Properties

Label 787.2.a.b.1.20
Level $787$
Weight $2$
Character 787.1
Self dual yes
Analytic conductor $6.284$
Analytic rank $0$
Dimension $37$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [787,2,Mod(1,787)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("787.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(787, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 787 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 787.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [37] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.28422663907\)
Analytic rank: \(0\)
Dimension: \(37\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Character \(\chi\) \(=\) 787.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.563766 q^{2} +0.822843 q^{3} -1.68217 q^{4} +1.78681 q^{5} +0.463891 q^{6} -0.964492 q^{7} -2.07588 q^{8} -2.32293 q^{9} +1.00734 q^{10} +5.94832 q^{11} -1.38416 q^{12} +2.26830 q^{13} -0.543748 q^{14} +1.47026 q^{15} +2.19402 q^{16} +1.30602 q^{17} -1.30959 q^{18} +5.52478 q^{19} -3.00571 q^{20} -0.793626 q^{21} +3.35346 q^{22} +1.41654 q^{23} -1.70812 q^{24} -1.80732 q^{25} +1.27879 q^{26} -4.37994 q^{27} +1.62244 q^{28} +6.67544 q^{29} +0.828883 q^{30} +2.06915 q^{31} +5.38868 q^{32} +4.89453 q^{33} +0.736288 q^{34} -1.72336 q^{35} +3.90756 q^{36} +6.60785 q^{37} +3.11468 q^{38} +1.86646 q^{39} -3.70920 q^{40} -2.33755 q^{41} -0.447419 q^{42} +4.15921 q^{43} -10.0061 q^{44} -4.15062 q^{45} +0.798594 q^{46} -7.57989 q^{47} +1.80534 q^{48} -6.06975 q^{49} -1.01891 q^{50} +1.07465 q^{51} -3.81567 q^{52} -6.95874 q^{53} -2.46926 q^{54} +10.6285 q^{55} +2.00217 q^{56} +4.54603 q^{57} +3.76339 q^{58} -5.46213 q^{59} -2.47323 q^{60} -8.63477 q^{61} +1.16652 q^{62} +2.24045 q^{63} -1.35010 q^{64} +4.05302 q^{65} +2.75937 q^{66} +3.13225 q^{67} -2.19694 q^{68} +1.16559 q^{69} -0.971572 q^{70} +4.08053 q^{71} +4.82213 q^{72} +12.2156 q^{73} +3.72528 q^{74} -1.48714 q^{75} -9.29361 q^{76} -5.73711 q^{77} +1.05224 q^{78} -9.89181 q^{79} +3.92030 q^{80} +3.36479 q^{81} -1.31783 q^{82} -1.18766 q^{83} +1.33501 q^{84} +2.33360 q^{85} +2.34482 q^{86} +5.49284 q^{87} -12.3480 q^{88} -5.38368 q^{89} -2.33998 q^{90} -2.18776 q^{91} -2.38285 q^{92} +1.70259 q^{93} -4.27328 q^{94} +9.87171 q^{95} +4.43404 q^{96} +3.48567 q^{97} -3.42192 q^{98} -13.8175 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 37 q + 12 q^{2} + 6 q^{3} + 42 q^{4} + 31 q^{5} + 4 q^{6} + 9 q^{7} + 36 q^{8} + 47 q^{9} + 4 q^{10} + 18 q^{11} + 15 q^{12} + 13 q^{13} + 8 q^{14} + 3 q^{15} + 48 q^{16} + 18 q^{17} + 17 q^{18} + 40 q^{20}+ \cdots - 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.563766 0.398643 0.199321 0.979934i \(-0.436126\pi\)
