Properties

Label 787.2.a.b.1.26
Level $787$
Weight $2$
Character 787.1
Self dual yes
Analytic conductor $6.284$
Analytic rank $0$
Dimension $37$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [787,2,Mod(1,787)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("787.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(787, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 787 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 787.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [37] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.28422663907\)
Analytic rank: \(0\)
Dimension: \(37\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.26
Character \(\chi\) \(=\) 787.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.66683 q^{2} -2.53460 q^{3} +0.778328 q^{4} +3.86054 q^{5} -4.22476 q^{6} -3.20455 q^{7} -2.03632 q^{8} +3.42421 q^{9} +6.43487 q^{10} +2.80701 q^{11} -1.97275 q^{12} +4.78811 q^{13} -5.34144 q^{14} -9.78494 q^{15} -4.95086 q^{16} +4.18912 q^{17} +5.70758 q^{18} +1.83524 q^{19} +3.00477 q^{20} +8.12225 q^{21} +4.67882 q^{22} +2.98310 q^{23} +5.16127 q^{24} +9.90378 q^{25} +7.98097 q^{26} -1.07521 q^{27} -2.49419 q^{28} +0.918075 q^{29} -16.3098 q^{30} -7.25642 q^{31} -4.17961 q^{32} -7.11466 q^{33} +6.98255 q^{34} -12.3713 q^{35} +2.66516 q^{36} -2.00595 q^{37} +3.05903 q^{38} -12.1360 q^{39} -7.86130 q^{40} +6.76387 q^{41} +13.5384 q^{42} +9.81590 q^{43} +2.18478 q^{44} +13.2193 q^{45} +4.97232 q^{46} +12.5729 q^{47} +12.5485 q^{48} +3.26912 q^{49} +16.5079 q^{50} -10.6177 q^{51} +3.72672 q^{52} -10.0300 q^{53} -1.79219 q^{54} +10.8366 q^{55} +6.52549 q^{56} -4.65160 q^{57} +1.53028 q^{58} -5.69185 q^{59} -7.61589 q^{60} +5.14392 q^{61} -12.0952 q^{62} -10.9730 q^{63} +2.93502 q^{64} +18.4847 q^{65} -11.8589 q^{66} -6.49481 q^{67} +3.26051 q^{68} -7.56097 q^{69} -20.6209 q^{70} -11.0974 q^{71} -6.97279 q^{72} +1.19824 q^{73} -3.34358 q^{74} -25.1022 q^{75} +1.42842 q^{76} -8.99521 q^{77} -20.2286 q^{78} +14.2295 q^{79} -19.1130 q^{80} -7.54741 q^{81} +11.2742 q^{82} -2.26531 q^{83} +6.32178 q^{84} +16.1723 q^{85} +16.3615 q^{86} -2.32696 q^{87} -5.71598 q^{88} -4.17045 q^{89} +22.0344 q^{90} -15.3437 q^{91} +2.32183 q^{92} +18.3921 q^{93} +20.9570 q^{94} +7.08501 q^{95} +10.5937 q^{96} -4.21813 q^{97} +5.44908 q^{98} +9.61180 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 37 q + 12 q^{2} + 6 q^{3} + 42 q^{4} + 31 q^{5} + 4 q^{6} + 9 q^{7} + 36 q^{8} + 47 q^{9} + 4 q^{10} + 18 q^{11} + 15 q^{12} + 13 q^{13} + 8 q^{14} + 3 q^{15} + 48 q^{16} + 18 q^{17} + 17 q^{18} + 40 q^{20}+ \cdots - 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.66683 1.17863 0.589314 0.807904i \(-0.299398\pi\)
0.589314 + 0.807904i \(0.299398\pi\)
\(3\) −2.53460 −1.46335 −0.731677 0.681652i \(-0.761262\pi\)
−0.731677 + 0.681652i \(0.761262\pi\)
\(4\) 0.778328 0.389164
\(5\) 3.86054 1.72649 0.863243 0.504788i \(-0.168429\pi\)
0.863243 + 0.504788i \(0.168429\pi\)
\(6\) −4.22476 −1.72475
\(7\) −3.20455 −1.21121 −0.605603 0.795767i \(-0.707068\pi\)
−0.605603 + 0.795767i \(0.707068\pi\)
\(8\) −2.03632 −0.719948
\(9\) 3.42421 1.14140
\(10\) 6.43487 2.03489
\(11\) 2.80701 0.846346 0.423173 0.906049i \(-0.360916\pi\)
0.423173 + 0.906049i \(0.360916\pi\)
\(12\) −1.97275 −0.569485
\(13\) 4.78811 1.32798 0.663991 0.747740i \(-0.268861\pi\)
0.663991 + 0.747740i \(0.268861\pi\)
\(14\) −5.34144 −1.42756
\(15\) −9.78494 −2.52646
\(16\) −4.95086 −1.23772
\(17\) 4.18912 1.01601 0.508005 0.861354i \(-0.330383\pi\)
0.508005 + 0.861354i \(0.330383\pi\)
\(18\) 5.70758 1.34529
\(19\) 1.83524 0.421032 0.210516 0.977590i \(-0.432486\pi\)
0.210516 + 0.977590i \(0.432486\pi\)
\(20\) 3.00477 0.671887
\(21\) 8.12225 1.77242
\(22\) 4.67882 0.997528
\(23\) 2.98310 0.622019 0.311009 0.950407i \(-0.399333\pi\)
0.311009 + 0.950407i \(0.399333\pi\)
\(24\) 5.16127 1.05354
\(25\) 9.90378 1.98076
\(26\) 7.98097 1.56520
\(27\) −1.07521 −0.206923
\(28\) −2.49419 −0.471357
\(29\) 0.918075 0.170482 0.0852411 0.996360i \(-0.472834\pi\)
0.0852411 + 0.996360i \(0.472834\pi\)
\(30\) −16.3098 −2.97776
\(31\) −7.25642 −1.30329 −0.651646 0.758524i \(-0.725921\pi\)
−0.651646 + 0.758524i \(0.725921\pi\)
\(32\) −4.17961 −0.738858
\(33\) −7.11466 −1.23850
\(34\) 6.98255 1.19750
\(35\) −12.3713 −2.09113
\(36\) 2.66516 0.444193
\(37\) −2.00595 −0.329776 −0.164888 0.986312i \(-0.552726\pi\)
−0.164888 + 0.986312i \(0.552726\pi\)
\(38\) 3.05903 0.496240
\(39\) −12.1360 −1.94331
\(40\) −7.86130 −1.24298
\(41\) 6.76387 1.05634 0.528169 0.849139i \(-0.322879\pi\)
0.528169 + 0.849139i \(0.322879\pi\)
\(42\) 13.5384 2.08903
\(43\) 9.81590 1.49691 0.748455 0.663185i \(-0.230796\pi\)
0.748455 + 0.663185i \(0.230796\pi\)
\(44\) 2.18478 0.329368
\(45\) 13.2193 1.97062
\(46\) 4.97232 0.733129
\(47\) 12.5729 1.83395 0.916975 0.398944i \(-0.130623\pi\)
0.916975 + 0.398944i \(0.130623\pi\)
\(48\) 12.5485 1.81122
\(49\) 3.26912 0.467018
\(50\) 16.5079 2.33458
\(51\) −10.6177 −1.48678
\(52\) 3.72672 0.516803
\(53\) −10.0300 −1.37773 −0.688863 0.724892i \(-0.741890\pi\)
−0.688863 + 0.724892i \(0.741890\pi\)
\(54\) −1.79219 −0.243886
