Properties

Label 787.2.a.b.1.29
Level $787$
Weight $2$
Character 787.1
Self dual yes
Analytic conductor $6.284$
Analytic rank $0$
Dimension $37$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [787,2,Mod(1,787)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("787.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(787, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 787 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 787.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [37] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.28422663907\)
Analytic rank: \(0\)
Dimension: \(37\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.29
Character \(\chi\) \(=\) 787.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.07648 q^{2} +2.52983 q^{3} +2.31176 q^{4} -2.31346 q^{5} +5.25313 q^{6} +3.90087 q^{7} +0.647352 q^{8} +3.40003 q^{9} -4.80384 q^{10} -0.380988 q^{11} +5.84834 q^{12} -1.10393 q^{13} +8.10007 q^{14} -5.85265 q^{15} -3.27930 q^{16} +4.45866 q^{17} +7.06008 q^{18} -4.30960 q^{19} -5.34814 q^{20} +9.86854 q^{21} -0.791112 q^{22} +0.314739 q^{23} +1.63769 q^{24} +0.352078 q^{25} -2.29229 q^{26} +1.01201 q^{27} +9.01786 q^{28} +6.07653 q^{29} -12.1529 q^{30} -6.95047 q^{31} -8.10409 q^{32} -0.963833 q^{33} +9.25830 q^{34} -9.02450 q^{35} +7.86004 q^{36} +4.45206 q^{37} -8.94878 q^{38} -2.79276 q^{39} -1.49762 q^{40} -7.67874 q^{41} +20.4918 q^{42} +2.25227 q^{43} -0.880750 q^{44} -7.86582 q^{45} +0.653548 q^{46} -6.31760 q^{47} -8.29606 q^{48} +8.21681 q^{49} +0.731081 q^{50} +11.2796 q^{51} -2.55202 q^{52} +5.39399 q^{53} +2.10141 q^{54} +0.881398 q^{55} +2.52524 q^{56} -10.9025 q^{57} +12.6178 q^{58} +4.78190 q^{59} -13.5299 q^{60} -7.51715 q^{61} -14.4325 q^{62} +13.2631 q^{63} -10.2694 q^{64} +2.55390 q^{65} -2.00138 q^{66} -3.20121 q^{67} +10.3073 q^{68} +0.796236 q^{69} -18.7392 q^{70} +13.9356 q^{71} +2.20102 q^{72} -0.383692 q^{73} +9.24459 q^{74} +0.890696 q^{75} -9.96273 q^{76} -1.48618 q^{77} -5.79910 q^{78} -11.7189 q^{79} +7.58651 q^{80} -7.63989 q^{81} -15.9447 q^{82} +5.28368 q^{83} +22.8136 q^{84} -10.3149 q^{85} +4.67680 q^{86} +15.3726 q^{87} -0.246633 q^{88} +6.24301 q^{89} -16.3332 q^{90} -4.30630 q^{91} +0.727600 q^{92} -17.5835 q^{93} -13.1183 q^{94} +9.97006 q^{95} -20.5020 q^{96} +2.15977 q^{97} +17.0620 q^{98} -1.29537 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 37 q + 12 q^{2} + 6 q^{3} + 42 q^{4} + 31 q^{5} + 4 q^{6} + 9 q^{7} + 36 q^{8} + 47 q^{9} + 4 q^{10} + 18 q^{11} + 15 q^{12} + 13 q^{13} + 8 q^{14} + 3 q^{15} + 48 q^{16} + 18 q^{17} + 17 q^{18} + 40 q^{20}+ \cdots - 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.07648 1.46829 0.734145 0.678992i \(-0.237583\pi\)
0.734145 + 0.678992i \(0.237583\pi\)
\(3\) 2.52983 1.46060 0.730298 0.683128i \(-0.239381\pi\)
0.730298 + 0.683128i \(0.239381\pi\)
\(4\) 2.31176 1.15588
\(5\) −2.31346 −1.03461 −0.517304 0.855801i \(-0.673065\pi\)
−0.517304 + 0.855801i \(0.673065\pi\)
\(6\) 5.25313 2.14458
\(7\) 3.90087 1.47439 0.737196 0.675679i \(-0.236150\pi\)
0.737196 + 0.675679i \(0.236150\pi\)
\(8\) 0.647352 0.228874
\(9\) 3.40003 1.13334
\(10\) −4.80384 −1.51911
\(11\) −0.380988 −0.114872 −0.0574361 0.998349i \(-0.518293\pi\)
−0.0574361 + 0.998349i \(0.518293\pi\)
\(12\) 5.84834 1.68827
\(13\) −1.10393 −0.306176 −0.153088 0.988213i \(-0.548922\pi\)
−0.153088 + 0.988213i \(0.548922\pi\)
\(14\) 8.10007 2.16483
\(15\) −5.85265 −1.51115
\(16\) −3.27930 −0.819825
\(17\) 4.45866 1.08138 0.540692 0.841221i \(-0.318162\pi\)
0.540692 + 0.841221i \(0.318162\pi\)
\(18\) 7.06008 1.66408
\(19\) −4.30960 −0.988689 −0.494345 0.869266i \(-0.664592\pi\)
−0.494345 + 0.869266i \(0.664592\pi\)
\(20\) −5.34814 −1.19588
\(21\) 9.86854 2.15349
\(22\) −0.791112 −0.168666
\(23\) 0.314739 0.0656276 0.0328138 0.999461i \(-0.489553\pi\)
0.0328138 + 0.999461i \(0.489553\pi\)
\(24\) 1.63769 0.334292
\(25\) 0.352078 0.0704155
\(26\) −2.29229 −0.449555
\(27\) 1.01201 0.194761
\(28\) 9.01786 1.70422
\(29\) 6.07653 1.12838 0.564192 0.825644i \(-0.309188\pi\)
0.564192 + 0.825644i \(0.309188\pi\)
\(30\) −12.1529 −2.21880
\(31\) −6.95047 −1.24834 −0.624171 0.781288i \(-0.714563\pi\)
−0.624171 + 0.781288i \(0.714563\pi\)
\(32\) −8.10409 −1.43261
\(33\) −0.963833 −0.167782
\(34\) 9.25830 1.58779
\(35\) −9.02450 −1.52542
\(36\) 7.86004 1.31001
\(37\) 4.45206 0.731913 0.365957 0.930632i \(-0.380742\pi\)
0.365957 + 0.930632i \(0.380742\pi\)
\(38\) −8.94878 −1.45168
\(39\) −2.79276 −0.447199
\(40\) −1.49762 −0.236795
\(41\) −7.67874 −1.19922 −0.599609 0.800293i \(-0.704677\pi\)
−0.599609 + 0.800293i \(0.704677\pi\)
\(42\) 20.4918 3.16195
\(43\) 2.25227 0.343469 0.171734 0.985143i \(-0.445063\pi\)
0.171734 + 0.985143i \(0.445063\pi\)
\(44\) −0.880750 −0.132778
\(45\) −7.86582 −1.17257
\(46\) 0.653548 0.0963605
\(47\) −6.31760 −0.921516 −0.460758 0.887526i \(-0.652422\pi\)
−0.460758 + 0.887526i \(0.652422\pi\)
\(48\) −8.29606 −1.19743
\(49\) 8.21681 1.17383
\(50\) 0.731081 0.103390
\(51\) 11.2796 1.57947
\(52\) −2.55202 −0.353902
\(53\) 5.39399 0.740922 0.370461 0.928848i \(-0.379200\pi\)
0.370461 + 0.928848i \(0.379200\pi\)
\(54\) 2.10141 0.285965
