 1.43787 0.718935 0.695078i \(-0.244630\pi\)
0.718935 + 0.695078i \(0.244630\pi\)
\(360\) −5.41599 −0.285448
\(361\) −13.0560 −0.687160
\(362\) −13.6857 −0.719303
\(363\) 1.54225 0.0809472
\(364\) 33.6127 1.76179
\(365\) −10.5856 −0.554075
\(366\) 5.38270 0.281358
\(367\) 1.12382 0.0586631 0.0293315 0.999570i \(-0.490662\pi\)
0.0293315 + 0.999570i \(0.490662\pi\)
\(368\) −19.1980 −1.00077
\(369\) −11.0634 −0.575937
\(370\) 22.3017 1.15941
\(371\) −22.4669 −1.16642
\(372\) 2.70604 0.140302
\(373\) 13.7738 0.713181 0.356590 0.934261i \(-0.383939\pi\)
0.356590 + 0.934261i \(0.383939\pi\)
\(374\) −21.0660 −1.08929
\(375\) 2.07230 0.107013
\(376\) 2.82848 0.145868
\(377\) −20.8472 −1.07368
\(378\) 8.24388 0.424019
\(379\) 25.2518 1.29710 0.648548 0.761174i \(-0.275377\pi\)
0.648548 + 0.761174i \(0.275377\pi\)
\(380\) 8.30439 0.426006
\(381\) 0.441277 0.0226073
\(382\) −9.50161 −0.486145
\(383\) 16.3911 0.837547 0.418773 0.908091i \(-0.362460\pi\)
0.418773 + 0.908091i \(0.362460\pi\)
\(384\) 2.09199 0.106756
\(385\) 7.37349 0.375788
\(386\) 11.3848 0.579469
\(387\) 15.1945 0.772380
\(388\) −15.8223 −0.803254
\(389\) 32.9159 1.66890 0.834452 0.551081i \(-0.185785\pi\)
0.834452 + 0.551081i \(0.185785\pi\)
\(390\) −2.04326 −0.103465
\(391\) −48.0177 −2.42836
\(392\) 5.62249 0.283979
\(393\) 2.34376 0.118227
\(394\) 28.3025 1.42586
\(395\) −2.90973 −0.146404
\(396\) −13.7386 −0.690389
\(397\) −8.73821 −0.438558 −0.219279 0.975662i \(-0.570371\pi\)
−0.219279 + 0.975662i \(0.570371\pi\)
\(398\) 23.4017 1.17302
\(399\) −1.56124 −0.0781600
\(400\) 7.52785 0.376392
\(401\) 32.8523 1.64057 0.820283 0.571958i \(-0.193816\pi\)
0.820283 + 0.571958i \(0.193816\pi\)
\(402\) 4.81571 0.240186
\(403\) −20.0494 −0.998731
\(404\) 5.41293 0.269303
\(405\) 11.0875 0.550940
\(406\) −38.9775 −1.93442
\(407\) 14.0631 0.697081
\(408\) 1.54914 0.0766939
\(409\) −27.2692 −1.34837 −0.674187 0.738561i \(-0.735506\pi\)
−0.674187 + 0.738561i \(0.735506\pi\)
\(410\) 10.3185 0.509596
\(411\) −2.14949 −0.106027
\(412\) 9.16400 0.451478
\(413\) 47.4846 2.33657
\(414\) −54.8466 −2.69556
\(415\) −21.0055 −1.03112
\(416\) −29.3709 −1.44003
\(417\) 1.65517 0.0810541
\(418\) 9.17148 0.448592
\(419\) −3.28648 −0.160555 −0.0802775 0.996773i \(-0.525581\pi\)
−0.0802775 + 0.996773i \(0.525581\pi\)
\(420\) −2.18123 −0.106433
\(421\) 28.0183 1.36553 0.682764 0.730639i \(-0.260778\pi\)
0.682764 + 0.730639i \(0.260778\pi\)
\(422\) −2.76284 −0.134493
\(423\) −5.86557 −0.285194
\(424\) −9.70557 −0.471344
\(425\) 18.8285 0.913317
\(426\) 0.151952 0.00736209
\(427\) −42.5741 −2.06031
\(428\) −18.9179 −0.914431
\(429\) −1.28845 −0.0622069
\(430\) −14.1715 −0.683411
\(431\) −21.1666 −1.01956 −0.509781 0.860304i \(-0.670273\pi\)
−0.509781 + 0.860304i \(0.670273\pi\)
\(432\) −2.58507 −0.124374
\(433\) 4.67196 0.224520 0.112260 0.993679i \(-0.464191\pi\)
0.112260 + 0.993679i \(0.464191\pi\)
\(434\) −37.4859 −1.79938
\(435\) 1.35284 0.0648636
\(436\) −4.23897 −0.203010
\(437\) 20.9054 1.00004
\(438\) 3.45841 0.165249