\(55\) 10.8366 1.46121
\(56\) 6.52549 0.872005
\(57\) −4.65160 −0.616119
\(58\) 1.53028 0.200935
\(59\) −5.69185 −0.741016 −0.370508 0.928829i \(-0.620816\pi\)
−0.370508 + 0.928829i \(0.620816\pi\)
\(60\) −7.61589 −0.983208
\(61\) 5.14392 0.658611 0.329306 0.944223i \(-0.393185\pi\)
0.329306 + 0.944223i \(0.393185\pi\)
\(62\) −12.0952 −1.53610
\(63\) −10.9730 −1.38247
\(64\) 2.93502 0.366877
\(65\) 18.4847 2.29274
\(66\) −11.8589 −1.45974
\(67\) −6.49481 −0.793467 −0.396734 0.917934i \(-0.629856\pi\)
−0.396734 + 0.917934i \(0.629856\pi\)
\(68\) 3.26051 0.395395
\(69\) −7.56097 −0.910233
\(70\) −20.6209 −2.46466
\(71\) −11.0974 −1.31702 −0.658511 0.752571i \(-0.728814\pi\)
−0.658511 + 0.752571i \(0.728814\pi\)
\(72\) −6.97279 −0.821752
\(73\) 1.19824 0.140243 0.0701217 0.997538i \(-0.477661\pi\)
0.0701217 + 0.997538i \(0.477661\pi\)
\(74\) −3.34358 −0.388683
\(75\) −25.1022 −2.89855
\(76\) 1.42842 0.163851
\(77\) −8.99521 −1.02510
\(78\) −20.2286 −2.29044
\(79\) 14.2295 1.60094 0.800470 0.599373i \(-0.204583\pi\)
0.800470 + 0.599373i \(0.204583\pi\)
\(80\) −19.1130 −2.13690
\(81\) −7.54741 −0.838602
\(82\) 11.2742 1.24503
\(83\) −2.26531 −0.248650 −0.124325 0.992242i \(-0.539677\pi\)
−0.124325 + 0.992242i \(0.539677\pi\)
\(84\) 6.32178 0.689763
\(85\) 16.1723 1.75413
\(86\) 16.3615 1.76430
\(87\) −2.32696 −0.249476
\(88\) −5.71598 −0.609326
\(89\) −4.17045 −0.442067 −0.221033 0.975266i \(-0.570943\pi\)
−0.221033 + 0.975266i \(0.570943\pi\)
\(90\) 22.0344 2.32263
\(91\) −15.3437 −1.60846
\(92\) 2.32183 0.242067
\(93\) 18.3921 1.90718
\(94\) 20.9570 2.16155
\(95\) 7.08501 0.726907
\(96\) 10.5937 1.08121
\(97\) −4.21813 −0.428286 −0.214143 0.976802i \(-0.568696\pi\)
−0.214143 + 0.976802i \(0.568696\pi\)
\(98\) 5.44908 0.550440
\(99\) 9.61180 0.966023
\(100\) 7.70839 0.770839
\(101\) −16.7717 −1.66885 −0.834424 0.551123i \(-0.814200\pi\)
−0.834424 + 0.551123i \(0.814200\pi\)
\(102\) −17.6980 −1.75236
\(103\) −8.79062 −0.866165 −0.433083 0.901354i \(-0.642574\pi\)
−0.433083 + 0.901354i \(0.642574\pi\)
\(104\) −9.75013 −0.956079
\(105\) 31.3563 3.06006
\(106\) −16.7183 −1.62383
\(107\) −4.11782 −0.398085 −0.199043 0.979991i \(-0.563783\pi\)
−0.199043 + 0.979991i \(0.563783\pi\)
\(108\) −0.836862 −0.0805271
\(109\) −7.85948 −0.752802 −0.376401 0.926457i \(-0.622839\pi\)
−0.376401 + 0.926457i \(0.622839\pi\)
\(110\) 18.0628 1.72222
\(111\) 5.08429 0.482579
\(112\) 15.8653 1.49913
\(113\) −2.37517 −0.223437 −0.111719 0.993740i \(-0.535636\pi\)
−0.111719 + 0.993740i \(0.535636\pi\)
\(114\) −7.75343 −0.726175
\(115\) 11.5164 1.07391
\(116\) 0.714564 0.0663456
\(117\) 16.3955 1.51576
\(118\) −9.48736 −0.873382
\(119\) −13.4242 −1.23060
\(120\) 19.9253 1.81892
\(121\) −3.12068 −0.283698
\(122\) 8.57404 0.776258
\(123\) −17.1437 −1.54580
\(124\) −5.64787 −0.507194
\(125\) 18.9313 1.69326
\(126\) −18.2902 −1.62942
\(127\) 16.0237 1.42187 0.710935 0.703257i \(-0.248272\pi\)
0.710935 + 0.703257i \(0.248272\pi\)
\(128\) 13.2514 1.17127
\(129\) −24.8794 −2.19051
\(130\) 30.8109 2.70229
\(131\) −7.85278 −0.686101 −0.343050 0.939317i \(-0.611460\pi\)
−0.343050 + 0.939317i \(0.611460\pi\)
\(132\) −5.53754 −0.481981
\(133\) −5.88110 −0.509956
\(134\) −10.8258 −0.935203
\(135\) −4.15088 −0.357250
\(136\) −8.53039 −0.731475
\(137\) −13.6770 −1.16850 −0.584252 0.811573i \(-0.698612\pi\)
−0.584252 + 0.811573i \(0.698612\pi\)
\(138\) −12.6029 −1.07283
\(139\) 19.8519 1.68382 0.841908 0.539621i \(-0.181432\pi\)
0.841908 + 0.539621i \(0.181432\pi\)
\(140\) −9.62892 −0.813792
\(141\) −31.8674 −2.68372
\(142\) −18.4975 −1.55228
\(143\) 13.4403 1.12393
\(144\) −16.9528 −1.41273
\(145\) 3.54427 0.294335
\(146\) 1.99726 0.165295
\(147\) −8.28593 −0.683412
\(148\) −1.56129 −0.128337
\(149\) 5.27076 0.431798 0.215899 0.976416i \(-0.430732\pi\)
0.215899 + 0.976416i \(0.430732\pi\)
\(150\) −41.8411 −3.41631
\(151\) −13.2677 −1.07971 −0.539854 0.841759i \(-0.681521\pi\)
−0.539854 + 0.841759i \(0.681521\pi\)
\(152\) −3.73713 −0.303122
\(153\) 14.3444 1.15968
\(154\) −14.9935 −1.20821
\(155\) −28.0137 −2.25012
\(156\) −9.44575 −0.756265
\(157\) 2.63140 0.210009 0.105004 0.994472i \(-0.466514\pi\)
0.105004 + 0.994472i \(0.466514\pi\)
\(158\) 23.7181 1.88691
\(159\) 25.4220 2.01610
\(160\) −16.1356 −1.27563
\(161\) −9.55948 −0.753392
\(162\) −12.5803 −0.988399
\(163\) 8.51020 0.666570 0.333285 0.942826i \(-0.391843\pi\)
0.333285 + 0.942826i \(0.391843\pi\)
\(164\) 5.26451 0.411089
\(165\) −27.4665 −2.13826
\(166\) −3.77589 −0.293066
\(167\) −10.6704 −0.825699 −0.412850 0.910799i \(-0.635466\pi\)
−0.412850 + 0.910799i \(0.635466\pi\)
\(168\) −16.5395 −1.27605
\(169\) 9.92598 0.763537
\(170\) 26.9564 2.06746
\(171\) 6.28424 0.480568
\(172\) 7.63999 0.582544
\(173\) −15.3852 −1.16972 −0.584858 0.811136i \(-0.698850\pi\)
−0.584858 + 0.811136i \(0.698850\pi\)
\(174\) −3.87864 −0.294039
\(175\) −31.7371 −2.39910
\(176\) −13.8971 −1.04754
\(177\) 14.4266 1.08437
\(178\) −6.95144 −0.521033
\(179\) −9.50701 −0.710587 −0.355293 0.934755i \(-0.615619\pi\)
−0.355293 + 0.934755i \(0.615619\pi\)
\(180\) 10.2890 0.766894