\(55\) 0.881398 0.118848
\(56\) 2.52524 0.337449
\(57\) −10.9025 −1.44408
\(58\) 12.6178 1.65680
\(59\) 4.78190 0.622551 0.311275 0.950320i \(-0.399244\pi\)
0.311275 + 0.950320i \(0.399244\pi\)
\(60\) −13.5299 −1.74670
\(61\) −7.51715 −0.962472 −0.481236 0.876591i \(-0.659812\pi\)
−0.481236 + 0.876591i \(0.659812\pi\)
\(62\) −14.4325 −1.83293
\(63\) 13.2631 1.67099
\(64\) −10.2694 −1.28367
\(65\) 2.55390 0.316772
\(66\) −2.00138 −0.246353
\(67\) −3.20121 −0.391090 −0.195545 0.980695i \(-0.562648\pi\)
−0.195545 + 0.980695i \(0.562648\pi\)
\(68\) 10.3073 1.24995
\(69\) 0.796236 0.0958555
\(70\) −18.7392 −2.23976
\(71\) 13.9356 1.65385 0.826924 0.562314i \(-0.190089\pi\)
0.826924 + 0.562314i \(0.190089\pi\)
\(72\) 2.20102 0.259392
\(73\) −0.383692 −0.0449077 −0.0224539 0.999748i \(-0.507148\pi\)
−0.0224539 + 0.999748i \(0.507148\pi\)
\(74\) 9.24459 1.07466
\(75\) 0.890696 0.102849
\(76\) −9.96273 −1.14280
\(77\) −1.48618 −0.169366
\(78\) −5.79910 −0.656619
\(79\) −11.7189 −1.31847 −0.659237 0.751935i \(-0.729121\pi\)
−0.659237 + 0.751935i \(0.729121\pi\)
\(80\) 7.58651 0.848198
\(81\) −7.63989 −0.848876
\(82\) −15.9447 −1.76080
\(83\) 5.28368 0.579959 0.289979 0.957033i \(-0.406352\pi\)
0.289979 + 0.957033i \(0.406352\pi\)
\(84\) 22.8136 2.48917
\(85\) −10.3149 −1.11881
\(86\) 4.67680 0.504312
\(87\) 15.3726 1.64811
\(88\) −0.246633 −0.0262912
\(89\) 6.24301 0.661758 0.330879 0.943673i \(-0.392655\pi\)
0.330879 + 0.943673i \(0.392655\pi\)
\(90\) −16.3332 −1.72167
\(91\) −4.30630 −0.451423
\(92\) 0.727600 0.0758575
\(93\) −17.5835 −1.82332
\(94\) −13.1183 −1.35305
\(95\) 9.97006 1.02291
\(96\) −20.5020 −2.09247
\(97\) 2.15977 0.219291 0.109646 0.993971i \(-0.465028\pi\)
0.109646 + 0.993971i \(0.465028\pi\)
\(98\) 17.0620 1.72352
\(99\) −1.29537 −0.130190
\(100\) 0.813917 0.0813917
\(101\) −5.32715 −0.530072 −0.265036 0.964239i \(-0.585384\pi\)
−0.265036 + 0.964239i \(0.585384\pi\)
\(102\) 23.4219 2.31911
\(103\) 7.37491 0.726671 0.363336 0.931658i \(-0.381638\pi\)
0.363336 + 0.931658i \(0.381638\pi\)
\(104\) −0.714633 −0.0700755
\(105\) −22.8304 −2.22802
\(106\) 11.2005 1.08789
\(107\) −13.1643 −1.27264 −0.636322 0.771423i \(-0.719545\pi\)
−0.636322 + 0.771423i \(0.719545\pi\)
\(108\) 2.33951 0.225119
\(109\) −2.50313 −0.239756 −0.119878 0.992789i \(-0.538250\pi\)
−0.119878 + 0.992789i \(0.538250\pi\)
\(110\) 1.83020 0.174503
\(111\) 11.2629 1.06903
\(112\) −12.7921 −1.20874
\(113\) −8.23812 −0.774977 −0.387488 0.921875i \(-0.626657\pi\)
−0.387488 + 0.921875i \(0.626657\pi\)
\(114\) −22.6389 −2.12032
\(115\) −0.728135 −0.0678989
\(116\) 14.0475 1.30427
\(117\) −3.75340 −0.347002
\(118\) 9.92951 0.914085
\(119\) 17.3927 1.59438
\(120\) −3.78872 −0.345862
\(121\) −10.8548 −0.986804
\(122\) −15.6092 −1.41319
\(123\) −19.4259 −1.75157
\(124\) −16.0678 −1.44293
\(125\) 10.7528 0.961756
\(126\) 27.5405 2.45350
\(127\) −18.5028 −1.64186 −0.820931 0.571027i \(-0.806545\pi\)
−0.820931 + 0.571027i \(0.806545\pi\)
\(128\) −5.11590 −0.452186
\(129\) 5.69787 0.501669
\(130\) 5.30311 0.465114
\(131\) 4.17157 0.364472 0.182236 0.983255i \(-0.441666\pi\)
0.182236 + 0.983255i \(0.441666\pi\)
\(132\) −2.22815 −0.193935
\(133\) −16.8112 −1.45771
\(134\) −6.64724 −0.574234
\(135\) −2.34123 −0.201501
\(136\) 2.88632 0.247500
\(137\) 4.81002 0.410947 0.205474 0.978663i \(-0.434127\pi\)
0.205474 + 0.978663i \(0.434127\pi\)
\(138\) 1.65336 0.140744
\(139\) 21.4438 1.81884 0.909418 0.415883i \(-0.136527\pi\)
0.909418 + 0.415883i \(0.136527\pi\)
\(140\) −20.8624 −1.76320
\(141\) −15.9824 −1.34596
\(142\) 28.9369 2.42833
\(143\) 0.420585 0.0351711
\(144\) −11.1497 −0.929143
\(145\) −14.0578 −1.16744
\(146\) −0.796727 −0.0659376
\(147\) 20.7871 1.71449
\(148\) 10.2921 0.846002
\(149\) 18.6576 1.52849 0.764246 0.644925i \(-0.223112\pi\)
0.764246 + 0.644925i \(0.223112\pi\)
\(150\) 1.84951 0.151012
\(151\) 14.3221 1.16551 0.582756 0.812647i \(-0.301974\pi\)
0.582756 + 0.812647i \(0.301974\pi\)
\(152\) −2.78983 −0.226285
\(153\) 15.1596 1.22558
\(154\) −3.08603 −0.248679
\(155\) 16.0796 1.29155
\(156\) −6.45618 −0.516908
\(157\) 3.56421 0.284455 0.142227 0.989834i \(-0.454574\pi\)
0.142227 + 0.989834i \(0.454574\pi\)
\(158\) −24.3339 −1.93590
\(159\) 13.6459 1.08219
\(160\) 18.7485 1.48220
\(161\) 1.22776 0.0967608
\(162\) −15.8640 −1.24640
\(163\) 13.8507 1.08487 0.542434 0.840099i \(-0.317503\pi\)
0.542434 + 0.840099i \(0.317503\pi\)
\(164\) −17.7514 −1.38615
\(165\) 2.22979 0.173589
\(166\) 10.9714 0.851548
\(167\) 20.7649 1.60684 0.803418 0.595415i \(-0.203012\pi\)
0.803418 + 0.595415i \(0.203012\pi\)
\(168\) 6.38842 0.492877
\(169\) −11.7813 −0.906256
\(170\) −21.4187 −1.64274
\(171\) −14.6528 −1.12052
\(172\) 5.20671 0.397008
\(173\) 16.4055 1.24729 0.623643 0.781710i \(-0.285652\pi\)
0.623643 + 0.781710i \(0.285652\pi\)
\(174\) 31.9208 2.41991
\(175\) 1.37341 0.103820
\(176\) 1.24937 0.0941750
\(177\) 12.0974 0.909296
\(178\) 12.9635 0.971652
\(179\) −6.38891 −0.477529 −0.238765 0.971077i \(-0.576742\pi\)
−0.238765 + 0.971077i \(0.576742\pi\)
\(180\) −18.1838 −1.35534
\(181\) 6.21030 0.461608 0.230804 0.973000i \(-0.425864\pi\)