\(439\) −21.6416 −1.03290 −0.516449 0.856318i \(-0.672746\pi\)
−0.516449 + 0.856318i \(0.672746\pi\)
\(440\) 3.18530 0.151853
\(441\) −11.6596 −0.555221
\(442\) −46.1719 −2.19617
\(443\) 17.9066 0.850770 0.425385 0.905013i \(-0.360139\pi\)
0.425385 + 0.905013i \(0.360139\pi\)
\(444\) −4.16016 −0.197432
\(445\) 23.6098 1.11921
\(446\) 53.4997 2.53328
\(447\) −4.01094 −0.189711
\(448\) −40.1064 −1.89485
\(449\) −12.6465 −0.596824 −0.298412 0.954437i \(-0.596457\pi\)
−0.298412 + 0.954437i \(0.596457\pi\)
\(450\) 21.5062 1.01381
\(451\) 6.50670 0.306389
\(452\) 33.9361 1.59622
\(453\) 0.841630 0.0395432
\(454\) 19.3791 0.909507
\(455\) 16.1611 0.757642
\(456\) −0.674448 −0.0315839
\(457\) −17.7165 −0.828742 −0.414371 0.910108i \(-0.635998\pi\)
−0.414371 + 0.910108i \(0.635998\pi\)
\(458\) 55.5571 2.59601
\(459\) −6.46573 −0.301794
\(460\) 29.2073 1.36180
\(461\) 5.25330 0.244671 0.122335 0.992489i \(-0.460962\pi\)
0.122335 + 0.992489i \(0.460962\pi\)
\(462\) −2.40898 −0.112076
\(463\) −7.04488 −0.327404 −0.163702 0.986510i \(-0.552343\pi\)
−0.163702 + 0.986510i \(0.552343\pi\)
\(464\) 12.2223 0.567408
\(465\) 1.30107 0.0603356
\(466\) 36.3454 1.68367
\(467\) −35.1002 −1.62425 −0.812123 0.583487i \(-0.801688\pi\)
−0.812123 + 0.583487i \(0.801688\pi\)
\(468\) −30.1119 −1.39192
\(469\) −38.0896 −1.75881
\(470\) 5.47066 0.252343
\(471\) 2.91353 0.134248
\(472\) 20.5131 0.944191
\(473\) −8.93633 −0.410893
\(474\) 0.950634 0.0436640
\(475\) −8.19736 −0.376121
\(476\) −49.2897 −2.25919
\(477\) 20.1269 0.921549
\(478\) −39.3251 −1.79869
\(479\) −1.53619 −0.0701904 −0.0350952 0.999384i \(-0.511173\pi\)
−0.0350952 + 0.999384i \(0.511173\pi\)
\(480\) 1.90597 0.0869953
\(481\) 30.8232 1.40542
\(482\) 6.25552 0.284931
\(483\) −5.49103 −0.249851
\(484\) −21.1982 −0.963553
\(485\) −7.60737 −0.345433
\(486\) −11.1011 −0.503557
\(487\) 5.71734 0.259077 0.129539 0.991574i \(-0.458650\pi\)
0.129539 + 0.991574i \(0.458650\pi\)
\(488\) −18.3918 −0.832556
\(489\) −4.47530 −0.202380
\(490\) 10.8746 0.491266
\(491\) −35.5648 −1.60502 −0.802510 0.596639i \(-0.796502\pi\)
−0.802510 + 0.596639i \(0.796502\pi\)
\(492\) −1.92482 −0.0867776
\(493\) 30.5703 1.37682
\(494\) 20.1018 0.904425
\(495\) −6.60552 −0.296896
\(496\) 11.7546 0.527798
\(497\) −1.20185 −0.0539105
\(498\) 6.86267 0.307524
\(499\) 34.4678 1.54299 0.771496 0.636234i \(-0.219509\pi\)
0.771496 + 0.636234i \(0.219509\pi\)
\(500\) −28.4836 −1.27383
\(501\) 2.50181 0.111773
\(502\) 32.8211 1.46488
\(503\) −16.6728 −0.743402 −0.371701 0.928352i \(-0.621225\pi\)
−0.371701 + 0.928352i \(0.621225\pi\)
\(504\) −13.9954 −0.623404
\(505\) 2.60254 0.115812
\(506\) 32.2569 1.43399
\(507\) −0.306598 −0.0136165
\(508\) −6.06533 −0.269106
\(509\) 20.0796 0.890015 0.445007 0.895527i \(-0.353201\pi\)
0.445007 + 0.895527i \(0.353201\pi\)
\(510\) 2.99624 0.132676
\(511\) −27.3541 −1.21007
\(512\) 23.6165 1.04371
\(513\) 2.81498 0.124284
\(514\) 40.0106 1.76479
\(515\) 4.40607 0.194155
\(516\) 2.64356 0.116376