\(181\) 8.94492 0.664871 0.332435 0.943126i \(-0.392130\pi\)
0.332435 + 0.943126i \(0.392130\pi\)
\(182\) −25.5754 −1.89577
\(183\) −13.0378 −0.963781
\(184\) −6.07454 −0.447821
\(185\) −7.74405 −0.569354
\(186\) 30.6566 2.24785
\(187\) 11.7589 0.859896
\(188\) 9.78587 0.713708
\(189\) 3.44555 0.250627
\(190\) 11.8095 0.856753
\(191\) 17.2424 1.24761 0.623806 0.781579i \(-0.285585\pi\)
0.623806 + 0.781579i \(0.285585\pi\)
\(192\) −7.43910 −0.536871
\(193\) 2.55620 0.183999 0.0919996 0.995759i \(-0.470674\pi\)
0.0919996 + 0.995759i \(0.470674\pi\)
\(194\) −7.03092 −0.504790
\(195\) −46.8514 −3.35510
\(196\) 2.54445 0.181747
\(197\) 18.7963 1.33918 0.669590 0.742731i \(-0.266470\pi\)
0.669590 + 0.742731i \(0.266470\pi\)
\(198\) 16.0213 1.13858
\(199\) 15.1475 1.07377 0.536887 0.843654i \(-0.319600\pi\)
0.536887 + 0.843654i \(0.319600\pi\)
\(200\) −20.1673 −1.42604
\(201\) 16.4618 1.16112
\(202\) −27.9556 −1.96695
\(203\) −2.94202 −0.206489
\(204\) −8.26409 −0.578602
\(205\) 26.1122 1.82375
\(206\) −14.6525 −1.02089
\(207\) 10.2148 0.709974
\(208\) −23.7053 −1.64366
\(209\) 5.15154 0.356339
\(210\) 52.2657 3.60667
\(211\) −22.5349 −1.55136 −0.775682 0.631124i \(-0.782594\pi\)
−0.775682 + 0.631124i \(0.782594\pi\)
\(212\) −7.80662 −0.536161
\(213\) 28.1276 1.92727
\(214\) −6.86372 −0.469194
\(215\) 37.8947 2.58440
\(216\) 2.18946 0.148974
\(217\) 23.2535 1.57855
\(218\) −13.1004 −0.887274
\(219\) −3.03706 −0.205226
\(220\) 8.43442 0.568649
\(221\) 20.0579 1.34924
\(222\) 8.47465 0.568781
\(223\) 19.6240 1.31412 0.657060 0.753839i \(-0.271800\pi\)
0.657060 + 0.753839i \(0.271800\pi\)
\(224\) 13.3938 0.894908
\(225\) 33.9126 2.26084
\(226\) −3.95901 −0.263349
\(227\) −21.1158 −1.40151 −0.700753 0.713404i \(-0.747153\pi\)
−0.700753 + 0.713404i \(0.747153\pi\)
\(228\) −3.62047 −0.239771
\(229\) −22.4595 −1.48417 −0.742083 0.670308i \(-0.766162\pi\)
−0.742083 + 0.670308i \(0.766162\pi\)
\(230\) 19.1959 1.26574
\(231\) 22.7993 1.50008
\(232\) −1.86950 −0.122738
\(233\) 14.1100 0.924380 0.462190 0.886781i \(-0.347064\pi\)
0.462190 + 0.886781i \(0.347064\pi\)
\(234\) 27.3285 1.78652
\(235\) 48.5383 3.16629
\(236\) −4.43013 −0.288377
\(237\) −36.0660 −2.34274
\(238\) −22.3759 −1.45042
\(239\) 20.2618 1.31063 0.655313 0.755357i \(-0.272537\pi\)
0.655313 + 0.755357i \(0.272537\pi\)
\(240\) 48.4439 3.12704
\(241\) −22.5673 −1.45369 −0.726844 0.686802i \(-0.759014\pi\)
−0.726844 + 0.686802i \(0.759014\pi\)
\(242\) −5.20164 −0.334374
\(243\) 22.3553 1.43409
\(244\) 4.00366 0.256308
\(245\) 12.6206 0.806300
\(246\) −28.5757 −1.82192
\(247\) 8.78731 0.559123
\(248\) 14.7764 0.938302
\(249\) 5.74166 0.363863
\(250\) 31.5552 1.99573
\(251\) −30.7968 −1.94388 −0.971940 0.235229i \(-0.924416\pi\)
−0.971940 + 0.235229i \(0.924416\pi\)
\(252\) −8.54063 −0.538009
\(253\) 8.37359 0.526443
\(254\) 26.7088 1.67586
\(255\) −40.9902 −2.56691
\(256\) 16.2178 1.01361
\(257\) 4.66616 0.291067 0.145533 0.989353i \(-0.453510\pi\)
0.145533 + 0.989353i \(0.453510\pi\)
\(258\) −41.4698 −2.58180
\(259\) 6.42816 0.399427
\(260\) 14.3872 0.892254
\(261\) 3.14368 0.194589
\(262\) −13.0893 −0.808658
\(263\) 19.7919 1.22042 0.610210 0.792239i \(-0.291085\pi\)
0.610210 + 0.792239i \(0.291085\pi\)
\(264\) 14.4877 0.891659
\(265\) −38.7212 −2.37862
\(266\) −9.80281 −0.601049
\(267\) 10.5704 0.646900
\(268\) −5.05509 −0.308789
\(269\) 1.46870 0.0895483 0.0447741 0.998997i \(-0.485743\pi\)
0.0447741 + 0.998997i \(0.485743\pi\)
\(270\) −6.91881 −0.421065
\(271\) −28.6120 −1.73806 −0.869028 0.494763i \(-0.835255\pi\)
−0.869028 + 0.494763i \(0.835255\pi\)
\(272\) −20.7397 −1.25753
\(273\) 38.8902 2.35374
\(274\) −22.7972 −1.37723
\(275\) 27.8001 1.67641
\(276\) −5.88491 −0.354230
\(277\) 3.22181 0.193580 0.0967900 0.995305i \(-0.469142\pi\)
0.0967900 + 0.995305i \(0.469142\pi\)
\(278\) 33.0898 1.98459
\(279\) −24.8475 −1.48758
\(280\) 25.1919 1.50551
\(281\) 18.4370 1.09986 0.549931 0.835210i \(-0.314654\pi\)
0.549931 + 0.835210i \(0.314654\pi\)
\(282\) −53.1176 −3.16311
\(283\) −18.0818 −1.07485 −0.537425 0.843312i \(-0.680603\pi\)
−0.537425 + 0.843312i \(0.680603\pi\)
\(284\) −8.63744 −0.512538
\(285\) −17.9577 −1.06372
\(286\) 22.4027 1.32470
\(287\) −21.6751 −1.27944
\(288\) −14.3119 −0.843335
\(289\) 0.548693 0.0322761
\(290\) 5.90770 0.346912
\(291\) 10.6913 0.626734
\(292\) 0.932624 0.0545777
\(293\) 14.5657 0.850937 0.425468 0.904973i \(-0.360109\pi\)
0.425468 + 0.904973i \(0.360109\pi\)
\(294\) −13.8113 −0.805489
\(295\) −21.9736 −1.27935
\(296\) 4.08476 0.237422
\(297\) −3.01812 −0.175129
\(298\) 8.78548 0.508929
\(299\) 14.2834 0.826030
\(300\) −19.5377 −1.12801
\(301\) −31.4555 −1.81307
\(302\) −22.1150 −1.27257
\(303\) 42.5096 2.44211
\(304\) −9.08601 −0.521118
\(305\) 19.8583 1.13708
\(306\) 23.9097 1.36683
\(307\) 30.9927 1.76885 0.884423 0.466687i \(-0.154552\pi\)
0.884423 + 0.466687i \(0.154552\pi\)
\(308\) −7.00122 −0.398932
\(309\) 22.2807 1.26751
\(310\) −46.6941 −2.65205
\(311\) 8.88597 0.503877 0.251938 0.967743i \(-0.418932\pi\)
0.251938 + 0.967743i \(0.418932\pi\)
\(312\) 24.7127 1.39908
\(313\) 19.5433 1.10465 0.552326 0.833628i \(-0.313741\pi\)