0.230804 + 0.973000i \(0.425864\pi\)
\(182\) −8.94193 −0.662820
\(183\) −19.0171 −1.40578
\(184\) 0.203747 0.0150204
\(185\) −10.2996 −0.757244
\(186\) −36.5117 −2.67717
\(187\) −1.69869 −0.124221
\(188\) −14.6047 −1.06516
\(189\) 3.94770 0.287153
\(190\) 20.7026 1.50192
\(191\) 13.5193 0.978219 0.489109 0.872222i \(-0.337322\pi\)
0.489109 + 0.872222i \(0.337322\pi\)
\(192\) −25.9797 −1.87492
\(193\) 15.5128 1.11664 0.558318 0.829627i \(-0.311447\pi\)
0.558318 + 0.829627i \(0.311447\pi\)
\(194\) 4.48471 0.321983
\(195\) 6.46092 0.462676
\(196\) 18.9952 1.35680
\(197\) 20.2431 1.44226 0.721129 0.692801i \(-0.243624\pi\)
0.721129 + 0.692801i \(0.243624\pi\)
\(198\) −2.68980 −0.191156
\(199\) −17.5392 −1.24332 −0.621660 0.783287i \(-0.713541\pi\)
−0.621660 + 0.783287i \(0.713541\pi\)
\(200\) 0.227918 0.0161163
\(201\) −8.09851 −0.571225
\(202\) −11.0617 −0.778299
\(203\) 23.7038 1.66368
\(204\) 26.0758 1.82567
\(205\) 17.7644 1.24072
\(206\) 15.3138 1.06696
\(207\) 1.07012 0.0743786
\(208\) 3.62012 0.251010
\(209\) 1.64190 0.113573
\(210\) −47.4068 −3.27138
\(211\) 3.85809 0.265602 0.132801 0.991143i \(-0.457603\pi\)
0.132801 + 0.991143i \(0.457603\pi\)
\(212\) 12.4696 0.856415
\(213\) 35.2546 2.41560
\(214\) −27.3354 −1.86861
\(215\) −5.21054 −0.355356
\(216\) 0.655124 0.0445756
\(217\) −27.1129 −1.84054
\(218\) −5.19769 −0.352032
\(219\) −0.970674 −0.0655921
\(220\) 2.03758 0.137373
\(221\) −4.92206 −0.331094
\(222\) 23.3872 1.56965
\(223\) −9.54769 −0.639361 −0.319680 0.947525i \(-0.603575\pi\)
−0.319680 + 0.947525i \(0.603575\pi\)
\(224\) −31.6130 −2.11223
\(225\) 1.19707 0.0798049
\(226\) −17.1063 −1.13789
\(227\) −27.5381 −1.82777 −0.913885 0.405972i \(-0.866933\pi\)
−0.913885 + 0.405972i \(0.866933\pi\)
\(228\) −25.2040 −1.66918
\(229\) −12.0707 −0.797652 −0.398826 0.917027i \(-0.630582\pi\)
−0.398826 + 0.917027i \(0.630582\pi\)
\(230\) −1.51196 −0.0996954
\(231\) −3.75979 −0.247376
\(232\) 3.93366 0.258257
\(233\) −2.20908 −0.144722 −0.0723609 0.997379i \(-0.523053\pi\)
−0.0723609 + 0.997379i \(0.523053\pi\)
\(234\) −7.79385 −0.509500
\(235\) 14.6155 0.953409
\(236\) 11.0546 0.719592
\(237\) −29.6467 −1.92576
\(238\) 36.1155 2.34102
\(239\) 0.113181 0.00732110 0.00366055 0.999993i \(-0.498835\pi\)
0.00366055 + 0.999993i \(0.498835\pi\)
\(240\) 19.1926 1.23888
\(241\) 4.37191 0.281620 0.140810 0.990037i \(-0.455029\pi\)
0.140810 + 0.990037i \(0.455029\pi\)
\(242\) −22.5398 −1.44892
\(243\) −22.3636 −1.43463
\(244\) −17.3778 −1.11250
\(245\) −19.0092 −1.21445
\(246\) −40.3374 −2.57182
\(247\) 4.75750 0.302713
\(248\) −4.49940 −0.285712
\(249\) 13.3668 0.847086
\(250\) 22.3279 1.41214
\(251\) 15.4960 0.978101 0.489050 0.872256i \(-0.337343\pi\)
0.489050 + 0.872256i \(0.337343\pi\)
\(252\) 30.6610 1.93146
\(253\) −0.119912 −0.00753879
\(254\) −38.4207 −2.41073
\(255\) −26.0950 −1.63413
\(256\) 9.91567 0.619729
\(257\) −27.3068 −1.70335 −0.851674 0.524072i \(-0.824412\pi\)
−0.851674 + 0.524072i \(0.824412\pi\)
\(258\) 11.8315 0.736596
\(259\) 17.3669 1.07913
\(260\) 5.90399 0.366150
\(261\) 20.6604 1.27885
\(262\) 8.66218 0.535151
\(263\) 7.99652 0.493087 0.246543 0.969132i \(-0.420705\pi\)
0.246543 + 0.969132i \(0.420705\pi\)
\(264\) −0.623940 −0.0384008
\(265\) −12.4788 −0.766564
\(266\) −34.9080 −2.14035
\(267\) 15.7937 0.966561
\(268\) −7.40041 −0.452052
\(269\) −31.0747 −1.89466 −0.947329 0.320263i \(-0.896229\pi\)
−0.947329 + 0.320263i \(0.896229\pi\)
\(270\) −4.86151 −0.295862
\(271\) −4.41824 −0.268389 −0.134194 0.990955i \(-0.542845\pi\)
−0.134194 + 0.990955i \(0.542845\pi\)
\(272\) −14.6213 −0.886545
\(273\) −10.8942 −0.659347
\(274\) 9.98788 0.603390
\(275\) −0.134137 −0.00808878
\(276\) 1.84070 0.110797
\(277\) 21.6684 1.30193 0.650965 0.759108i \(-0.274365\pi\)
0.650965 + 0.759108i \(0.274365\pi\)
\(278\) 44.5275 2.67058
\(279\) −23.6318 −1.41480
\(280\) −5.84203 −0.349128
\(281\) 1.54354 0.0920797 0.0460399 0.998940i \(-0.485340\pi\)
0.0460399 + 0.998940i \(0.485340\pi\)
\(282\) −33.1872 −1.97627
\(283\) −23.9293 −1.42245 −0.711226 0.702963i \(-0.751860\pi\)
−0.711226 + 0.702963i \(0.751860\pi\)
\(284\) 32.2156 1.91164
\(285\) 25.2225 1.49405
\(286\) 0.873334 0.0516413
\(287\) −29.9538 −1.76812
\(288\) −27.5541 −1.62364
\(289\) 2.87965 0.169391
\(290\) −29.1907 −1.71414
\(291\) 5.46384 0.320296
\(292\) −0.887001 −0.0519078
\(293\) 21.9854 1.28440 0.642202 0.766536i \(-0.278021\pi\)
0.642202 + 0.766536i \(0.278021\pi\)
\(294\) 43.1639 2.51737
\(295\) −11.0627 −0.644096
\(296\) 2.88205 0.167516
\(297\) −0.385562 −0.0223726
\(298\) 38.7421 2.24427
\(299\) −0.347451 −0.0200936
\(300\) 2.05907 0.118880
\(301\) 8.78584 0.506407
\(302\) 29.7394 1.71131
\(303\) −13.4768 −0.774221
\(304\) 14.1325 0.810552
\(305\) 17.3906 0.995782
\(306\) 31.4785 1.79951
\(307\) 4.69807 0.268133 0.134066 0.990972i \(-0.457196\pi\)
0.134066 + 0.990972i \(0.457196\pi\)
\(308\) −3.43569 −0.195767
\(309\) 18.6572 1.06137
\(310\) 33.3889 1.89636
\(311\) 18.4888 1.04840 0.524201 0.851594i \(-0.324364\pi\)
0.524201 + 0.851594i \(0.324364\pi\)
\(312\) −1.80790 −0.102352
\(313\) −10.9240 −0.617462 −0.308731 0.951149i \(-0.599904\pi\)