\(517\) 3.44971 0.151718
\(518\) 57.6293 2.53209
\(519\) 4.01560 0.176265
\(520\) 6.98148 0.306158
\(521\) −27.7877 −1.21740 −0.608701 0.793400i \(-0.708309\pi\)
−0.608701 + 0.793400i \(0.708309\pi\)
\(522\) 34.9179 1.52831
\(523\) −32.3282 −1.41361 −0.706806 0.707407i \(-0.749865\pi\)
−0.706806 + 0.707407i \(0.749865\pi\)
\(524\) −32.2148 −1.40731
\(525\) 2.15312 0.0939700
\(526\) −16.9996 −0.741217
\(527\) 29.4004 1.28070
\(528\) 0.755396 0.0328744
\(529\) 50.5263 2.19679
\(530\) −18.7718 −0.815397
\(531\) −42.5390 −1.84604
\(532\) 21.4592 0.930376
\(533\) 14.2612 0.617723
\(534\) −7.71352 −0.333797
\(535\) −9.09575 −0.393244
\(536\) −16.4545 −0.710725
\(537\) −3.63490 −0.156857
\(538\) 50.0493 2.15778
\(539\) 6.85738 0.295368
\(540\) 3.93284 0.169243
\(541\) −2.84846 −0.122465 −0.0612324 0.998124i \(-0.519503\pi\)
−0.0612324 + 0.998124i \(0.519503\pi\)
\(542\) 10.7962 0.463737
\(543\) 1.22745 0.0526750
\(544\) 43.0695 1.84659
\(545\) −2.03810 −0.0873027
\(546\) −5.27996 −0.225961
\(547\) 10.6130 0.453781 0.226890 0.973920i \(-0.427144\pi\)
0.226890 + 0.973920i \(0.427144\pi\)
\(548\) 29.5446 1.26208
\(549\) 38.1399 1.62777
\(550\) −12.6484 −0.539331
\(551\) −13.3094 −0.566998
\(552\) −2.37209 −0.100963
\(553\) −7.51897 −0.319739
\(554\) −6.17936 −0.262536
\(555\) −2.00021 −0.0849043
\(556\) −22.7502 −0.964825
\(557\) 5.43745 0.230392 0.115196 0.993343i \(-0.463250\pi\)
0.115196 + 0.993343i \(0.463250\pi\)
\(558\) 33.5817 1.42162
\(559\) −19.5865 −0.828419
\(560\) −9.47495 −0.400390
\(561\) 1.88938 0.0797698
\(562\) 47.2213 1.99191
\(563\) 28.9486 1.22004 0.610018 0.792387i \(-0.291162\pi\)
0.610018 + 0.792387i \(0.291162\pi\)
\(564\) −1.02050 −0.0429708
\(565\) 16.3165 0.686441
\(566\) 58.4314 2.45605
\(567\) 28.6509 1.20323
\(568\) −0.519193 −0.0217849
\(569\) −42.7950 −1.79406 −0.897029 0.441971i \(-0.854279\pi\)
−0.897029 + 0.441971i \(0.854279\pi\)
\(570\) −1.30447 −0.0546383
\(571\) 2.09656 0.0877383 0.0438691 0.999037i \(-0.486032\pi\)
0.0438691 + 0.999037i \(0.486032\pi\)
\(572\) 17.7097 0.740479
\(573\) 0.852189 0.0356007
\(574\) 26.6639 1.11293
\(575\) −28.8308 −1.20233
\(576\) 35.9292 1.49705
\(577\) −13.4387 −0.559461 −0.279731 0.960079i \(-0.590245\pi\)
−0.279731 + 0.960079i \(0.590245\pi\)
\(578\) 31.0020 1.28951
\(579\) −1.02109 −0.0424349
\(580\) −18.5947 −0.772102
\(581\) −54.2799 −2.25191
\(582\) 2.48540 0.103023
\(583\) −11.8372 −0.490248
\(584\) −11.8168 −0.488982
\(585\) −14.4778 −0.598585
\(586\) 0.816416 0.0337258
\(587\) 19.4864 0.804290 0.402145 0.915576i \(-0.368265\pi\)
0.402145 + 0.915576i \(0.368265\pi\)
\(588\) −2.02856 −0.0836563
\(589\) −12.8000 −0.527417
\(590\) 39.6750 1.63339
\(591\) −2.53842 −0.104417
\(592\) −18.0711 −0.742717
\(593\) 25.1742 1.03378 0.516889 0.856052i \(-0.327090\pi\)
0.516889 + 0.856052i \(0.327090\pi\)
\(594\) 4.34349 0.178215
\(595\) −23.6986 −0.971546
\(596\) 55.1302 2.25822
\(597\) −2.09888 −0.0859013
\(598\) 70.6999 2.89114
\(599\) 12.3649 0.505215 0.252607 0.967569i \(-0.418712\pi\)