0.552326 + 0.833628i \(0.313741\pi\)
\(314\) 4.38611 0.247522
\(315\) −42.3619 −2.38682
\(316\) 11.0752 0.623028
\(317\) 26.3640 1.48075 0.740376 0.672193i \(-0.234647\pi\)
0.740376 + 0.672193i \(0.234647\pi\)
\(318\) 42.3743 2.37623
\(319\) 2.57705 0.144287
\(320\) 11.3308 0.633408
\(321\) 10.4370 0.582539
\(322\) −15.9340 −0.887969
\(323\) 7.68802 0.427773
\(324\) −5.87436 −0.326354
\(325\) 47.4204 2.63041
\(326\) 14.1851 0.785638
\(327\) 19.9207 1.10162
\(328\) −13.7734 −0.760509
\(329\) −40.2906 −2.22129
\(330\) −45.7820 −2.52021
\(331\) −10.4756 −0.575791 −0.287895 0.957662i \(-0.592956\pi\)
−0.287895 + 0.957662i \(0.592956\pi\)
\(332\) −1.76316 −0.0967657
\(333\) −6.86880 −0.376408
\(334\) −17.7857 −0.973192
\(335\) −25.0735 −1.36991
\(336\) −40.2122 −2.19375
\(337\) 10.6302 0.579062 0.289531 0.957169i \(-0.406501\pi\)
0.289531 + 0.957169i \(0.406501\pi\)
\(338\) 16.5449 0.899926
\(339\) 6.02011 0.326968
\(340\) 12.5873 0.682643
\(341\) −20.3689 −1.10304
\(342\) 10.4748 0.566411
\(343\) 11.9558 0.645551
\(344\) −19.9883 −1.07770
\(345\) −29.1894 −1.57151
\(346\) −25.6446 −1.37866
\(347\) 10.3770 0.557069 0.278535 0.960426i \(-0.410151\pi\)
0.278535 + 0.960426i \(0.410151\pi\)
\(348\) −1.81114 −0.0970870
\(349\) −20.3187 −1.08763 −0.543817 0.839204i \(-0.683021\pi\)
−0.543817 + 0.839204i \(0.683021\pi\)
\(350\) −52.9005 −2.82765
\(351\) −5.14820 −0.274791
\(352\) −11.7322 −0.625330
\(353\) 3.29442 0.175344 0.0876721 0.996149i \(-0.472057\pi\)
0.0876721 + 0.996149i \(0.472057\pi\)
\(354\) 24.0467 1.27807
\(355\) −42.8421 −2.27382
\(356\) −3.24598 −0.172037
\(357\) 34.0251 1.80080
\(358\) −15.8466 −0.837518
\(359\) −0.297088 −0.0156797 −0.00783985 0.999969i \(-0.502496\pi\)
−0.00783985 + 0.999969i \(0.502496\pi\)
\(360\) −26.9188 −1.41874
\(361\) −15.6319 −0.822732
\(362\) 14.9097 0.783635
\(363\) 7.90967 0.415150
\(364\) −11.9424 −0.625954
\(365\) 4.62586 0.242128
\(366\) −21.7318 −1.13594
\(367\) −24.3748 −1.27236 −0.636178 0.771542i \(-0.719486\pi\)
−0.636178 + 0.771542i \(0.719486\pi\)
\(368\) −14.7689 −0.769882
\(369\) 23.1609 1.20571
\(370\) −12.9080 −0.671057
\(371\) 32.1416 1.66871
\(372\) 14.3151 0.742204
\(373\) 27.1931 1.40801 0.704003 0.710197i \(-0.251394\pi\)
0.704003 + 0.710197i \(0.251394\pi\)
\(374\) 19.6001 1.01350
\(375\) −47.9832 −2.47784
\(376\) −25.6025 −1.32035
\(377\) 4.39584 0.226397
\(378\) 5.74315 0.295396
\(379\) 15.4141 0.791772 0.395886 0.918300i \(-0.370438\pi\)
0.395886 + 0.918300i \(0.370438\pi\)
\(380\) 5.51446 0.282886
\(381\) −40.6136 −2.08070
\(382\) 28.7401 1.47047
\(383\) −23.1298 −1.18188 −0.590938 0.806717i \(-0.701242\pi\)
−0.590938 + 0.806717i \(0.701242\pi\)
\(384\) −33.5870 −1.71398
\(385\) −34.7264 −1.76982
\(386\) 4.26075 0.216867
\(387\) 33.6117 1.70858
\(388\) −3.28309 −0.166674
\(389\) 10.1990 0.517107 0.258554 0.965997i \(-0.416754\pi\)
0.258554 + 0.965997i \(0.416754\pi\)
\(390\) −78.0933 −3.95441
\(391\) 12.4965 0.631977
\(392\) −6.65699 −0.336229
\(393\) 19.9037 1.00401
\(394\) 31.3302 1.57839
\(395\) 54.9334 2.76400
\(396\) 7.48114 0.375941
\(397\) −14.2227 −0.713818 −0.356909 0.934139i \(-0.616169\pi\)
−0.356909 + 0.934139i \(0.616169\pi\)
\(398\) 25.2483 1.26558
\(399\) 14.9063 0.746247
\(400\) −49.0323 −2.45161
\(401\) −36.7125 −1.83333 −0.916667 0.399652i \(-0.869131\pi\)
−0.916667 + 0.399652i \(0.869131\pi\)
\(402\) 27.4390 1.36853
\(403\) −34.7445 −1.73075
\(404\) −13.0539 −0.649456
\(405\) −29.1371 −1.44783
\(406\) −4.90385 −0.243374
\(407\) −5.63073 −0.279105
\(408\) 21.6211 1.07041
\(409\) 12.1724 0.601885 0.300943 0.953642i \(-0.402699\pi\)
0.300943 + 0.953642i \(0.402699\pi\)
\(410\) 43.5246 2.14953
\(411\) 34.6657 1.70993
\(412\) −6.84198 −0.337080
\(413\) 18.2398 0.897522
\(414\) 17.0263 0.836796
\(415\) −8.74533 −0.429291
\(416\) −20.0124 −0.981190
\(417\) −50.3167 −2.46402
\(418\) 8.58674 0.419991
\(419\) 5.36250 0.261975 0.130988 0.991384i \(-0.458185\pi\)
0.130988 + 0.991384i \(0.458185\pi\)
\(420\) 24.4055 1.19087
\(421\) 4.97168 0.242305 0.121152 0.992634i \(-0.461341\pi\)
0.121152 + 0.992634i \(0.461341\pi\)
\(422\) −37.5618 −1.82848
\(423\) 43.0524 2.09328
\(424\) 20.4243 0.991891
\(425\) 41.4881 2.01247
\(426\) 46.8839 2.27153
\(427\) −16.4839 −0.797713
\(428\) −3.20502 −0.154920
\(429\) −34.0658 −1.64471
\(430\) 63.1641 3.04604
\(431\) −0.904823 −0.0435838 −0.0217919 0.999763i \(-0.506937\pi\)
−0.0217919 + 0.999763i \(0.506937\pi\)
\(432\) 5.32319 0.256112
\(433\) −28.3440 −1.36213 −0.681063 0.732224i \(-0.738482\pi\)
−0.681063 + 0.732224i \(0.738482\pi\)
\(434\) 38.7597 1.86053
\(435\) −8.98331 −0.430717
\(436\) −6.11726 −0.292964
\(437\) 5.47469 0.261890
\(438\) −5.06227 −0.241885
\(439\) −29.4511 −1.40562 −0.702812 0.711375i \(-0.748073\pi\)
−0.702812 + 0.711375i \(0.748073\pi\)
\(440\) −22.0668 −1.05199
\(441\) 11.1942 0.533056
\(442\) 33.4332 1.59026
\(443\) −27.0607 −1.28569 −0.642847 0.765994i \(-0.722247\pi\)
−0.642847 + 0.765994i \(0.722247\pi\)
\(444\) 3.95724 0.187802
\(445\) −16.1002 −0.763223
\(446\) 32.7099 1.54886
\(447\) −13.3593 −0.631873
\(448\) −9.40540 −0.444363