−0.308731 + 0.951149i \(0.599904\pi\)
\(314\) 7.40100 0.417663
\(315\) −30.6836 −1.72882
\(316\) −27.0911 −1.52399
\(317\) 17.5414 0.985221 0.492610 0.870250i \(-0.336043\pi\)
0.492610 + 0.870250i \(0.336043\pi\)
\(318\) 28.3353 1.58897
\(319\) −2.31508 −0.129620
\(320\) 23.7577 1.32810
\(321\) −33.3035 −1.85882
\(322\) 2.54941 0.142073
\(323\) −19.2150 −1.06915
\(324\) −17.6616 −0.981197
\(325\) −0.388670 −0.0215595
\(326\) 28.7606 1.59290
\(327\) −6.33249 −0.350187
\(328\) −4.97085 −0.274469
\(329\) −24.6441 −1.35868
\(330\) 4.63010 0.254878
\(331\) 31.1256 1.71082 0.855409 0.517954i \(-0.173306\pi\)
0.855409 + 0.517954i \(0.173306\pi\)
\(332\) 12.2146 0.670361
\(333\) 15.1371 0.829509
\(334\) 43.1178 2.35930
\(335\) 7.40586 0.404625
\(336\) −32.3619 −1.76548
\(337\) 6.72792 0.366493 0.183246 0.983067i \(-0.441339\pi\)
0.183246 + 0.983067i \(0.441339\pi\)
\(338\) −24.4637 −1.33065
\(339\) −20.8410 −1.13193
\(340\) −23.8456 −1.29321
\(341\) 2.64804 0.143400
\(342\) −30.4261 −1.64526
\(343\) 4.74660 0.256292
\(344\) 1.45802 0.0786109
\(345\) −1.84206 −0.0991730
\(346\) 34.0656 1.83138
\(347\) 0.965147 0.0518118 0.0259059 0.999664i \(-0.491753\pi\)
0.0259059 + 0.999664i \(0.491753\pi\)
\(348\) 35.5376 1.90502
\(349\) 36.9488 1.97782 0.988911 0.148511i \(-0.0474481\pi\)
0.988911 + 0.148511i \(0.0474481\pi\)
\(350\) 2.85185 0.152438
\(351\) −1.11719 −0.0596310
\(352\) 3.08756 0.164567
\(353\) −11.2463 −0.598581 −0.299290 0.954162i \(-0.596750\pi\)
−0.299290 + 0.954162i \(0.596750\pi\)
\(354\) 25.1199 1.33511
\(355\) −32.2393 −1.71108
\(356\) 14.4323 0.764911
\(357\) 44.0004 2.32875
\(358\) −13.2664 −0.701152
\(359\) 16.9558 0.894893 0.447446 0.894311i \(-0.352334\pi\)
0.447446 + 0.894311i \(0.352334\pi\)
\(360\) −5.09196 −0.268370
\(361\) −0.427380 −0.0224937
\(362\) 12.8956 0.677775
\(363\) −27.4609 −1.44132
\(364\) −9.95511 −0.521790
\(365\) 0.887654 0.0464619
\(366\) −39.4885 −2.06410
\(367\) −3.48406 −0.181866 −0.0909331 0.995857i \(-0.528985\pi\)
−0.0909331 + 0.995857i \(0.528985\pi\)
\(368\) −1.03212 −0.0538032
\(369\) −26.1079 −1.35912
\(370\) −21.3869 −1.11185
\(371\) 21.0413 1.09241
\(372\) −40.6487 −2.10754
\(373\) −26.1507 −1.35403 −0.677016 0.735968i \(-0.736727\pi\)
−0.677016 + 0.735968i \(0.736727\pi\)
\(374\) −3.52730 −0.182392
\(375\) 27.2026 1.40474
\(376\) −4.08971 −0.210911
\(377\) −6.70808 −0.345484
\(378\) 8.19732 0.421624
\(379\) −17.7290 −0.910677 −0.455338 0.890319i \(-0.650482\pi\)
−0.455338 + 0.890319i \(0.650482\pi\)
\(380\) 23.0483 1.18235
\(381\) −46.8090 −2.39810
\(382\) 28.0724 1.43631
\(383\) 0.0510881 0.00261048 0.00130524 0.999999i \(-0.499585\pi\)
0.00130524 + 0.999999i \(0.499585\pi\)
\(384\) −12.9424 −0.660462
\(385\) 3.43822 0.175228
\(386\) 32.2120 1.63955
\(387\) 7.65780 0.389268
\(388\) 4.99286 0.253474
\(389\) 22.6121 1.14648 0.573240 0.819387i \(-0.305686\pi\)
0.573240 + 0.819387i \(0.305686\pi\)
\(390\) 13.4160 0.679343
\(391\) 1.40331 0.0709687
\(392\) 5.31917 0.268659
\(393\) 10.5534 0.532347
\(394\) 42.0342 2.11765
\(395\) 27.1110 1.36410
\(396\) −2.99458 −0.150483
\(397\) −37.0191 −1.85794 −0.928969 0.370158i \(-0.879303\pi\)
−0.928969 + 0.370158i \(0.879303\pi\)
\(398\) −36.4197 −1.82556
\(399\) −42.5294 −2.12913
\(400\) −1.15457 −0.0577284
\(401\) −33.6748 −1.68164 −0.840820 0.541314i \(-0.817927\pi\)
−0.840820 + 0.541314i \(0.817927\pi\)
\(402\) −16.8164 −0.838724
\(403\) 7.67285 0.382212
\(404\) −12.3151 −0.612698
\(405\) 17.6745 0.878255
\(406\) 49.2203 2.44276
\(407\) −1.69618 −0.0840764
\(408\) 7.30190 0.361498
\(409\) 8.46710 0.418671 0.209336 0.977844i \(-0.432870\pi\)
0.209336 + 0.977844i \(0.432870\pi\)
\(410\) 36.8874 1.82174
\(411\) 12.1685 0.600228
\(412\) 17.0490 0.839943
\(413\) 18.6536 0.917883
\(414\) 2.22208 0.109209
\(415\) −12.2236 −0.600030
\(416\) 8.94637 0.438632
\(417\) 54.2490 2.65659
\(418\) 3.40937 0.166758
\(419\) 17.6364 0.861594 0.430797 0.902449i \(-0.358233\pi\)
0.430797 + 0.902449i \(0.358233\pi\)
\(420\) −52.7783 −2.57532
\(421\) 23.1751 1.12948 0.564742 0.825267i \(-0.308976\pi\)
0.564742 + 0.825267i \(0.308976\pi\)
\(422\) 8.01124 0.389981
\(423\) −21.4800 −1.04439
\(424\) 3.49181 0.169577
\(425\) 1.56979 0.0761462
\(426\) 73.2053 3.54681
\(427\) −29.3234 −1.41906
\(428\) −30.4327 −1.47102
\(429\) 1.06401 0.0513707
\(430\) −10.8196 −0.521766
\(431\) −23.5469 −1.13421 −0.567107 0.823644i \(-0.691937\pi\)
−0.567107 + 0.823644i \(0.691937\pi\)
\(432\) −3.31867 −0.159670
\(433\) −13.0763 −0.628406 −0.314203 0.949356i \(-0.601737\pi\)
−0.314203 + 0.949356i \(0.601737\pi\)
\(434\) −56.2993 −2.70245
\(435\) −35.5638 −1.70515
\(436\) −5.78662 −0.277129
\(437\) −1.35640 −0.0648853
\(438\) −2.01558 −0.0963082
\(439\) −24.1862 −1.15435 −0.577173 0.816622i \(-0.695844\pi\)
−0.577173 + 0.816622i \(0.695844\pi\)
\(440\) 0.570575 0.0272011
\(441\) 27.9374 1.33035
\(442\) −10.2205 −0.486142
\(443\) −11.6042 −0.551334 −0.275667 0.961253i \(-0.588899\pi\)
−0.275667 + 0.961253i \(0.588899\pi\)
\(444\) 26.0371 1.23567
\(445\) −14.4429 −0.684660
\(446\) −19.8256 −0.938767
\(447\) 47.2005 2.23251
\(448\) −40.0595 −1.89263