0.252607 + 0.967569i \(0.418712\pi\)
\(600\) 0.930136 0.0379727
\(601\) −21.7122 −0.885660 −0.442830 0.896606i \(-0.646025\pi\)
−0.442830 + 0.896606i \(0.646025\pi\)
\(602\) −36.6203 −1.49253
\(603\) 34.1225 1.38957
\(604\) −11.5682 −0.470702
\(605\) −10.1921 −0.414368
\(606\) −0.850275 −0.0345401
\(607\) −13.9905 −0.567855 −0.283927 0.958846i \(-0.591637\pi\)
−0.283927 + 0.958846i \(0.591637\pi\)
\(608\) −18.7512 −0.760460
\(609\) 3.49585 0.141659
\(610\) −35.5721 −1.44027
\(611\) 7.56101 0.305886
\(612\) 44.1561 1.78490
\(613\) −1.85000 −0.0747207 −0.0373603 0.999302i \(-0.511895\pi\)
−0.0373603 + 0.999302i \(0.511895\pi\)
\(614\) −14.0816 −0.568287
\(615\) −0.925457 −0.0373180
\(616\) 8.23109 0.331640
\(617\) −17.7233 −0.713513 −0.356757 0.934197i \(-0.616117\pi\)
−0.356757 + 0.934197i \(0.616117\pi\)
\(618\) −1.43950 −0.0579053
\(619\) −23.1662 −0.931127 −0.465564 0.885014i \(-0.654148\pi\)
−0.465564 + 0.885014i \(0.654148\pi\)
\(620\) −17.8831 −0.718203
\(621\) 9.90053 0.397295
\(622\) −59.4500 −2.38373
\(623\) 61.0096 2.44430
\(624\) 1.65566 0.0662795
\(625\) 3.11651 0.124661
\(626\) 1.25245 0.0500579
\(627\) −0.822580 −0.0328507
\(628\) −40.0463 −1.59802
\(629\) −45.1991 −1.80221
\(630\) −27.0689 −1.07845
\(631\) 33.8699 1.34834 0.674170 0.738577i \(-0.264502\pi\)
0.674170 + 0.738577i \(0.264502\pi\)
\(632\) −3.24815 −0.129205
\(633\) 0.247797 0.00984903
\(634\) −51.7194 −2.05404
\(635\) −2.91622 −0.115727
\(636\) 3.50171 0.138852
\(637\) 15.0298 0.595504
\(638\) −20.5362 −0.813037
\(639\) 1.07668 0.0425927
\(640\) −13.8251 −0.546485
\(641\) 18.5019 0.730780 0.365390 0.930855i \(-0.380936\pi\)
0.365390 + 0.930855i \(0.380936\pi\)
\(642\) 2.97166 0.117282
\(643\) −19.7557 −0.779090 −0.389545 0.921007i \(-0.627368\pi\)
−0.389545 + 0.921007i \(0.627368\pi\)
\(644\) 75.4740 2.97409
\(645\) 1.27103 0.0500466
\(646\) −29.4773 −1.15977
\(647\) −16.6612 −0.655018 −0.327509 0.944848i \(-0.606209\pi\)
−0.327509 + 0.944848i \(0.606209\pi\)
\(648\) 12.3770 0.486215
\(649\) 25.0184 0.982059
\(650\) −27.7226 −1.08737
\(651\) 3.36207 0.131770
\(652\) 61.5127 2.40902
\(653\) 27.5613 1.07856 0.539279 0.842127i \(-0.318697\pi\)
0.539279 + 0.842127i \(0.318697\pi\)
\(654\) 0.665866 0.0260374
\(655\) −15.4889 −0.605203
\(656\) −8.36113 −0.326447
\(657\) 24.5051 0.956034
\(658\) 14.1366 0.551104
\(659\) 24.9583 0.972236 0.486118 0.873893i \(-0.338412\pi\)
0.486118 + 0.873893i \(0.338412\pi\)
\(660\) −1.14924 −0.0447340
\(661\) −37.2817 −1.45009 −0.725045 0.688702i \(-0.758181\pi\)
−0.725045 + 0.688702i \(0.758181\pi\)
\(662\) −26.2040 −1.01845
\(663\) 4.14111 0.160827
\(664\) −23.4486 −0.909981
\(665\) 10.3176 0.400101
\(666\) −51.6271 −2.00051
\(667\) −46.8102 −1.81250
\(668\) −34.3872 −1.33048
\(669\) −4.79833 −0.185514
\(670\) −31.8251 −1.22951
\(671\) −22.4312 −0.865947
\(672\) 4.92519 0.189993
\(673\) −9.90519 −0.381817 −0.190908 0.981608i \(-0.561143\pi\)
−0.190908 + 0.981608i \(0.561143\pi\)
\(674\) 71.7049 2.76197
\(675\) −3.88216 −0.149424