\(449\) 14.4606 0.682439 0.341219 0.939984i \(-0.389160\pi\)
0.341219 + 0.939984i \(0.389160\pi\)
\(450\) 56.5267 2.66469
\(451\) 18.9863 0.894028
\(452\) −1.84866 −0.0869537
\(453\) 33.6283 1.57999
\(454\) −35.1965 −1.65185
\(455\) −59.2351 −2.77698
\(456\) 9.47215 0.443574
\(457\) −35.5623 −1.66353 −0.831767 0.555125i \(-0.812670\pi\)
−0.831767 + 0.555125i \(0.812670\pi\)
\(458\) −37.4362 −1.74928
\(459\) −4.50416 −0.210236
\(460\) 8.96351 0.417926
\(461\) −26.4731 −1.23297 −0.616487 0.787365i \(-0.711445\pi\)
−0.616487 + 0.787365i \(0.711445\pi\)
\(462\) 38.0026 1.76804
\(463\) 31.8071 1.47820 0.739101 0.673595i \(-0.235251\pi\)
0.739101 + 0.673595i \(0.235251\pi\)
\(464\) −4.54526 −0.211009
\(465\) 71.0036 3.29271
\(466\) 23.5191 1.08950
\(467\) −31.4629 −1.45593 −0.727964 0.685616i \(-0.759533\pi\)
−0.727964 + 0.685616i \(0.759533\pi\)
\(468\) 12.7611 0.589881
\(469\) 20.8129 0.961052
\(470\) 80.9052 3.73188
\(471\) −6.66956 −0.307317
\(472\) 11.5904 0.533493
\(473\) 27.5534 1.26691
\(474\) −60.1160 −2.76122
\(475\) 18.1758 0.833963
\(476\) −10.4484 −0.478904
\(477\) −34.3448 −1.57254
\(478\) 33.7730 1.54474
\(479\) −31.4633 −1.43760 −0.718798 0.695219i \(-0.755307\pi\)
−0.718798 + 0.695219i \(0.755307\pi\)
\(480\) 40.8972 1.86669
\(481\) −9.60471 −0.437937
\(482\) −37.6159 −1.71336
\(483\) 24.2295 1.10248
\(484\) −2.42891 −0.110405
\(485\) −16.2843 −0.739431
\(486\) 37.2625 1.69026
\(487\) −22.1074 −1.00178 −0.500892 0.865510i \(-0.666995\pi\)
−0.500892 + 0.865510i \(0.666995\pi\)
\(488\) −10.4747 −0.474166
\(489\) −21.5700 −0.975427
\(490\) 21.0364 0.950328
\(491\) −5.73930 −0.259011 −0.129506 0.991579i \(-0.541339\pi\)
−0.129506 + 0.991579i \(0.541339\pi\)
\(492\) −13.3434 −0.601569
\(493\) 3.84592 0.173212
\(494\) 14.6470 0.658999
\(495\) 37.1068 1.66783
\(496\) 35.9255 1.61310
\(497\) 35.5622 1.59518
\(498\) 9.57039 0.428859
\(499\) 3.50798 0.157039 0.0785193 0.996913i \(-0.474981\pi\)
0.0785193 + 0.996913i \(0.474981\pi\)
\(500\) 14.7347 0.658957
\(501\) 27.0452 1.20829
\(502\) −51.3332 −2.29111
\(503\) 11.3637 0.506683 0.253342 0.967377i \(-0.418470\pi\)
0.253342 + 0.967377i \(0.418470\pi\)
\(504\) 22.3446 0.995310
\(505\) −64.7479 −2.88124
\(506\) 13.9574 0.620481
\(507\) −25.1584 −1.11732
\(508\) 12.4717 0.553341
\(509\) −33.4533 −1.48279 −0.741397 0.671067i \(-0.765836\pi\)
−0.741397 + 0.671067i \(0.765836\pi\)
\(510\) −68.3238 −3.02543
\(511\) −3.83982 −0.169864
\(512\) 0.529579 0.0234043
\(513\) −1.97326 −0.0871214
\(514\) 7.77770 0.343060
\(515\) −33.9365 −1.49542
\(516\) −19.3643 −0.852468
\(517\) 35.2924 1.55216
\(518\) 10.7147 0.470775
\(519\) 38.9954 1.71171
\(520\) −37.6408 −1.65066
\(521\) 20.0560 0.878670 0.439335 0.898323i \(-0.355214\pi\)
0.439335 + 0.898323i \(0.355214\pi\)
\(522\) 5.23999 0.229348
\(523\) 29.8001 1.30307 0.651534 0.758620i \(-0.274126\pi\)
0.651534 + 0.758620i \(0.274126\pi\)
\(524\) −6.11204 −0.267006
\(525\) 80.4411 3.51074
\(526\) 32.9898 1.43842
\(527\) −30.3980 −1.32416
\(528\) 35.2237 1.53292
\(529\) −14.1011 −0.613093
\(530\) −64.5417 −2.80351
\(531\) −19.4901 −0.845798
\(532\) −4.57743 −0.198457
\(533\) 32.3861 1.40280
\(534\) 17.6191 0.762455
\(535\) −15.8970 −0.687289
\(536\) 13.2255 0.571256
\(537\) 24.0965 1.03984
\(538\) 2.44808 0.105544
\(539\) 9.17648 0.395259
\(540\) −3.23074 −0.139029
\(541\) −1.04233 −0.0448134 −0.0224067 0.999749i \(-0.507133\pi\)
−0.0224067 + 0.999749i \(0.507133\pi\)
\(542\) −47.6914 −2.04852
\(543\) −22.6718 −0.972941
\(544\) −17.5089 −0.750687
\(545\) −30.3419 −1.29970
\(546\) 64.8235 2.77419
\(547\) −15.2991 −0.654142 −0.327071 0.945000i \(-0.606062\pi\)
−0.327071 + 0.945000i \(0.606062\pi\)
\(548\) −10.6452 −0.454739
\(549\) 17.6139 0.751741
\(550\) 46.3380 1.97586
\(551\) 1.68489 0.0717785
\(552\) 15.3966 0.655321
\(553\) −45.5990 −1.93907
\(554\) 5.37022 0.228159
\(555\) 19.6281 0.833166
\(556\) 15.4513 0.655281
\(557\) −23.9575 −1.01511 −0.507556 0.861619i \(-0.669451\pi\)
−0.507556 + 0.861619i \(0.669451\pi\)
\(558\) −41.4166 −1.75330
\(559\) 46.9996 1.98787
\(560\) 61.2485 2.58822
\(561\) −29.8042 −1.25833
\(562\) 30.7314 1.29633
\(563\) 7.28767 0.307139 0.153569 0.988138i \(-0.450923\pi\)
0.153569 + 0.988138i \(0.450923\pi\)
\(564\) −24.8033 −1.04441
\(565\) −9.16944 −0.385761
\(566\) −30.1393 −1.26685
\(567\) 24.1860 1.01572
\(568\) 22.5979 0.948188
\(569\) 14.7716 0.619258 0.309629 0.950857i \(-0.399795\pi\)
0.309629 + 0.950857i \(0.399795\pi\)
\(570\) −29.9324 −1.25373
\(571\) −10.6241 −0.444603 −0.222301 0.974978i \(-0.571357\pi\)
−0.222301 + 0.974978i \(0.571357\pi\)
\(572\) 10.4610 0.437394
\(573\) −43.7025 −1.82570
\(574\) −36.1288 −1.50799
\(575\) 29.5439 1.23207
\(576\) 10.0501 0.418755
\(577\) −12.9800 −0.540363 −0.270182 0.962809i \(-0.587084\pi\)
−0.270182 + 0.962809i \(0.587084\pi\)
\(578\) 0.914579 0.0380415
\(579\) −6.47895 −0.269256
\(580\) 2.75860 0.114545
\(581\) 7.25930 0.301166
\(582\) 17.8206 0.738687
\(583\) −28.1543 −1.16603
\(584\) −2.44000 −0.100968
\(585\) 63.2955 2.61695
\(586\) 24.2786 1.00294
\(587\) 19.6060 0.809228 0.404614 0.914488i \(-0.367406\pi\)