\(449\) −27.6027 −1.30265 −0.651326 0.758798i \(-0.725787\pi\)
−0.651326 + 0.758798i \(0.725787\pi\)
\(450\) 2.48570 0.117177
\(451\) 2.92550 0.137757
\(452\) −19.0445 −0.895778
\(453\) 36.2323 1.70234
\(454\) −57.1823 −2.68370
\(455\) 9.96243 0.467046
\(456\) −7.05778 −0.330511
\(457\) 30.5773 1.43034 0.715172 0.698948i \(-0.246348\pi\)
0.715172 + 0.698948i \(0.246348\pi\)
\(458\) −25.0645 −1.17118
\(459\) 4.51219 0.210611
\(460\) −1.68327 −0.0784829
\(461\) 21.7806 1.01443 0.507213 0.861821i \(-0.330676\pi\)
0.507213 + 0.861821i \(0.330676\pi\)
\(462\) −7.80712 −0.363220
\(463\) 36.2620 1.68524 0.842618 0.538512i \(-0.181013\pi\)
0.842618 + 0.538512i \(0.181013\pi\)
\(464\) −19.9268 −0.925077
\(465\) 40.6787 1.88643
\(466\) −4.58711 −0.212494
\(467\) −0.313778 −0.0145199 −0.00725996 0.999974i \(-0.502311\pi\)
−0.00725996 + 0.999974i \(0.502311\pi\)
\(468\) −8.67695 −0.401092
\(469\) −12.4875 −0.576620
\(470\) 30.3487 1.39988
\(471\) 9.01684 0.415474
\(472\) 3.09558 0.142485
\(473\) −0.858089 −0.0394550
\(474\) −61.5606 −2.82757
\(475\) −1.51731 −0.0696191
\(476\) 40.2076 1.84291
\(477\) 18.3397 0.839718
\(478\) 0.235019 0.0107495
\(479\) 6.11467 0.279387 0.139693 0.990195i \(-0.455388\pi\)
0.139693 + 0.990195i \(0.455388\pi\)
\(480\) 47.4304 2.16489
\(481\) −4.91477 −0.224094
\(482\) 9.07817 0.413499
\(483\) 3.10601 0.141329
\(484\) −25.0938 −1.14063
\(485\) −4.99653 −0.226881
\(486\) −46.4375 −2.10645
\(487\) 16.0032 0.725172 0.362586 0.931950i \(-0.381894\pi\)
0.362586 + 0.931950i \(0.381894\pi\)
\(488\) −4.86624 −0.220284
\(489\) 35.0398 1.58455
\(490\) −39.4722 −1.78317
\(491\) 24.4852 1.10500 0.552500 0.833513i \(-0.313674\pi\)
0.552500 + 0.833513i \(0.313674\pi\)
\(492\) −44.9079 −2.02460
\(493\) 27.0932 1.22022
\(494\) 9.87884 0.444470
\(495\) 2.99678 0.134695
\(496\) 22.7927 1.02342
\(497\) 54.3609 2.43842
\(498\) 27.7558 1.24377
\(499\) −35.7110 −1.59864 −0.799322 0.600903i \(-0.794808\pi\)
−0.799322 + 0.600903i \(0.794808\pi\)
\(500\) 24.8578 1.11167
\(501\) 52.5316 2.34694
\(502\) 32.1771 1.43614
\(503\) −34.5361 −1.53989 −0.769945 0.638111i \(-0.779716\pi\)
−0.769945 + 0.638111i \(0.779716\pi\)
\(504\) 8.58589 0.382446
\(505\) 12.3241 0.548417
\(506\) −0.248994 −0.0110691
\(507\) −29.8047 −1.32368
\(508\) −42.7741 −1.89779
\(509\) 23.3111 1.03324 0.516622 0.856214i \(-0.327189\pi\)
0.516622 + 0.856214i \(0.327189\pi\)
\(510\) −54.1856 −2.39938
\(511\) −1.49673 −0.0662115
\(512\) 30.8215 1.36213
\(513\) −4.36134 −0.192558
\(514\) −56.7018 −2.50101
\(515\) −17.0615 −0.751820
\(516\) 13.1721 0.579868
\(517\) 2.40693 0.105857
\(518\) 36.0620 1.58447
\(519\) 41.5030 1.82178
\(520\) 1.65327 0.0725008
\(521\) −28.3706 −1.24294 −0.621469 0.783439i \(-0.713464\pi\)
−0.621469 + 0.783439i \(0.713464\pi\)
\(522\) 42.9008 1.87772
\(523\) −25.6360 −1.12099 −0.560493 0.828159i \(-0.689388\pi\)
−0.560493 + 0.828159i \(0.689388\pi\)
\(524\) 9.64366 0.421285
\(525\) 3.47449 0.151639
\(526\) 16.6046 0.723995
\(527\) −30.9898 −1.34994
\(528\) 3.16070 0.137552
\(529\) −22.9009 −0.995693
\(530\) −25.9118 −1.12554
\(531\) 16.2586 0.705564
\(532\) −38.8633 −1.68494
\(533\) 8.47681 0.367171
\(534\) 32.7953 1.41919
\(535\) 30.4551 1.31669
\(536\) −2.07231 −0.0895102
\(537\) −16.1628 −0.697478
\(538\) −64.5259 −2.78191
\(539\) −3.13050 −0.134840
\(540\) −5.41235 −0.232911
\(541\) 2.52816 0.108694 0.0543471 0.998522i \(-0.482692\pi\)
0.0543471 + 0.998522i \(0.482692\pi\)
\(542\) −9.17436 −0.394073
\(543\) 15.7110 0.674224
\(544\) −36.1334 −1.54921
\(545\) 5.79088 0.248054
\(546\) −22.6215 −0.968113
\(547\) −8.81475 −0.376892 −0.188446 0.982084i \(-0.560345\pi\)
−0.188446 + 0.982084i \(0.560345\pi\)
\(548\) 11.1196 0.475005
\(549\) −25.5585 −1.09081
\(550\) −0.278533 −0.0118767
\(551\) −26.1874 −1.11562
\(552\) 0.515445 0.0219388
\(553\) −45.7137 −1.94395
\(554\) 44.9940 1.91161
\(555\) −26.0563 −1.10603
\(556\) 49.5727 2.10235
\(557\) −15.7090 −0.665610 −0.332805 0.942996i \(-0.607995\pi\)
−0.332805 + 0.942996i \(0.607995\pi\)
\(558\) −49.0709 −2.07734
\(559\) −2.48636 −0.105162
\(560\) 29.5940 1.25058
\(561\) −4.29740 −0.181437
\(562\) 3.20512 0.135200
\(563\) −7.20511 −0.303659 −0.151830 0.988407i \(-0.548517\pi\)
−0.151830 + 0.988407i \(0.548517\pi\)
\(564\) −36.9475 −1.55577
\(565\) 19.0585 0.801798
\(566\) −49.6887 −2.08857
\(567\) −29.8022 −1.25158
\(568\) 9.02122 0.378522
\(569\) 8.63700 0.362082 0.181041 0.983476i \(-0.442053\pi\)
0.181041 + 0.983476i \(0.442053\pi\)
\(570\) 52.3740 2.19371
\(571\) −24.4187 −1.02189 −0.510946 0.859613i \(-0.670705\pi\)
−0.510946 + 0.859613i \(0.670705\pi\)
\(572\) 0.972289 0.0406534
\(573\) 34.2014 1.42878
\(574\) −62.1983 −2.59611
\(575\) 0.110813 0.00462120
\(576\) −34.9161 −1.45484
\(577\) −27.9273 −1.16263 −0.581315 0.813679i \(-0.697461\pi\)
−0.581315 + 0.813679i \(0.697461\pi\)
\(578\) 5.97952 0.248715
\(579\) 39.2447 1.63096
\(580\) −32.4982 −1.34941
\(581\) 20.6109 0.855086
\(582\) 11.3455 0.470288
\(583\) −2.05504 −0.0851112
\(584\) −0.248384 −0.0102782
\(585\) 8.68333 0.359012
\(586\) 45.6523 1.88588
\(587\) −9.32538 −0.384899 −0.192450 0.981307i \(-0.561643\pi\)
−0.192450 + 0.981307i \(0.561643\pi\)