\(676\) 4.21417 0.162083
\(677\) 3.87119 0.148782 0.0743909 0.997229i \(-0.476299\pi\)
0.0743909 + 0.997229i \(0.476299\pi\)
\(678\) −5.33076 −0.204726
\(679\) −19.6581 −0.754408
\(680\) −10.2376 −0.392595
\(681\) −1.73809 −0.0666038
\(682\) −19.7503 −0.756280
\(683\) 22.3232 0.854172 0.427086 0.904211i \(-0.359540\pi\)
0.427086 + 0.904211i \(0.359540\pi\)
\(684\) −19.2242 −0.735056
\(685\) 14.2051 0.542749
\(686\) −21.8786 −0.835328
\(687\) −4.98286 −0.190108
\(688\) 11.4832 0.437793
\(689\) −25.9446 −0.988411
\(690\) −4.58794 −0.174660
\(691\) −5.20738 −0.198098 −0.0990490 0.995083i \(-0.531580\pi\)
−0.0990490 + 0.995083i \(0.531580\pi\)
\(692\) −55.1943 −2.09817
\(693\) −17.0692 −0.648406
\(694\) 18.8381 0.715083
\(695\) −10.9384 −0.414915
\(696\) 1.51018 0.0572434
\(697\) −20.9127 −0.792125
\(698\) −11.0499 −0.418245
\(699\) −3.25978 −0.123296
\(700\) −29.5946 −1.11857
\(701\) 10.8659 0.410398 0.205199 0.978720i \(-0.434216\pi\)
0.205199 + 0.978720i \(0.434216\pi\)
\(702\) 9.51996 0.359308
\(703\) 19.6783 0.742181
\(704\) −21.1310 −0.796405
\(705\) −0.490657 −0.0184792
\(706\) −66.3971 −2.49889
\(707\) 6.72519 0.252927
\(708\) −7.40099 −0.278146
\(709\) −33.5779 −1.26105 −0.630523 0.776171i \(-0.717159\pi\)
−0.630523 + 0.776171i \(0.717159\pi\)
\(710\) −1.00419 −0.0376865
\(711\) 6.73586 0.252614
\(712\) 26.3558 0.987724
\(713\) −45.0189 −1.68597
\(714\) 7.74253 0.289757
\(715\) 8.51484 0.318437
\(716\) 49.9615 1.86715
\(717\) 3.52703 0.131719
\(718\) 58.8216 2.19520
\(719\) −10.3749 −0.386917 −0.193459 0.981108i \(-0.561971\pi\)
−0.193459 + 0.981108i \(0.561971\pi\)
\(720\) 8.48811 0.316333
\(721\) 11.3856 0.424024
\(722\) −28.1891 −1.04909
\(723\) −0.561051 −0.0208657
\(724\) −16.8713 −0.627016
\(725\) 18.3550 0.681689
\(726\) 3.32985 0.123582
\(727\) −1.90364 −0.0706019 −0.0353010 0.999377i \(-0.511239\pi\)
−0.0353010 + 0.999377i \(0.511239\pi\)
\(728\) 18.0407 0.668633
\(729\) −24.9961 −0.925782
\(730\) −22.8552 −0.845910
\(731\) 28.7216 1.06231
\(732\) 6.63563 0.245260
\(733\) −11.6644 −0.430836 −0.215418 0.976522i \(-0.569111\pi\)
−0.215418 + 0.976522i \(0.569111\pi\)
\(734\) 2.42643 0.0895612
\(735\) −0.975334 −0.0359757
\(736\) −65.9494 −2.43093
\(737\) −20.0684 −0.739229
\(738\) −23.8868 −0.879286
\(739\) 14.8776 0.547282 0.273641 0.961832i \(-0.411772\pi\)
0.273641 + 0.961832i \(0.411772\pi\)
\(740\) 27.4928 1.01066
\(741\) −1.80291 −0.0662316
\(742\) −48.5080 −1.78079
\(743\) −16.3598 −0.600184 −0.300092 0.953910i \(-0.597017\pi\)
−0.300092 + 0.953910i \(0.597017\pi\)
\(744\) 1.45239 0.0532473
\(745\) 26.5067 0.971130
\(746\) 29.7389 1.08882
\(747\) 48.6265 1.77915
\(748\) −25.9695 −0.949538
\(749\) −23.5042 −0.858824
\(750\) 4.47427 0.163377
\(751\) −32.6208 −1.19035 −0.595175 0.803596i \(-0.702917\pi\)
−0.595175 + 0.803596i \(0.702917\pi\)
\(752\) −4.43289 −0.161651
\(753\) −2.94369 −0.107274
\(754\) −45.0108 −1.63920
\(755\) −5.56199 −0.202422
\(756\) 10.1628 0.369617
\(757\) 17.2372 0.626497 0.313248 0.949671i \(-0.398583\pi\)