0.404614 + 0.914488i \(0.367406\pi\)
\(588\) −6.44917 −0.265959
\(589\) −13.3172 −0.548728
\(590\) −36.6263 −1.50788
\(591\) −47.6411 −1.95969
\(592\) 9.93118 0.408169
\(593\) −11.2121 −0.460425 −0.230213 0.973140i \(-0.573942\pi\)
−0.230213 + 0.973140i \(0.573942\pi\)
\(594\) −5.03069 −0.206412
\(595\) −51.8248 −2.12461
\(596\) 4.10238 0.168040
\(597\) −38.3928 −1.57131
\(598\) 23.8080 0.973582
\(599\) −5.75836 −0.235280 −0.117640 0.993056i \(-0.537533\pi\)
−0.117640 + 0.993056i \(0.537533\pi\)
\(600\) 51.1161 2.08680
\(601\) −32.1574 −1.31173 −0.655864 0.754879i \(-0.727696\pi\)
−0.655864 + 0.754879i \(0.727696\pi\)
\(602\) −52.4311 −2.13693
\(603\) −22.2396 −0.905666
\(604\) −10.3266 −0.420184
\(605\) −12.0475 −0.489801
\(606\) 70.8564 2.87835
\(607\) −33.1331 −1.34483 −0.672415 0.740174i \(-0.734743\pi\)
−0.672415 + 0.740174i \(0.734743\pi\)
\(608\) −7.67058 −0.311083
\(609\) 7.45684 0.302166
\(610\) 33.1005 1.34020
\(611\) 60.2006 2.43545
\(612\) 11.1647 0.451305
\(613\) 15.2948 0.617749 0.308875 0.951103i \(-0.400048\pi\)
0.308875 + 0.951103i \(0.400048\pi\)
\(614\) 51.6596 2.08481
\(615\) −66.1840 −2.66880
\(616\) 18.3171 0.738018
\(617\) 7.08811 0.285357 0.142678 0.989769i \(-0.454429\pi\)
0.142678 + 0.989769i \(0.454429\pi\)
\(618\) 37.1382 1.49392
\(619\) 32.7113 1.31478 0.657388 0.753552i \(-0.271661\pi\)
0.657388 + 0.753552i \(0.271661\pi\)
\(620\) −21.8039 −0.875664
\(621\) −3.20744 −0.128710
\(622\) 14.8114 0.593884
\(623\) 13.3644 0.535434
\(624\) 60.0834 2.40526
\(625\) 23.5660 0.942641
\(626\) 32.5754 1.30197
\(627\) −13.0571 −0.521450
\(628\) 2.04810 0.0817279
\(629\) −8.40316 −0.335056
\(630\) −70.6102 −2.81318
\(631\) 31.5065 1.25426 0.627128 0.778917i \(-0.284230\pi\)
0.627128 + 0.778917i \(0.284230\pi\)
\(632\) −28.9758 −1.15259
\(633\) 57.1169 2.27019
\(634\) 43.9444 1.74526
\(635\) 61.8600 2.45484
\(636\) 19.7867 0.784593
\(637\) 15.6529 0.620191
\(638\) 4.29551 0.170061
\(639\) −37.9999 −1.50325
\(640\) 51.1576 2.02218
\(641\) −41.3023 −1.63134 −0.815672 0.578514i \(-0.803633\pi\)
−0.815672 + 0.578514i \(0.803633\pi\)
\(642\) 17.3968 0.686597
\(643\) −36.6735 −1.44626 −0.723131 0.690710i \(-0.757298\pi\)
−0.723131 + 0.690710i \(0.757298\pi\)
\(644\) −7.44041 −0.293193
\(645\) −96.0480 −3.78189
\(646\) 12.8146 0.504185
\(647\) 13.4592 0.529134 0.264567 0.964367i \(-0.414771\pi\)
0.264567 + 0.964367i \(0.414771\pi\)
\(648\) 15.3690 0.603750
\(649\) −15.9771 −0.627156
\(650\) 79.0418 3.10027
\(651\) −58.9385 −2.30998
\(652\) 6.62372 0.259405
\(653\) 45.0315 1.76222 0.881109 0.472914i \(-0.156798\pi\)
0.881109 + 0.472914i \(0.156798\pi\)
\(654\) 33.2044 1.29840
\(655\) −30.3160 −1.18454
\(656\) −33.4870 −1.30745
\(657\) 4.10303 0.160074
\(658\) −67.1576 −2.61808
\(659\) −49.5281 −1.92934 −0.964671 0.263456i \(-0.915138\pi\)
−0.964671 + 0.263456i \(0.915138\pi\)
\(660\) −21.3779 −0.832134
\(661\) 29.4145 1.14409 0.572046 0.820221i \(-0.306150\pi\)
0.572046 + 0.820221i \(0.306150\pi\)
\(662\) −17.4610 −0.678643
\(663\) −50.8389 −1.97442
\(664\) 4.61290 0.179015
\(665\) −22.7043 −0.880433
\(666\) −11.4491 −0.443645
\(667\) 2.73871 0.106043
\(668\) −8.30506 −0.321332
\(669\) −49.7390 −1.92302
\(670\) −41.7933 −1.61462
\(671\) 14.4390 0.557413
\(672\) −33.9479 −1.30957
\(673\) −26.3408 −1.01536 −0.507682 0.861545i \(-0.669497\pi\)
−0.507682 + 0.861545i \(0.669497\pi\)
\(674\) 17.7187 0.682499
\(675\) −10.6486 −0.409865
\(676\) 7.72567 0.297141
\(677\) 26.6543 1.02441 0.512204 0.858864i \(-0.328829\pi\)
0.512204 + 0.858864i \(0.328829\pi\)
\(678\) 10.0345 0.385373
\(679\) 13.5172 0.518743
\(680\) −32.9319 −1.26288
\(681\) 53.5202 2.05090
\(682\) −33.9515 −1.30007
\(683\) 30.1313 1.15294 0.576471 0.817118i \(-0.304429\pi\)
0.576471 + 0.817118i \(0.304429\pi\)
\(684\) 4.89120 0.187020
\(685\) −52.8006 −2.01741
\(686\) 19.9283 0.760864
\(687\) 56.9260 2.17186
\(688\) −48.5972 −1.85275
\(689\) −48.0247 −1.82959
\(690\) −48.6539 −1.85222
\(691\) 31.1678 1.18568 0.592839 0.805321i \(-0.298007\pi\)
0.592839 + 0.805321i \(0.298007\pi\)
\(692\) −11.9747 −0.455211
\(693\) −30.8015 −1.17005
\(694\) 17.2968 0.656577
\(695\) 76.6391 2.90709
\(696\) 4.73843 0.179610
\(697\) 28.3346 1.07325
\(698\) −33.8678 −1.28192
\(699\) −35.7634 −1.35269
\(700\) −24.7019 −0.933645
\(701\) −6.74845 −0.254885 −0.127443 0.991846i \(-0.540677\pi\)
−0.127443 + 0.991846i \(0.540677\pi\)
\(702\) −8.58118 −0.323876
\(703\) −3.68139 −0.138846
\(704\) 8.23863 0.310505
\(705\) −123.025 −4.63340
\(706\) 5.49124 0.206666
\(707\) 53.7458 2.02132
\(708\) 11.2286 0.421997
\(709\) 11.7702 0.442038 0.221019 0.975270i \(-0.429062\pi\)
0.221019 + 0.975270i \(0.429062\pi\)
\(710\) −71.4106 −2.67999
\(711\) 48.7247 1.82732
\(712\) 8.49238 0.318265
\(713\) −21.6466 −0.810672
\(714\) 56.7141 2.12247
\(715\) 51.8868 1.94046
\(716\) −7.39957 −0.276535
\(717\) −51.3556 −1.91791
\(718\) −0.495196 −0.0184805
\(719\) −52.4809 −1.95721 −0.978604 0.205752i \(-0.934036\pi\)
−0.978604 + 0.205752i \(0.934036\pi\)
\(720\) −65.4470 −2.43906
\(721\) 28.1699 1.04910
\(722\) −26.0558 −0.969695
\(723\) 57.1992 2.12726
\(724\) 6.96208 0.258744