0.199321 + 0.979934i \(0.436126\pi\)
\(3\) 0.822843 0.475069 0.237534 0.971379i \(-0.423661\pi\)
0.237534 + 0.971379i \(0.423661\pi\)
\(4\) −1.68217 −0.841084
\(5\) 1.78681 0.799084 0.399542 0.916715i \(-0.369169\pi\)
0.399542 + 0.916715i \(0.369169\pi\)
\(6\) 0.463891 0.189383
\(7\) −0.964492 −0.364544 −0.182272 0.983248i \(-0.558345\pi\)
−0.182272 + 0.983248i \(0.558345\pi\)
\(8\) −2.07588 −0.733935
\(9\) −2.32293 −0.774310
\(10\) 1.00734 0.318549
\(11\) 5.94832 1.79349 0.896743 0.442551i \(-0.145927\pi\)
0.896743 + 0.442551i \(0.145927\pi\)
\(12\) −1.38416 −0.399573
\(13\) 2.26830 0.629114 0.314557 0.949239i \(-0.398144\pi\)
0.314557 + 0.949239i \(0.398144\pi\)
\(14\) −0.543748 −0.145323
\(15\) 1.47026 0.379620
\(16\) 2.19402 0.548506
\(17\) 1.30602 0.316756 0.158378 0.987379i \(-0.449374\pi\)
0.158378 + 0.987379i \(0.449374\pi\)
\(18\) −1.30959 −0.308673
\(19\) 5.52478 1.26747 0.633736 0.773550i \(-0.281521\pi\)
0.633736 + 0.773550i \(0.281521\pi\)
\(20\) −3.00571 −0.672097
\(21\) −0.793626 −0.173183
\(22\) 3.35346 0.714960
\(23\) 1.41654 0.295368 0.147684 0.989035i \(-0.452818\pi\)
0.147684 + 0.989035i \(0.452818\pi\)
\(24\) −1.70812 −0.348669
\(25\) −1.80732 −0.361465
\(26\) 1.27879 0.250792
\(27\) −4.37994 −0.842919
\(28\) 1.62244 0.306612
\(29\) 6.67544 1.23960 0.619799 0.784760i \(-0.287214\pi\)
0.619799 + 0.784760i \(0.287214\pi\)
\(30\) 0.828883 0.151333
\(31\) 2.06915 0.371631 0.185815 0.982585i \(-0.440507\pi\)
0.185815 + 0.982585i \(0.440507\pi\)
\(32\) 5.38868 0.952593
\(33\) 4.89453 0.852029
\(34\) 0.736288 0.126272
\(35\) −1.72336 −0.291301
\(36\) 3.90756 0.651260
\(37\) 6.60785 1.08632 0.543162 0.839628i \(-0.317227\pi\)
0.543162 + 0.839628i \(0.317227\pi\)
\(38\) 3.11468 0.505268
\(39\) 1.86646 0.298872
\(40\) −3.70920 −0.586476
\(41\) −2.33755 −0.365064 −0.182532 0.983200i \(-0.558429\pi\)
−0.182532 + 0.983200i \(0.558429\pi\)
\(42\) −0.447419 −0.0690383
\(43\) 4.15921 0.634273 0.317137 0.948380i \(-0.397279\pi\)
0.317137 + 0.948380i \(0.397279\pi\)
\(44\) −10.0061 −1.50847
\(45\) −4.15062 −0.618739
\(46\) 0.798594 0.117746
\(47\) −7.57989 −1.10564 −0.552820 0.833301i \(-0.686448\pi\)
−0.552820 + 0.833301i \(0.686448\pi\)
\(48\) 1.80534 0.260578
\(49\) −6.06975 −0.867108
\(50\) −1.01891 −0.144095
\(51\) 1.07465 0.150481
\(52\) −3.81567 −0.529138
\(53\) −6.95874 −0.955856 −0.477928 0.878399i \(-0.658612\pi\)
−0.477928 + 0.878399i \(0.658612\pi\)
\(54\) −2.46926 −0.336024
\(55\) 10.6285 1.43315
\(56\) 2.00217 0.267551
\(57\) 4.54603 0.602136
\(58\) 3.76339 0.494157