\(588\) 48.0547 1.98174
\(589\) 29.9537 1.23422
\(590\) −22.9715 −0.945721
\(591\) 51.2114 2.10656
\(592\) −14.5996 −0.600041
\(593\) −38.7576 −1.59158 −0.795791 0.605571i \(-0.792945\pi\)
−0.795791 + 0.605571i \(0.792945\pi\)
\(594\) −0.800610 −0.0328494
\(595\) −40.2372 −1.64956
\(596\) 43.1318 1.76675
\(597\) −44.3711 −1.81599
\(598\) −0.721473 −0.0295032
\(599\) 20.5011 0.837653 0.418826 0.908066i \(-0.362442\pi\)
0.418826 + 0.908066i \(0.362442\pi\)
\(600\) 0.576594 0.0235393
\(601\) 44.4309 1.81237 0.906186 0.422878i \(-0.138980\pi\)
0.906186 + 0.422878i \(0.138980\pi\)
\(602\) 18.2436 0.743553
\(603\) −10.8842 −0.443239
\(604\) 33.1091 1.34719
\(605\) 25.1122 1.02096
\(606\) −27.9842 −1.13678
\(607\) −31.8059 −1.29096 −0.645481 0.763776i \(-0.723343\pi\)
−0.645481 + 0.763776i \(0.723343\pi\)
\(608\) 34.9254 1.41641
\(609\) 59.9665 2.42996
\(610\) 36.1111 1.46210
\(611\) 6.97420 0.282146
\(612\) 35.0452 1.41662
\(613\) 38.5995 1.55902 0.779510 0.626390i \(-0.215468\pi\)
0.779510 + 0.626390i \(0.215468\pi\)
\(614\) 9.75542 0.393697
\(615\) 44.9409 1.81219
\(616\) −0.962085 −0.0387635
\(617\) −28.9701 −1.16629 −0.583145 0.812368i \(-0.698178\pi\)
−0.583145 + 0.812368i \(0.698178\pi\)
\(618\) 38.7413 1.55840
\(619\) 37.6998 1.51528 0.757641 0.652672i \(-0.226352\pi\)
0.757641 + 0.652672i \(0.226352\pi\)
\(620\) 37.1721 1.49287
\(621\) 0.318518 0.0127817
\(622\) 38.3915 1.53936
\(623\) 24.3532 0.975689
\(624\) 9.15829 0.366625
\(625\) −26.6364 −1.06546
\(626\) −22.6835 −0.906614
\(627\) 4.15373 0.165884
\(628\) 8.23958 0.328795
\(629\) 19.8502 0.791479
\(630\) −63.7137 −2.53841
\(631\) 22.6688 0.902430 0.451215 0.892415i \(-0.350991\pi\)
0.451215 + 0.892415i \(0.350991\pi\)
\(632\) −7.58623 −0.301764
\(633\) 9.76031 0.387937
\(634\) 36.4242 1.44659
\(635\) 42.8055 1.69869
\(636\) 31.5459 1.25088
\(637\) −9.07080 −0.359398
\(638\) −4.80722 −0.190320
\(639\) 47.3813 1.87438
\(640\) 11.8354 0.467836
\(641\) 7.69219 0.303823 0.151912 0.988394i \(-0.451457\pi\)
0.151912 + 0.988394i \(0.451457\pi\)
\(642\) −69.1540 −2.72929
\(643\) 24.6245 0.971097 0.485548 0.874210i \(-0.338620\pi\)
0.485548 + 0.874210i \(0.338620\pi\)
\(644\) 2.83827 0.111844
\(645\) −13.1818 −0.519032
\(646\) −39.8995 −1.56983
\(647\) −45.2604 −1.77937 −0.889684 0.456576i \(-0.849076\pi\)
−0.889684 + 0.456576i \(0.849076\pi\)
\(648\) −4.94570 −0.194285
\(649\) −1.82185 −0.0715137
\(650\) −0.807064 −0.0316556
\(651\) −68.5910 −2.68829
\(652\) 32.0193 1.25397
\(653\) 24.0108 0.939613 0.469807 0.882769i \(-0.344324\pi\)
0.469807 + 0.882769i \(0.344324\pi\)
\(654\) −13.1493 −0.514177
\(655\) −9.65075 −0.377086
\(656\) 25.1809 0.983148
\(657\) −1.30456 −0.0508958
\(658\) −51.1730 −1.99493
\(659\) −3.21060 −0.125067 −0.0625336 0.998043i \(-0.519918\pi\)
−0.0625336 + 0.998043i \(0.519918\pi\)
\(660\) 5.15472 0.200647
\(661\) −38.0377 −1.47949 −0.739747 0.672885i \(-0.765055\pi\)
−0.739747 + 0.672885i \(0.765055\pi\)
\(662\) 64.6316 2.51198
\(663\) −12.4520 −0.483594
\(664\) 3.42040 0.132737
\(665\) 38.8919 1.50816
\(666\) 31.4319 1.21796
\(667\) 1.91252 0.0740532
\(668\) 48.0034 1.85731
\(669\) −24.1540 −0.933848
\(670\) 15.3781 0.594107
\(671\) 2.86394 0.110561
\(672\) −79.9755 −3.08512
\(673\) 32.4431 1.25059 0.625294 0.780389i \(-0.284979\pi\)
0.625294 + 0.780389i \(0.284979\pi\)
\(674\) 13.9704 0.538118
\(675\) 0.356304 0.0137142
\(676\) −27.2356 −1.04752
\(677\) −28.8453 −1.10861 −0.554307 0.832312i \(-0.687017\pi\)
−0.554307 + 0.832312i \(0.687017\pi\)
\(678\) −43.2759 −1.66200
\(679\) 8.42498 0.323321
\(680\) −6.67738 −0.256066
\(681\) −69.6668 −2.66964
\(682\) 5.49860 0.210552
\(683\) −19.6204 −0.750754 −0.375377 0.926872i \(-0.622487\pi\)
−0.375377 + 0.926872i \(0.622487\pi\)
\(684\) −33.8736 −1.29519
\(685\) −11.1278 −0.425170
\(686\) 9.85621 0.376312
\(687\) −30.5367 −1.16505
\(688\) −7.38588 −0.281584
\(689\) −5.95460 −0.226852
\(690\) −3.82499 −0.145615
\(691\) −27.1603 −1.03323 −0.516614 0.856218i \(-0.672808\pi\)
−0.516614 + 0.856218i \(0.672808\pi\)
\(692\) 37.9254 1.44171
\(693\) −5.05307 −0.191950
\(694\) 2.00411 0.0760748
\(695\) −49.6092 −1.88178
\(696\) 9.95148 0.377210
\(697\) −34.2369 −1.29681
\(698\) 76.7232 2.90402
\(699\) −5.58860 −0.211380
\(700\) 3.17499 0.120003
\(701\) 0.984355 0.0371786 0.0185893 0.999827i \(-0.494083\pi\)
0.0185893 + 0.999827i \(0.494083\pi\)
\(702\) −2.31981 −0.0875556
\(703\) −19.1866 −0.723635
\(704\) 3.91250 0.147458
\(705\) 36.9747 1.39255
\(706\) −23.3527 −0.878890
\(707\) −20.7805 −0.781533
\(708\) 27.9662 1.05103
\(709\) 6.83688 0.256764 0.128382 0.991725i \(-0.459022\pi\)
0.128382 + 0.991725i \(0.459022\pi\)
\(710\) −66.9442 −2.51237
\(711\) −39.8444 −1.49428
\(712\) 4.04143 0.151459
\(713\) −2.18759 −0.0819257
\(714\) 91.3659 3.41928
\(715\) −0.973004 −0.0363883
\(716\) −14.7696 −0.551965
\(717\) 0.286330 0.0106932
\(718\) 35.2083 1.31396
\(719\) 22.3360 0.832994 0.416497 0.909137i \(-0.363258\pi\)
0.416497 + 0.909137i \(0.363258\pi\)
\(720\) 25.7944 0.961299
\(721\) 28.7686 1.07140
\(722\) −0.887446 −0.0330273
\(723\) 11.0602 0.411333
\(724\) 14.3567 0.533563
\(725\) 2.13941 0.0794557