\(725\) 9.09242 0.337684
\(726\) 13.1841 0.489308
\(727\) −25.1949 −0.934426 −0.467213 0.884145i \(-0.654742\pi\)
−0.467213 + 0.884145i \(0.654742\pi\)
\(728\) 31.2447 1.15801
\(729\) −34.0196 −1.25998
\(730\) 7.71052 0.285379
\(731\) 41.1199 1.52088
\(732\) −10.1477 −0.375069
\(733\) −27.7624 −1.02543 −0.512713 0.858560i \(-0.671359\pi\)
−0.512713 + 0.858560i \(0.671359\pi\)
\(734\) −40.6287 −1.49963
\(735\) −31.9882 −1.17990
\(736\) −12.4682 −0.459583
\(737\) −18.2310 −0.671548
\(738\) 38.6053 1.42108
\(739\) 30.7604 1.13154 0.565770 0.824563i \(-0.308579\pi\)
0.565770 + 0.824563i \(0.308579\pi\)
\(740\) −6.02742 −0.221572
\(741\) −22.2724 −0.818195
\(742\) 53.5746 1.96679
\(743\) −43.6331 −1.60074 −0.800371 0.599505i \(-0.795364\pi\)
−0.800371 + 0.599505i \(0.795364\pi\)
\(744\) −37.4523 −1.37307
\(745\) 20.3480 0.745493
\(746\) 45.3263 1.65951
\(747\) −7.75690 −0.283810
\(748\) 9.15229 0.334641
\(749\) 13.1958 0.482163
\(750\) −79.9800 −2.92046
\(751\) −26.3342 −0.960949 −0.480474 0.877009i \(-0.659535\pi\)
−0.480474 + 0.877009i \(0.659535\pi\)
\(752\) −62.2469 −2.26991
\(753\) 78.0578 2.84458
\(754\) 7.32713 0.266838
\(755\) −51.2204 −1.86410
\(756\) 2.68177 0.0975349
\(757\) −37.5467 −1.36466 −0.682329 0.731045i \(-0.739033\pi\)
−0.682329 + 0.731045i \(0.739033\pi\)
\(758\) 25.6928 0.933204
\(759\) −21.2237 −0.770373
\(760\) −14.4274 −0.523335
\(761\) 25.3904 0.920403 0.460201 0.887815i \(-0.347777\pi\)
0.460201 + 0.887815i \(0.347777\pi\)
\(762\) −67.6961 −2.45237
\(763\) 25.1861 0.911798
\(764\) 13.4202 0.485526
\(765\) 55.3772 2.00217
\(766\) −38.5534 −1.39299
\(767\) −27.2532 −0.984056
\(768\) −41.1057 −1.48328
\(769\) 32.1010 1.15759 0.578796 0.815473i \(-0.303523\pi\)
0.578796 + 0.815473i \(0.303523\pi\)
\(770\) −57.8830 −2.08596
\(771\) −11.8269 −0.425934
\(772\) 1.98956 0.0716058
\(773\) −21.9262 −0.788631 −0.394315 0.918975i \(-0.629018\pi\)
−0.394315 + 0.918975i \(0.629018\pi\)
\(774\) 56.0251 2.01378
\(775\) −71.8660 −2.58150
\(776\) 8.58947 0.308344
\(777\) −16.2928 −0.584502
\(778\) 16.9999 0.609477
\(779\) 12.4133 0.444753
\(780\) −36.4657 −1.30568
\(781\) −31.1506 −1.11466
\(782\) 20.8296 0.744866
\(783\) −0.987119 −0.0352768
\(784\) −16.1850 −0.578035
\(785\) 10.1586 0.362578
\(786\) 33.1761 1.18335
\(787\) 1.00000 0.0356462
\(788\) 14.6297 0.521161
\(789\) −50.1646 −1.78591
\(790\) 91.5648 3.25773
\(791\) 7.61134 0.270628
\(792\) −19.5727 −0.695487
\(793\) 24.6296 0.874624
\(794\) −23.7069 −0.841325
\(795\) 98.1429 3.48077
\(796\) 11.7897 0.417874
\(797\) 15.5117 0.549451 0.274726 0.961523i \(-0.411413\pi\)
0.274726 + 0.961523i \(0.411413\pi\)
\(798\) 24.8462 0.879547
\(799\) 52.6695 1.86331
\(800\) −41.3940 −1.46350
\(801\) −14.2805 −0.504577
\(802\) −61.1935 −2.16082
\(803\) 3.36348 0.118695
\(804\) 12.8127 0.451867
\(805\) −36.9048 −1.30072
\(806\) −57.9133 −2.03991
\(807\) −3.72257 −0.131041
\(808\) 34.1526 1.20148
\(809\) 12.0551 0.423834 0.211917 0.977288i \(-0.432029\pi\)
0.211917 + 0.977288i \(0.432029\pi\)
\(810\) −48.5667 −1.70646
\(811\) 42.4490 1.49059 0.745294 0.666736i \(-0.232309\pi\)
0.745294 + 0.666736i \(0.232309\pi\)
\(812\) −2.28985 −0.0803581
\(813\) 72.5201 2.54339
\(814\) −9.38548 −0.328961
\(815\) 32.8540 1.15082
\(816\) 52.5670 1.84021
\(817\) 18.0145 0.630248
\(818\) 20.2893 0.709399
\(819\) −52.5401 −1.83590
\(820\) 20.3239 0.709740
\(821\) 5.71748 0.199541 0.0997707 0.995010i \(-0.468189\pi\)
0.0997707 + 0.995010i \(0.468189\pi\)
\(822\) 57.7819 2.01538
\(823\) −15.9661 −0.556542 −0.278271 0.960503i \(-0.589761\pi\)
−0.278271 + 0.960503i \(0.589761\pi\)
\(824\) 17.9005 0.623594
\(825\) −70.4621 −2.45318
\(826\) 30.4027 1.05784
\(827\) 45.0917 1.56799 0.783996 0.620766i \(-0.213178\pi\)
0.783996 + 0.620766i \(0.213178\pi\)
\(828\) 7.95043 0.276296
\(829\) 27.2197 0.945378 0.472689 0.881229i \(-0.343283\pi\)
0.472689 + 0.881229i \(0.343283\pi\)
\(830\) −14.5770 −0.505975
\(831\) −8.16602 −0.283276
\(832\) 14.0532 0.487206
\(833\) 13.6947 0.474495
\(834\) −83.8694 −2.90416
\(835\) −41.1935 −1.42556
\(836\) 4.00958 0.138674
\(837\) 7.80214 0.269681
\(838\) 8.93838 0.308771
\(839\) −3.00966 −0.103905 −0.0519525 0.998650i \(-0.516544\pi\)
−0.0519525 + 0.998650i \(0.516544\pi\)
\(840\) −63.8515 −2.20309
\(841\) −28.1571 −0.970936
\(842\) 8.28695 0.285587
\(843\) −46.7306 −1.60949
\(844\) −17.5395 −0.603735
\(845\) 38.3197 1.31824
\(846\) 71.7611 2.46720
\(847\) 10.0004 0.343616
\(848\) 49.6571 1.70523
\(849\) 45.8301 1.57289
\(850\) 69.1537 2.37195
\(851\) −5.98394 −0.205127
\(852\) 21.8925 0.750024
\(853\) −26.9576 −0.923012 −0.461506 0.887137i \(-0.652691\pi\)
−0.461506 + 0.887137i \(0.652691\pi\)
\(854\) −27.4759 −0.940207
\(855\) 24.2606 0.829694
\(856\) 8.38521 0.286601
\(857\) 4.71792 0.161161 0.0805805 0.996748i \(-0.474323\pi\)
0.0805805 + 0.996748i \(0.474323\pi\)
\(858\) −56.7819 −1.93850
\(859\) 37.0573 1.26438 0.632190 0.774814i \(-0.282156\pi\)
0.632190 + 0.774814i \(0.282156\pi\)
\(860\) 29.4945 1.00575
\(861\) 54.9379 1.87228
\(862\) −1.50819 −0.0513691
\(863\) −7.46742 −0.254194 −0.127097 0.991890i \(-0.540566\pi\)