\(59\) −5.46213 −0.711109 −0.355554 0.934656i \(-0.615708\pi\)
−0.355554 + 0.934656i \(0.615708\pi\)
\(60\) −2.47323 −0.319292
\(61\) −8.63477 −1.10557 −0.552784 0.833324i \(-0.686435\pi\)
−0.552784 + 0.833324i \(0.686435\pi\)
\(62\) 1.16652 0.148148
\(63\) 2.24045 0.282270
\(64\) −1.35010 −0.168762
\(65\) 4.05302 0.502715
\(66\) 2.75937 0.339655
\(67\) 3.13225 0.382666 0.191333 0.981525i \(-0.438719\pi\)
0.191333 + 0.981525i \(0.438719\pi\)
\(68\) −2.19694 −0.266418
\(69\) 1.16559 0.140320
\(70\) −0.971572 −0.116125
\(71\) 4.08053 0.484270 0.242135 0.970243i \(-0.422152\pi\)
0.242135 + 0.970243i \(0.422152\pi\)
\(72\) 4.82213 0.568293
\(73\) 12.2156 1.42973 0.714864 0.699263i \(-0.246488\pi\)
0.714864 + 0.699263i \(0.246488\pi\)
\(74\) 3.72528 0.433055
\(75\) −1.48714 −0.171721
\(76\) −9.29361 −1.06605
\(77\) −5.73711 −0.653804
\(78\) 1.05224 0.119143
\(79\) −9.89181 −1.11292 −0.556458 0.830876i \(-0.687840\pi\)
−0.556458 + 0.830876i \(0.687840\pi\)
\(80\) 3.92030 0.438302
\(81\) 3.36479 0.373866
\(82\) −1.31783 −0.145530
\(83\) −1.18766 −0.130362 −0.0651812 0.997873i \(-0.520763\pi\)
−0.0651812 + 0.997873i \(0.520763\pi\)
\(84\) 1.33501 0.145662
\(85\) 2.33360 0.253114
\(86\) 2.34482 0.252848
\(87\) 5.49284 0.588894
\(88\) −12.3480 −1.31630
\(89\) −5.38368 −0.570669 −0.285334 0.958428i \(-0.592105\pi\)
−0.285334 + 0.958428i \(0.592105\pi\)
\(90\) −2.33998 −0.246656
\(91\) −2.18776 −0.229340
\(92\) −2.38285 −0.248429
\(93\) 1.70259 0.176550
\(94\) −4.27328 −0.440755
\(95\) 9.87171 1.01282
\(96\) 4.43404 0.452547
\(97\) 3.48567 0.353916 0.176958 0.984218i \(-0.443374\pi\)
0.176958 + 0.984218i \(0.443374\pi\)
\(98\) −3.42192 −0.345666
\(99\) −13.8175 −1.38871
\(100\) 3.04022 0.304022
\(101\) −0.965037 −0.0960248 −0.0480124 0.998847i \(-0.515289\pi\)
−0.0480124 + 0.998847i \(0.515289\pi\)
\(102\) 0.605849 0.0599880
\(103\) 14.7118 1.44959 0.724797 0.688963i \(-0.241934\pi\)
0.724797 + 0.688963i \(0.241934\pi\)
\(104\) −4.70873 −0.461729
\(105\) −1.41806 −0.138388
\(106\) −3.92310 −0.381045
\(107\) −5.93695 −0.573947 −0.286973 0.957939i \(-0.592649\pi\)
−0.286973 + 0.957939i \(0.592649\pi\)
\(108\) 7.36779 0.708966
\(109\) −0.713069 −0.0682996 −0.0341498 0.999417i \(-0.510872\pi\)
−0.0341498 + 0.999417i \(0.510872\pi\)
\(110\) 5.99199 0.571313
\(111\) 5.43722 0.516078
\(112\) −2.11612 −0.199955
\(113\) 3.08478 0.290192 0.145096 0.989418i \(-0.453651\pi\)
0.145096 + 0.989418i \(0.453651\pi\)
\(114\) 2.56290 0.240037
\(115\) 2.53107 0.236024
\(116\) −11.2292 −1.04261
\(117\) −5.26911 −0.487129
\(118\) −3.07936 −0.283478
\(119\) −1.25964 −0.115471
\(120\) −3.05209 −0.278616
\(121\) 24.3825 2.21659