\(726\) −57.0219 −2.11628
\(727\) −31.9716 −1.18576 −0.592881 0.805290i \(-0.702010\pi\)
−0.592881 + 0.805290i \(0.702010\pi\)
\(728\) −2.78769 −0.103319
\(729\) −33.6564 −1.24654
\(730\) 1.84319 0.0682196
\(731\) 10.0421 0.371422
\(732\) −43.9628 −1.62491
\(733\) −23.0428 −0.851105 −0.425553 0.904934i \(-0.639920\pi\)
−0.425553 + 0.904934i \(0.639920\pi\)
\(734\) −7.23456 −0.267033
\(735\) −48.0900 −1.77383
\(736\) −2.55067 −0.0940191
\(737\) 1.21962 0.0449253
\(738\) −54.2125 −1.99559
\(739\) 36.5318 1.34384 0.671921 0.740622i \(-0.265469\pi\)
0.671921 + 0.740622i \(0.265469\pi\)
\(740\) −23.8102 −0.875282
\(741\) 12.0357 0.442141
\(742\) 43.6917 1.60397
\(743\) −0.139955 −0.00513444 −0.00256722 0.999997i \(-0.500817\pi\)
−0.00256722 + 0.999997i \(0.500817\pi\)
\(744\) −11.3827 −0.417311
\(745\) −43.1636 −1.58139
\(746\) −54.3013 −1.98811
\(747\) 17.9647 0.657292
\(748\) −3.92697 −0.143584
\(749\) −51.3524 −1.87638
\(750\) 56.4856 2.06256
\(751\) −1.12934 −0.0412100 −0.0206050 0.999788i \(-0.506559\pi\)
−0.0206050 + 0.999788i \(0.506559\pi\)
\(752\) 20.7173 0.755482
\(753\) 39.2023 1.42861
\(754\) −13.9292 −0.507271
\(755\) −33.1334 −1.20585
\(756\) 9.12613 0.331914
\(757\) −26.7815 −0.973392 −0.486696 0.873572i \(-0.661798\pi\)
−0.486696 + 0.873572i \(0.661798\pi\)
\(758\) −36.8138 −1.33714
\(759\) −0.303356 −0.0110111
\(760\) 6.45414 0.234116
\(761\) −1.80740 −0.0655181 −0.0327591 0.999463i \(-0.510429\pi\)
−0.0327591 + 0.999463i \(0.510429\pi\)
\(762\) −97.1978 −3.52111
\(763\) −9.76439 −0.353495
\(764\) 31.2532 1.13070
\(765\) −35.0710 −1.26799
\(766\) 0.106083 0.00383294
\(767\) −5.27890 −0.190610
\(768\) 25.0849 0.905175
\(769\) −17.9685 −0.647960 −0.323980 0.946064i \(-0.605021\pi\)
−0.323980 + 0.946064i \(0.605021\pi\)
\(770\) 7.13939 0.257286
\(771\) −69.0814 −2.48791
\(772\) 35.8618 1.29070
\(773\) −6.07971 −0.218672 −0.109336 0.994005i \(-0.534872\pi\)
−0.109336 + 0.994005i \(0.534872\pi\)
\(774\) 15.9012 0.571558
\(775\) −2.44711 −0.0879026
\(776\) 1.39813 0.0501900
\(777\) 43.9353 1.57617
\(778\) 46.9536 1.68337
\(779\) 33.0923 1.18565
\(780\) 14.9361 0.534797
\(781\) −5.30928 −0.189981
\(782\) 2.91395 0.104203
\(783\) 6.14949 0.219765
\(784\) −26.9454 −0.962334
\(785\) −8.24564 −0.294300
\(786\) 21.9138 0.781640
\(787\) 1.00000 0.0356462
\(788\) 46.7970 1.66707
\(789\) 20.2298 0.720201
\(790\) 56.2955 2.00290
\(791\) −32.1358 −1.14262
\(792\) −0.838560 −0.0297969
\(793\) 8.29842 0.294686
\(794\) −76.8694 −2.72799
\(795\) −31.5691 −1.11964
\(796\) −40.5463 −1.43713
\(797\) 17.3934 0.616105 0.308053 0.951369i \(-0.400323\pi\)
0.308053 + 0.951369i \(0.400323\pi\)
\(798\) −88.3113 −3.12619
\(799\) −28.1680 −0.996513
\(800\) −2.85327 −0.100878
\(801\) 21.2264 0.749998
\(802\) −69.9250 −2.46914
\(803\) 0.146182 0.00515864
\(804\) −18.7218 −0.660266
\(805\) −2.84036 −0.100110
\(806\) 15.9325 0.561198
\(807\) −78.6136 −2.76733
\(808\) −3.44855 −0.121319
\(809\) −4.45670 −0.156689 −0.0783446 0.996926i \(-0.524963\pi\)
−0.0783446 + 0.996926i \(0.524963\pi\)
\(810\) 36.7008 1.28953
\(811\) 1.07311 0.0376818 0.0188409 0.999822i \(-0.494002\pi\)
0.0188409 + 0.999822i \(0.494002\pi\)
\(812\) 54.7973 1.92301
\(813\) −11.1774 −0.392008
\(814\) −3.52207 −0.123449
\(815\) −32.0429 −1.12241
\(816\) −36.9893 −1.29488
\(817\) −9.70640 −0.339584
\(818\) 17.5817 0.614731
\(819\) −14.6415 −0.511617
\(820\) 41.0670 1.43412
\(821\) 14.0245 0.489457 0.244729 0.969592i \(-0.421301\pi\)
0.244729 + 0.969592i \(0.421301\pi\)
\(822\) 25.2676 0.881310
\(823\) −0.184859 −0.00644380 −0.00322190 0.999995i \(-0.501026\pi\)
−0.00322190 + 0.999995i \(0.501026\pi\)
\(824\) 4.77416 0.166316
\(825\) −0.339344 −0.0118144
\(826\) 38.7337 1.34772
\(827\) −53.7047 −1.86750 −0.933748 0.357930i \(-0.883483\pi\)
−0.933748 + 0.357930i \(0.883483\pi\)
\(828\) 2.47386 0.0859726
\(829\) −11.8428 −0.411317 −0.205659 0.978624i \(-0.565934\pi\)
−0.205659 + 0.978624i \(0.565934\pi\)
\(830\) −25.3819 −0.881019
\(831\) 54.8174 1.90159
\(832\) 11.3367 0.393029
\(833\) 36.6359 1.26936
\(834\) 112.647 3.90064
\(835\) −48.0387 −1.66245
\(836\) 3.79568 0.131276
\(837\) −7.03392 −0.243128
\(838\) 36.6215 1.26507
\(839\) −21.7516 −0.750948 −0.375474 0.926833i \(-0.622520\pi\)
−0.375474 + 0.926833i \(0.622520\pi\)
\(840\) −14.7793 −0.509935
\(841\) 7.92425 0.273250
\(842\) 48.1225 1.65841
\(843\) 3.90488 0.134491
\(844\) 8.91896 0.307003
\(845\) 27.2556 0.937621
\(846\) −44.6028 −1.53347
\(847\) −42.3434 −1.45494
\(848\) −17.6885 −0.607426
\(849\) −60.5371 −2.07763
\(850\) 3.25964 0.111805
\(851\) 1.40124 0.0480338
\(852\) 81.5000 2.79214
\(853\) −44.3857 −1.51974 −0.759868 0.650077i \(-0.774737\pi\)
−0.759868 + 0.650077i \(0.774737\pi\)
\(854\) −60.8894 −2.08359
\(855\) 33.8985 1.15930
\(856\) −8.52197 −0.291275
\(857\) −22.2173 −0.758930 −0.379465 0.925206i \(-0.623892\pi\)
−0.379465 + 0.925206i \(0.623892\pi\)
\(858\) 2.20939 0.0754272
\(859\) 34.6252 1.18140 0.590698 0.806893i \(-0.298852\pi\)
0.590698 + 0.806893i \(0.298852\pi\)
\(860\) −12.0455 −0.410748
\(861\) −75.7779 −2.58250
\(862\) −48.8946 −1.66536
\(863\) 29.0002 0.987178 0.493589 0.869695i \(-0.335685\pi\)