0.313248 + 0.949671i \(0.398583\pi\)
\(758\) 54.5207 1.98028
\(759\) −2.89308 −0.105012
\(760\) 4.45716 0.161678
\(761\) −40.3618 −1.46311 −0.731557 0.681780i \(-0.761206\pi\)
−0.731557 + 0.681780i \(0.761206\pi\)
\(762\) 0.952756 0.0345147
\(763\) −5.26662 −0.190665
\(764\) −11.7133 −0.423772
\(765\) 21.2303 0.767584
\(766\) 35.3898 1.27869
\(767\) 54.8349 1.97997
\(768\) −0.180294 −0.00650580
\(769\) −47.1226 −1.69929 −0.849643 0.527359i \(-0.823182\pi\)
−0.849643 + 0.527359i \(0.823182\pi\)
\(770\) 15.9200 0.573717
\(771\) −3.58850 −0.129237
\(772\) 14.0348 0.505122
\(773\) 21.3608 0.768293 0.384146 0.923272i \(-0.374496\pi\)
0.384146 + 0.923272i \(0.374496\pi\)
\(774\) 32.8063 1.17920
\(775\) 17.6526 0.634101
\(776\) −8.49217 −0.304851
\(777\) −5.16871 −0.185427
\(778\) 71.0683 2.54792
\(779\) 9.10475 0.326211
\(780\) −2.51887 −0.0901901
\(781\) −0.633225 −0.0226586
\(782\) −103.674 −3.70739
\(783\) −6.30313 −0.225256
\(784\) −8.81174 −0.314705
\(785\) −19.2543 −0.687216
\(786\) 5.06038 0.180498
\(787\) 1.00000 0.0356462
\(788\) 34.8904 1.24292
\(789\) 1.52467 0.0542798
\(790\) −6.28235 −0.223516
\(791\) 42.1633 1.49915
\(792\) −7.37380 −0.262017
\(793\) −49.1642 −1.74587
\(794\) −18.8666 −0.669549
\(795\) 1.68363 0.0597121
\(796\) 28.8489 1.02252
\(797\) −7.66956 −0.271670 −0.135835 0.990731i \(-0.543372\pi\)
−0.135835 + 0.990731i \(0.543372\pi\)
\(798\) −3.37086 −0.119327
\(799\) −11.0875 −0.392246
\(800\) 25.8598 0.914283
\(801\) −54.6553 −1.93115
\(802\) 70.9310 2.50466
\(803\) −14.4121 −0.508594
\(804\) 5.93666 0.209370
\(805\) 36.2880 1.27898
\(806\) −43.2884 −1.52477
\(807\) −4.48886 −0.158016
\(808\) 2.90524 0.102206
\(809\) 52.9003 1.85987 0.929937 0.367718i \(-0.119861\pi\)
0.929937 + 0.367718i \(0.119861\pi\)
\(810\) 23.9388 0.841123
\(811\) −11.2280 −0.394270 −0.197135 0.980376i \(-0.563164\pi\)
−0.197135 + 0.980376i \(0.563164\pi\)
\(812\) −48.0502 −1.68623
\(813\) −0.968299 −0.0339597
\(814\) 30.3634 1.06424
\(815\) 29.5754 1.03598
\(816\) −2.42786 −0.0849921
\(817\) −12.5045 −0.437477
\(818\) −58.8765 −2.05857
\(819\) −37.4120 −1.30728
\(820\) 12.7204 0.444214
\(821\) 21.4199 0.747560 0.373780 0.927517i \(-0.378061\pi\)
0.373780 + 0.927517i \(0.378061\pi\)
\(822\) −4.64093 −0.161871
\(823\) −48.5723 −1.69312 −0.846562 0.532290i \(-0.821332\pi\)
−0.846562 + 0.532290i \(0.821332\pi\)
\(824\) 4.91853 0.171345
\(825\) 1.13442 0.0394956
\(826\) 102.523 3.56725
\(827\) −11.0889 −0.385598 −0.192799 0.981238i \(-0.561756\pi\)
−0.192799 + 0.981238i \(0.561756\pi\)
\(828\) −67.6132 −2.34972
\(829\) −16.7957 −0.583338 −0.291669 0.956519i \(-0.594211\pi\)
−0.291669 + 0.956519i \(0.594211\pi\)
\(830\) −45.3526 −1.57421
\(831\) 0.554220 0.0192257
\(832\) −46.3145 −1.60567
\(833\) −22.0398 −0.763633
\(834\) 3.57366 0.123746
\(835\) −16.5334 −0.572163
\(836\) 11.3063 0.391037
\(837\) −6.06193 −0.209531
\(838\) −7.09579 −0.245120
\(839\) −1.99146 −0.0687530 −0.0343765 0.999409i \(-0.510945\pi\)
−0.0343765 + 0.999409i \(0.510945\pi\)
\(840\) −1.17072 −0.0403936