\(122\) −4.86799 −0.440727
\(123\) −1.92344 −0.173431
\(124\) −3.48066 −0.312573
\(125\) −12.1634 −1.08792
\(126\) 1.26309 0.112525
\(127\) −5.75870 −0.511002 −0.255501 0.966809i \(-0.582240\pi\)
−0.255501 + 0.966809i \(0.582240\pi\)
\(128\) −11.5385 −1.01987
\(129\) 3.42238 0.301323
\(130\) 2.28495 0.200404
\(131\) 4.10474 0.358632 0.179316 0.983791i \(-0.442611\pi\)
0.179316 + 0.983791i \(0.442611\pi\)
\(132\) −8.23343 −0.716628
\(133\) −5.32861 −0.462049
\(134\) 1.76586 0.152547
\(135\) −7.82609 −0.673563
\(136\) −2.71113 −0.232478
\(137\) −19.2478 −1.64445 −0.822227 0.569159i \(-0.807269\pi\)
−0.822227 + 0.569159i \(0.807269\pi\)
\(138\) 0.657118 0.0559376
\(139\) −13.7806 −1.16886 −0.584429 0.811445i \(-0.698681\pi\)
−0.584429 + 0.811445i \(0.698681\pi\)
\(140\) 2.89898 0.245009
\(141\) −6.23706 −0.525255
\(142\) 2.30047 0.193051
\(143\) 13.4926 1.12831
\(144\) −5.09656 −0.424714
\(145\) 11.9277 0.990543
\(146\) 6.88674 0.569951
\(147\) −4.99445 −0.411936
\(148\) −11.1155 −0.913689
\(149\) 4.60811 0.377511 0.188755 0.982024i \(-0.439555\pi\)
0.188755 + 0.982024i \(0.439555\pi\)
\(150\) −0.838401 −0.0684552
\(151\) −2.29186 −0.186509 −0.0932544 0.995642i \(-0.529727\pi\)
−0.0932544 + 0.995642i \(0.529727\pi\)
\(152\) −11.4688 −0.930241
\(153\) −3.03378 −0.245267
\(154\) −3.23439 −0.260634
\(155\) 3.69717 0.296964
\(156\) −3.13969 −0.251377
\(157\) 0.863544 0.0689183 0.0344592 0.999406i \(-0.489029\pi\)
0.0344592 + 0.999406i \(0.489029\pi\)
\(158\) −5.57666 −0.443656
\(159\) −5.72595 −0.454097
\(160\) 9.62852 0.761202
\(161\) −1.36624 −0.107675
\(162\) 1.89695 0.149039
\(163\) −12.9687 −1.01579 −0.507895 0.861419i \(-0.669576\pi\)
−0.507895 + 0.861419i \(0.669576\pi\)
\(164\) 3.93215 0.307050
\(165\) 8.74558 0.680843
\(166\) −0.669561 −0.0519680
\(167\) −1.89301 −0.146486 −0.0732429 0.997314i \(-0.523335\pi\)
−0.0732429 + 0.997314i \(0.523335\pi\)
\(168\) 1.64747 0.127105
\(169\) −7.85481 −0.604216
\(170\) 1.31560 0.100902
\(171\) −12.8337 −0.981416
\(172\) −6.99649 −0.533477
\(173\) 13.3774 1.01706 0.508532 0.861043i \(-0.330188\pi\)
0.508532 + 0.861043i \(0.330188\pi\)
\(174\) 3.09668 0.234759
\(175\) 1.74315 0.131770
\(176\) 13.0508 0.983738
\(177\) −4.49447 −0.337825
\(178\) −3.03514 −0.227493
\(179\) −22.8068 −1.70466 −0.852330 0.523005i \(-0.824811\pi\)
−0.852330 + 0.523005i \(0.824811\pi\)
\(180\) 6.98205 0.520411
\(181\) −12.2888 −0.913422 −0.456711 0.889615i \(-0.650973\pi\)
−0.456711 + 0.889615i \(0.650973\pi\)
\(182\) −1.23338 −0.0914246
\(183\) −7.10506 −0.525221
\(184\) −2.94056 −0.216781
\(185\) 11.8069 0.868064
\(186\) 0.959861 0.0703804
\(187\) 7.76861 0.568097