−0.127097 + 0.991890i \(0.540566\pi\)
\(864\) 4.49394 0.152887
\(865\) −59.3953 −2.01950
\(866\) −47.2447 −1.60544
\(867\) −1.39072 −0.0472313
\(868\) 18.0989 0.614316
\(869\) 39.9423 1.35495
\(870\) −14.9737 −0.507655
\(871\) −31.0979 −1.05371
\(872\) 16.0044 0.541979
\(873\) −14.4438 −0.488848
\(874\) 9.12539 0.308671
\(875\) −60.6661 −2.05089
\(876\) −2.36383 −0.0798665
\(877\) 27.2535 0.920286 0.460143 0.887845i \(-0.347798\pi\)
0.460143 + 0.887845i \(0.347798\pi\)
\(878\) −49.0900 −1.65671
\(879\) −36.9182 −1.24522
\(880\) −53.6505 −1.80856
\(881\) 0.0482393 0.00162522 0.000812611 1.00000i \(-0.499741\pi\)
0.000812611 1.00000i \(0.499741\pi\)
\(882\) 18.6588 0.628275
\(883\) −32.0734 −1.07936 −0.539678 0.841871i \(-0.681454\pi\)
−0.539678 + 0.841871i \(0.681454\pi\)
\(884\) 15.6117 0.525077
\(885\) 55.6944 1.87215
\(886\) −45.1057 −1.51536
\(887\) 17.8876 0.600606 0.300303 0.953844i \(-0.402912\pi\)
0.300303 + 0.953844i \(0.402912\pi\)
\(888\) −10.3532 −0.347432
\(889\) −51.3486 −1.72218
\(890\) −26.8363 −0.899556
\(891\) −21.1857 −0.709747
\(892\) 15.2739 0.511408
\(893\) 23.0743 0.772153
\(894\) −22.2677 −0.744743
\(895\) −36.7022 −1.22682
\(896\) −42.4647 −1.41865
\(897\) −36.2027 −1.20877
\(898\) 24.1034 0.804341
\(899\) −6.66194 −0.222188
\(900\) 26.3952 0.879839
\(901\) −42.0168 −1.39978
\(902\) 31.6469 1.05373
\(903\) 79.7272 2.65316
\(904\) 4.83661 0.160863
\(905\) 34.5322 1.14789
\(906\) 56.0527 1.86223
\(907\) −14.1222 −0.468919 −0.234460 0.972126i \(-0.575332\pi\)
−0.234460 + 0.972126i \(0.575332\pi\)
\(908\) −16.4350 −0.545416
\(909\) −57.4299 −1.90483
\(910\) −98.7349 −3.27303
\(911\) 33.3802 1.10594 0.552968 0.833203i \(-0.313495\pi\)
0.552968 + 0.833203i \(0.313495\pi\)
\(912\) 23.0294 0.762580
\(913\) −6.35876 −0.210444
\(914\) −59.2764 −1.96069
\(915\) −50.3329 −1.66396
\(916\) −17.4809 −0.577584
\(917\) 25.1646 0.831009
\(918\) −7.50768 −0.247790
\(919\) −54.3593 −1.79315 −0.896574 0.442895i \(-0.853952\pi\)
−0.896574 + 0.442895i \(0.853952\pi\)
\(920\) −23.4510 −0.773158
\(921\) −78.5541 −2.58845
\(922\) −44.1262 −1.45322
\(923\) −53.1357 −1.74898
\(924\) 17.7453 0.583778
\(925\) −19.8665 −0.653206
\(926\) 53.0171 1.74225
\(927\) −30.1009 −0.988644
\(928\) −3.83720 −0.125962
\(929\) 21.9733 0.720921 0.360460 0.932775i \(-0.382620\pi\)
0.360460 + 0.932775i \(0.382620\pi\)
\(930\) 118.351 3.88089
\(931\) 5.99962 0.196630
\(932\) 10.9822 0.359735
\(933\) −22.5224 −0.737350
\(934\) −52.4433 −1.71600
\(935\) 45.3957 1.48460
\(936\) −33.3865 −1.09127
\(937\) −47.6420 −1.55640 −0.778199 0.628018i \(-0.783866\pi\)
−0.778199 + 0.628018i \(0.783866\pi\)
\(938\) 34.6916 1.13272
\(939\) −49.5344 −1.61650
\(940\) 37.7788 1.23221
\(941\) 31.2675 1.01929 0.509646 0.860384i \(-0.329776\pi\)
0.509646 + 0.860384i \(0.329776\pi\)
\(942\) −11.1170 −0.362213
\(943\) 20.1773 0.657062
\(944\) 28.1796 0.917167
\(945\) 13.3017 0.432704
\(946\) 45.9268 1.49321
\(947\) 38.7780 1.26011 0.630057 0.776548i \(-0.283031\pi\)
0.630057 + 0.776548i \(0.283031\pi\)
\(948\) −28.0712 −0.911710
\(949\) 5.73730 0.186241
\(950\) 30.2960 0.982932
\(951\) −66.8224 −2.16686
\(952\) 27.3360 0.885966
\(953\) 9.68668 0.313782 0.156891 0.987616i \(-0.449853\pi\)
0.156891 + 0.987616i \(0.449853\pi\)
\(954\) −57.2470 −1.85344
\(955\) 66.5648 2.15399
\(956\) 15.7703 0.510049
\(957\) −6.53180 −0.211143
\(958\) −52.4441 −1.69439
\(959\) 43.8285 1.41530
\(960\) −28.7190 −0.926900
\(961\) 21.6556 0.698568
\(962\) −16.0094 −0.516165
\(963\) −14.1003 −0.454376
\(964\) −17.5648 −0.565723
\(965\) 9.86831 0.317672
\(966\) 40.3865 1.29941
\(967\) 6.85278 0.220371 0.110185 0.993911i \(-0.464856\pi\)
0.110185 + 0.993911i \(0.464856\pi\)
\(968\) 6.35470 0.204248
\(969\) −19.4861 −0.625983
\(970\) −27.1431 −0.871514
\(971\) −31.3435 −1.00586 −0.502931 0.864326i \(-0.667745\pi\)
−0.502931 + 0.864326i \(0.667745\pi\)
\(972\) 17.3998 0.558098
\(973\) −63.6164 −2.03945
\(974\) −36.8494 −1.18073
\(975\) −120.192 −3.84922
\(976\) −25.4668 −0.815173
\(977\) 33.0727 1.05809 0.529045 0.848594i \(-0.322550\pi\)
0.529045 + 0.848594i \(0.322550\pi\)
\(978\) −35.9535 −1.14967
\(979\) −11.7065 −0.374142
\(980\) 9.82296 0.313783
\(981\) −26.9125 −0.859251
\(982\) −9.56645 −0.305278
\(983\) 40.8024 1.30139 0.650697 0.759337i \(-0.274477\pi\)
0.650697 + 0.759337i \(0.274477\pi\)
\(984\) 34.9101 1.11289
\(985\) 72.5638 2.31208
\(986\) 6.41051 0.204152
\(987\) 102.121 3.25053
\(988\) 6.83941 0.217591
\(989\) 29.2818 0.931107
\(990\) 61.8508 1.96575
\(991\) −9.46998 −0.300824 −0.150412 0.988623i \(-0.548060\pi\)
−0.150412 + 0.988623i \(0.548060\pi\)
\(992\) 30.3290 0.962947
\(993\) 26.5515 0.842585
\(994\) 59.2763 1.88013
\(995\) 58.4774 1.85386
\(996\) 4.46890 0.141602
\(997\) −6.06563 −0.192100 −0.0960502 0.995376i \(-0.530621\pi\)
−0.0960502 + 0.995376i \(0.530621\pi\)
\(998\) 5.84721 0.185090
\(999\) 2.15681 0.0682384
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 787.2.a.b.1.26 37
3.2 odd 2 7083.2.a.g.1.12 37
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
787.2.a.b.1.26 37 1.1 even 1 trivial
7083.2.a.g.1.12 37 3.2 odd 2