\(841\) 0.801541 0.0276394
\(842\) 60.4939 2.08476
\(843\) −4.23523 −0.145869
\(844\) −3.40595 −0.117238
\(845\) 2.02618 0.0697027
\(846\) −12.6643 −0.435407
\(847\) −26.3373 −0.904959
\(848\) 15.2109 0.522344
\(849\) −5.24065 −0.179858
\(850\) 40.6524 1.39437
\(851\) 69.2103 2.37250
\(852\) 0.187322 0.00641753
\(853\) 17.1801 0.588234 0.294117 0.955769i \(-0.404974\pi\)
0.294117 + 0.955769i \(0.404974\pi\)
\(854\) −91.9212 −3.14548
\(855\) −9.24303 −0.316105
\(856\) −10.1537 −0.347045
\(857\) 23.9809 0.819172 0.409586 0.912271i \(-0.365673\pi\)
0.409586 + 0.912271i \(0.365673\pi\)
\(858\) −2.78188 −0.0949716
\(859\) −35.6130 −1.21510 −0.607549 0.794282i \(-0.707847\pi\)
−0.607549 + 0.794282i \(0.707847\pi\)
\(860\) −17.4702 −0.595729
\(861\) −2.39146 −0.0815007
\(862\) −45.7006 −1.55657
\(863\) −36.8747 −1.25523 −0.627615 0.778524i \(-0.715969\pi\)
−0.627615 + 0.778524i \(0.715969\pi\)
\(864\) −8.88029 −0.302114
\(865\) −26.5375 −0.902302
\(866\) 10.0872 0.342776
\(867\) −2.78054 −0.0944320
\(868\) −46.2114 −1.56852
\(869\) −3.96155 −0.134386
\(870\) 2.92089 0.0990276
\(871\) −43.9855 −1.49039
\(872\) −2.27515 −0.0770463
\(873\) 17.6106 0.596030
\(874\) 45.1367 1.52677
\(875\) −35.3889 −1.19636
\(876\) 4.26342 0.144048
\(877\) −24.0104 −0.810773 −0.405387 0.914145i \(-0.632863\pi\)
−0.405387 + 0.914145i \(0.632863\pi\)
\(878\) −46.7261 −1.57693
\(879\) −0.0732234 −0.00246976
\(880\) −4.99211 −0.168284
\(881\) 37.4071 1.26028 0.630138 0.776483i \(-0.282998\pi\)
0.630138 + 0.776483i \(0.282998\pi\)
\(882\) −25.1742 −0.847659
\(883\) −45.8331 −1.54241 −0.771203 0.636589i \(-0.780345\pi\)
−0.771203 + 0.636589i \(0.780345\pi\)
\(884\) −56.9193 −1.91440
\(885\) −3.55841 −0.119614
\(886\) 38.6620 1.29887
\(887\) −0.469943 −0.0157791 −0.00788957 0.999969i \(-0.502511\pi\)
−0.00788957 + 0.999969i \(0.502511\pi\)
\(888\) −2.23285 −0.0749296
\(889\) −7.53576 −0.252741
\(890\) 50.9755 1.70870
\(891\) 15.0954 0.505716
\(892\) 65.9527 2.20826
\(893\) 4.82714 0.161534
\(894\) −8.65997 −0.289633
\(895\) 24.0216 0.802952
\(896\) −35.7252 −1.19350
\(897\) −6.34100 −0.211720
\(898\) −27.3048 −0.911174
\(899\) 28.6611 0.955901
\(900\) 26.5122 0.883741
\(901\) 38.0452 1.26747
\(902\) 14.0485 0.467765
\(903\) 3.28444 0.109299
\(904\) 18.2143 0.605798
\(905\) −8.11174 −0.269643
\(906\) 1.81715 0.0603709
\(907\) 31.1793 1.03529 0.517646 0.855595i \(-0.326808\pi\)
0.517646 + 0.855595i \(0.326808\pi\)
\(908\) 23.8900 0.792817
\(909\) −6.02475 −0.199828
\(910\) 34.8931 1.15670
\(911\) −42.9428 −1.42276 −0.711379 0.702808i \(-0.751929\pi\)
−0.711379 + 0.702808i \(0.751929\pi\)
\(912\) 1.05702 0.0350013
\(913\) −28.5987 −0.946477
\(914\) −38.2514 −1.26524
\(915\) 3.19042 0.105472
\(916\) 68.4891 2.26294
\(917\) −40.0247 −1.32173
\(918\) −13.9601 −0.460751
\(919\) 44.2525 1.45976 0.729878 0.683577i \(-0.239577\pi\)
0.729878 + 0.683577i \(0.239577\pi\)
\(920\) 15.6762 0.516829
\(921\) 1.26296 0.0416160
\(922\) 11.3423 0.373540
\(923\) −1.38789 −0.0456829