\(188\) 12.7506 0.929936
\(189\) 4.22441 0.307281
\(190\) 5.56533 0.403752
\(191\) 17.8977 1.29503 0.647514 0.762053i \(-0.275809\pi\)
0.647514 + 0.762053i \(0.275809\pi\)
\(192\) −1.11092 −0.0801735
\(193\) 8.36294 0.601978 0.300989 0.953628i \(-0.402683\pi\)
0.300989 + 0.953628i \(0.402683\pi\)
\(194\) 1.96510 0.141086
\(195\) 3.33500 0.238824
\(196\) 10.2103 0.729310
\(197\) 8.73271 0.622180 0.311090 0.950381i \(-0.399306\pi\)
0.311090 + 0.950381i \(0.399306\pi\)
\(198\) −7.78985 −0.553601
\(199\) −21.9950 −1.55918 −0.779592 0.626288i \(-0.784574\pi\)
−0.779592 + 0.626288i \(0.784574\pi\)
\(200\) 3.75179 0.265292
\(201\) 2.57735 0.181793
\(202\) −0.544055 −0.0382796
\(203\) −6.43841 −0.451888
\(204\) −1.80774 −0.126567
\(205\) −4.17675 −0.291717
\(206\) 8.29399 0.577870
\(207\) −3.29051 −0.228706
\(208\) 4.97671 0.345073
\(209\) 32.8632 2.27319
\(210\) −0.799451 −0.0551674
\(211\) −2.23785 −0.154060 −0.0770300 0.997029i \(-0.524544\pi\)
−0.0770300 + 0.997029i \(0.524544\pi\)
\(212\) 11.7058 0.803955
\(213\) 3.35764 0.230062
\(214\) −3.34705 −0.228800
\(215\) 7.43170 0.506838
\(216\) 9.09222 0.618648
\(217\) −1.99568 −0.135476
\(218\) −0.402004 −0.0272272
\(219\) 10.0515 0.679219
\(220\) −17.8789 −1.20540
\(221\) 2.96244 0.199275
\(222\) 3.06532 0.205731
\(223\) −17.0149 −1.13940 −0.569702 0.821851i \(-0.692941\pi\)
−0.569702 + 0.821851i \(0.692941\pi\)
\(224\) −5.19734 −0.347262
\(225\) 4.19829 0.279886
\(226\) 1.73910 0.115683
\(227\) −9.65276 −0.640676 −0.320338 0.947303i \(-0.603797\pi\)
−0.320338 + 0.947303i \(0.603797\pi\)
\(228\) −7.64718 −0.506447
\(229\) 2.33099 0.154036 0.0770179 0.997030i \(-0.475460\pi\)
0.0770179 + 0.997030i \(0.475460\pi\)
\(230\) 1.42693 0.0940892
\(231\) −4.72074 −0.310602
\(232\) −13.8574 −0.909785
\(233\) 5.60954 0.367493 0.183747 0.982974i \(-0.441177\pi\)
0.183747 + 0.982974i \(0.441177\pi\)
\(234\) −2.97054 −0.194190
\(235\) −13.5438 −0.883499
\(236\) 9.18822 0.598102
\(237\) −8.13940 −0.528711
\(238\) −0.710144 −0.0460318
\(239\) −22.6692 −1.46635 −0.733174 0.680041i \(-0.761962\pi\)
−0.733174 + 0.680041i \(0.761962\pi\)
\(240\) 3.22579 0.208224
\(241\) 26.8664 1.73062 0.865308 0.501241i \(-0.167123\pi\)
0.865308 + 0.501241i \(0.167123\pi\)
\(242\) 13.7460 0.883629
\(243\) 15.9085 1.02053
\(244\) 14.5251 0.929876
\(245\) −10.8455 −0.692892
\(246\) −1.08437 −0.0691368
\(247\) 12.5319 0.797384
\(248\) −4.29531 −0.272753
\(249\) −0.977256 −0.0619311
\(250\) −6.85729 −0.433693
\(251\) 5.27636 0.333041 0.166520 0.986038i \(-0.446747\pi\)
0.166520 + 0.986038i \(0.446747\pi\)
\(252\) −3.76881 −0.237413
\(253\) 8.42601 0.529738