0.493589 + 0.869695i \(0.335685\pi\)
\(864\) −8.20139 −0.279017
\(865\) −37.9533 −1.29045
\(866\) −27.1526 −0.922682
\(867\) 7.28501 0.247412
\(868\) −62.6784 −2.12744
\(869\) 4.46474 0.151456
\(870\) −73.8474 −2.50366
\(871\) 3.53392 0.119742
\(872\) −1.62041 −0.0548739
\(873\) 7.34328 0.248532
\(874\) −2.81653 −0.0952705
\(875\) 41.9452 1.41801
\(876\) −2.24396 −0.0758164
\(877\) 10.3515 0.349545 0.174773 0.984609i \(-0.444081\pi\)
0.174773 + 0.984609i \(0.444081\pi\)
\(878\) −50.2221 −1.69491
\(879\) 55.6194 1.87600
\(880\) −2.89037 −0.0974343
\(881\) 25.0203 0.842955 0.421477 0.906839i \(-0.361512\pi\)
0.421477 + 0.906839i \(0.361512\pi\)
\(882\) 58.0113 1.95334
\(883\) 36.5474 1.22992 0.614959 0.788559i \(-0.289172\pi\)
0.614959 + 0.788559i \(0.289172\pi\)
\(884\) −11.3786 −0.382704
\(885\) −27.9868 −0.940765
\(886\) −24.0959 −0.809519
\(887\) 18.5505 0.622863 0.311432 0.950269i \(-0.399191\pi\)
0.311432 + 0.950269i \(0.399191\pi\)
\(888\) 7.29109 0.244673
\(889\) −72.1772 −2.42075
\(890\) −29.9904 −1.00528
\(891\) 2.91070 0.0975122
\(892\) −22.0719 −0.739022
\(893\) 27.2263 0.911093
\(894\) 98.0108 3.27797
\(895\) 14.7805 0.494056
\(896\) −19.9565 −0.666699
\(897\) −0.878990 −0.0293486
\(898\) −57.3164 −1.91267
\(899\) −42.2348 −1.40861
\(900\) 2.76734 0.0922447
\(901\) 24.0500 0.801221
\(902\) 6.07474 0.202267
\(903\) 22.2267 0.739657
\(904\) −5.33296 −0.177372
\(905\) −14.3673 −0.477584
\(906\) 75.2356 2.49954
\(907\) −31.3800 −1.04196 −0.520978 0.853570i \(-0.674433\pi\)
−0.520978 + 0.853570i \(0.674433\pi\)
\(908\) −63.6614 −2.11268
\(909\) −18.1125 −0.600753
\(910\) 20.6868 0.685759
\(911\) 10.5046 0.348032 0.174016 0.984743i \(-0.444326\pi\)
0.174016 + 0.984743i \(0.444326\pi\)
\(912\) 35.7527 1.18389
\(913\) −2.01302 −0.0666211
\(914\) 63.4930 2.10016
\(915\) 43.9952 1.45444
\(916\) −27.9044 −0.921988
\(917\) 16.2728 0.537374
\(918\) 9.36945 0.309238
\(919\) −60.1165 −1.98306 −0.991530 0.129879i \(-0.958541\pi\)
−0.991530 + 0.129879i \(0.958541\pi\)
\(920\) −0.471360 −0.0155403
\(921\) 11.8853 0.391634
\(922\) 45.2270 1.48947
\(923\) −15.3839 −0.506368
\(924\) −8.69172 −0.285936
\(925\) 1.56747 0.0515381
\(926\) 75.2971 2.47442
\(927\) 25.0749 0.823568
\(928\) −49.2448 −1.61654
\(929\) 55.9915 1.83702 0.918510 0.395397i \(-0.129393\pi\)
0.918510 + 0.395397i \(0.129393\pi\)
\(930\) 84.4683 2.76982
\(931\) −35.4111 −1.16055
\(932\) −5.10686 −0.167281
\(933\) 46.7734 1.53129
\(934\) −0.651553 −0.0213195
\(935\) 3.92985 0.128520
\(936\) −2.42977 −0.0794196
\(937\) −38.4536 −1.25623 −0.628113 0.778122i \(-0.716172\pi\)
−0.628113 + 0.778122i \(0.716172\pi\)
\(938\) −25.9300 −0.846645
\(939\) −27.6359 −0.901863
\(940\) 33.7874 1.10202
\(941\) 32.6005 1.06275 0.531373 0.847138i \(-0.321676\pi\)
0.531373 + 0.847138i \(0.321676\pi\)
\(942\) 18.7233 0.610037
\(943\) −2.41680 −0.0787018
\(944\) −15.6813 −0.510382
\(945\) −9.13284 −0.297091
\(946\) −1.78180 −0.0579314
\(947\) −1.28168 −0.0416491 −0.0208246 0.999783i \(-0.506629\pi\)
−0.0208246 + 0.999783i \(0.506629\pi\)
\(948\) −68.5359 −2.22594
\(949\) 0.423570 0.0137497
\(950\) −3.15066 −0.102221
\(951\) 44.3766 1.43901
\(952\) 11.2592 0.364912
\(953\) 18.5934 0.602299 0.301149 0.953577i \(-0.402630\pi\)
0.301149 + 0.953577i \(0.402630\pi\)
\(954\) 38.0820 1.23295
\(955\) −31.2762 −1.01207
\(956\) 0.261648 0.00846229
\(957\) −5.85676 −0.189322
\(958\) 12.6970 0.410221
\(959\) 18.7633 0.605897
\(960\) 60.1029 1.93981
\(961\) 17.3091 0.558357
\(962\) −10.2054 −0.329035
\(963\) −44.7591 −1.44234
\(964\) 10.1068 0.325518
\(965\) −35.8882 −1.15528
\(966\) 6.44957 0.207511
\(967\) −33.4828 −1.07674 −0.538368 0.842710i \(-0.680959\pi\)
−0.538368 + 0.842710i \(0.680959\pi\)
\(968\) −7.02691 −0.225853
\(969\) −48.6107 −1.56160
\(970\) −10.3752 −0.333127
\(971\) −52.0820 −1.67139 −0.835695 0.549194i \(-0.814935\pi\)
−0.835695 + 0.549194i \(0.814935\pi\)
\(972\) −51.6992 −1.65825
\(973\) 83.6494 2.68168
\(974\) 33.2302 1.06476
\(975\) −0.983268 −0.0314898
\(976\) 24.6510 0.789058
\(977\) 42.2873 1.35289 0.676445 0.736493i \(-0.263520\pi\)
0.676445 + 0.736493i \(0.263520\pi\)
\(978\) 72.7593 2.32659
\(979\) −2.37851 −0.0760175
\(980\) −43.9447 −1.40376
\(981\) −8.51071 −0.271726
\(982\) 50.8429 1.62246
\(983\) −20.3961 −0.650535 −0.325268 0.945622i \(-0.605454\pi\)
−0.325268 + 0.945622i \(0.605454\pi\)
\(984\) −12.5754 −0.400889
\(985\) −46.8314 −1.49217
\(986\) 56.2584 1.79163
\(987\) −62.3454 −1.98448
\(988\) 10.9982 0.349899
\(989\) 0.708879 0.0225410
\(990\) 6.22274 0.197772
\(991\) −15.0800 −0.479031 −0.239516 0.970892i \(-0.576989\pi\)
−0.239516 + 0.970892i \(0.576989\pi\)
\(992\) 56.3273 1.78839
\(993\) 78.7424 2.49881
\(994\) 112.879 3.58031
\(995\) 40.5761 1.28635
\(996\) 30.9007 0.979128
\(997\) −1.31697 −0.0417090 −0.0208545 0.999783i \(-0.506639\pi\)
−0.0208545 + 0.999783i \(0.506639\pi\)
\(998\) −74.1531 −2.34727
\(999\) 4.50551 0.142548
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 787.2.a.b.1.29 37
3.2 odd 2 7083.2.a.g.1.9 37
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
787.2.a.b.1.29 37 1.1 even 1 trivial
7083.2.a.g.1.9 37 3.2 odd 2