\(924\) −2.96972 −0.0976967
\(925\) −27.1385 −0.892307
\(926\) −15.2105 −0.499849
\(927\) −10.1998 −0.335006
\(928\) 41.9865 1.37827
\(929\) −28.7183 −0.942217 −0.471108 0.882075i \(-0.656146\pi\)
−0.471108 + 0.882075i \(0.656146\pi\)
\(930\) 2.80912 0.0921146
\(931\) 9.59544 0.314478
\(932\) 44.8055 1.46765
\(933\) 5.33201 0.174562
\(934\) −75.7845 −2.47974
\(935\) −12.4862 −0.408341
\(936\) −16.1617 −0.528263
\(937\) 27.3722 0.894212 0.447106 0.894481i \(-0.352455\pi\)
0.447106 + 0.894481i \(0.352455\pi\)
\(938\) −82.2387 −2.68519
\(939\) −0.112331 −0.00366577
\(940\) 6.74406 0.219967
\(941\) 36.9446 1.20436 0.602181 0.798360i \(-0.294299\pi\)
0.602181 + 0.798360i \(0.294299\pi\)
\(942\) 6.29056 0.204958
\(943\) 32.0222 1.04279
\(944\) −32.1487 −1.04635
\(945\) 4.88629 0.158951
\(946\) −19.2943 −0.627312
\(947\) −44.7793 −1.45513 −0.727565 0.686039i \(-0.759348\pi\)
−0.727565 + 0.686039i \(0.759348\pi\)
\(948\) 1.17191 0.0380619
\(949\) −31.5882 −1.02540
\(950\) −17.6988 −0.574225
\(951\) 4.63866 0.150419
\(952\) −26.4549 −0.857408
\(953\) −13.7123 −0.444185 −0.222093 0.975026i \(-0.571289\pi\)
−0.222093 + 0.975026i \(0.571289\pi\)
\(954\) 43.4558 1.40693
\(955\) −5.63177 −0.182240
\(956\) −48.4788 −1.56792
\(957\) 1.84187 0.0595392
\(958\) −3.31677 −0.107160
\(959\) 36.7072 1.18534
\(960\) 3.00549 0.0970019
\(961\) −3.43570 −0.110829
\(962\) 66.5499 2.14565
\(963\) 21.0562 0.678526
\(964\) 7.71162 0.248374
\(965\) 6.74794 0.217224
\(966\) −11.8556 −0.381448
\(967\) 16.8642 0.542316 0.271158 0.962535i \(-0.412593\pi\)
0.271158 + 0.962535i \(0.412593\pi\)
\(968\) −11.3775 −0.365688
\(969\) 2.64379 0.0849308
\(970\) −16.4250 −0.527374
\(971\) −7.66424 −0.245957 −0.122979 0.992409i \(-0.539245\pi\)
−0.122979 + 0.992409i \(0.539245\pi\)
\(972\) −13.6851 −0.438950
\(973\) −28.2656 −0.906154
\(974\) 12.3442 0.395535
\(975\) 2.48641 0.0796288
\(976\) 28.8242 0.922639
\(977\) 38.1198 1.21956 0.609780 0.792571i \(-0.291258\pi\)
0.609780 + 0.792571i \(0.291258\pi\)
\(978\) −9.66255 −0.308974
\(979\) 32.1444 1.02734
\(980\) 13.4059 0.428236
\(981\) 4.71809 0.150637
\(982\) −76.7876 −2.45039
\(983\) −22.9318 −0.731410 −0.365705 0.930731i \(-0.619172\pi\)
−0.365705 + 0.930731i \(0.619172\pi\)
\(984\) −1.03310 −0.0329339
\(985\) 16.7754 0.534508
\(986\) 66.0039 2.10199
\(987\) −1.26790 −0.0403577
\(988\) 24.7809 0.788387
\(989\) −43.9794 −1.39846
\(990\) −14.2619 −0.453273
\(991\) 50.5666 1.60630 0.803151 0.595776i \(-0.203155\pi\)
0.803151 + 0.595776i \(0.203155\pi\)
\(992\) 40.3797 1.28206
\(993\) 2.35021 0.0745815
\(994\) −2.59490 −0.0823054
\(995\) 13.8706 0.439728
\(996\) 8.46009 0.268068
\(997\) −5.03571 −0.159482 −0.0797412 0.996816i \(-0.525409\pi\)
−0.0797412 + 0.996816i \(0.525409\pi\)
\(998\) 74.4190 2.35569
\(999\) 9.31937 0.294852
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 787.2.a.b.1.30 37
3.2 odd 2 7083.2.a.g.1.8 37
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
787.2.a.b.1.30 37 1.1 even 1 trivial
7083.2.a.g.1.8 37 3.2 odd 2