\(254\) −3.24656 −0.203707
\(255\) 1.92018 0.120247
\(256\) −3.80482 −0.237801
\(257\) −3.21059 −0.200271 −0.100136 0.994974i \(-0.531928\pi\)
−0.100136 + 0.994974i \(0.531928\pi\)
\(258\) 1.92942 0.120120
\(259\) −6.37322 −0.396013
\(260\) −6.81785 −0.422825
\(261\) −15.5066 −0.959833
\(262\) 2.31411 0.142966
\(263\) 14.6644 0.904245 0.452123 0.891956i \(-0.350667\pi\)
0.452123 + 0.891956i \(0.350667\pi\)
\(264\) −10.1605 −0.625334
\(265\) −12.4339 −0.763809
\(266\) −3.00409 −0.184192
\(267\) −4.42992 −0.271107
\(268\) −5.26898 −0.321854
\(269\) 10.4240 0.635561 0.317781 0.948164i \(-0.397062\pi\)
0.317781 + 0.948164i \(0.397062\pi\)
\(270\) −4.41209 −0.268511
\(271\) −11.7659 −0.714728 −0.357364 0.933965i \(-0.616324\pi\)
−0.357364 + 0.933965i \(0.616324\pi\)
\(272\) 2.86543 0.173742
\(273\) −1.80018 −0.108952
\(274\) −10.8513 −0.655550
\(275\) −10.7505 −0.648282
\(276\) −1.96071 −0.118021
\(277\) 23.9203 1.43723 0.718616 0.695407i \(-0.244776\pi\)
0.718616 + 0.695407i \(0.244776\pi\)
\(278\) −7.76905 −0.465956
\(279\) −4.80649 −0.287757
\(280\) 3.57749 0.213796
\(281\) 18.7229 1.11691 0.558457 0.829533i \(-0.311393\pi\)
0.558457 + 0.829533i \(0.311393\pi\)
\(282\) −3.51624 −0.209389
\(283\) −25.0061 −1.48646 −0.743229 0.669037i \(-0.766707\pi\)
−0.743229 + 0.669037i \(0.766707\pi\)
\(284\) −6.86414 −0.407312
\(285\) 8.12287 0.481157
\(286\) 7.60666 0.449791
\(287\) 2.25455 0.133082
\(288\) −12.5175 −0.737602
\(289\) −15.2943 −0.899666
\(290\) 6.72444 0.394873
\(291\) 2.86816 0.168135
\(292\) −20.5487 −1.20252
\(293\) 14.4268 0.842825 0.421413 0.906869i \(-0.361534\pi\)
0.421413 + 0.906869i \(0.361534\pi\)
\(294\) −2.81570 −0.164215
\(295\) −9.75976 −0.568235
\(296\) −13.7171 −0.797291
\(297\) −26.0533 −1.51176
\(298\) 2.59789 0.150492
\(299\) 3.21313 0.185820
\(300\) 2.50163 0.144431
\(301\) −4.01152 −0.231220
\(302\) −1.29207 −0.0743503
\(303\) −0.794074 −0.0456183
\(304\) 12.1215 0.695216
\(305\) −15.4287 −0.883442
\(306\) −1.71034 −0.0977739
\(307\) −4.91196 −0.280340 −0.140170 0.990127i \(-0.544765\pi\)
−0.140170 + 0.990127i \(0.544765\pi\)
\(308\) 9.65078 0.549904
\(309\) 12.1055 0.688656
\(310\) 2.08434 0.118383
\(311\) 14.6387 0.830087 0.415043 0.909802i \(-0.363766\pi\)
0.415043 + 0.909802i \(0.363766\pi\)
\(312\) −3.87454 −0.219353
\(313\) −16.2271 −0.917211 −0.458606 0.888640i \(-0.651651\pi\)
−0.458606 + 0.888640i \(0.651651\pi\)
\(314\) 0.486837 0.0274738
\(315\) 4.00325 0.225557
\(316\) 16.6397 0.936055
\(317\) −18.5174 −1.04004 −0.520019 0.854155i \(-0.674075\pi\)
−0.520019 + 0.854155i \(0.674075\pi\)
\(318\) −3.22810 −0.181023
\(319\) 39.7077 2.22320
\(320\) −2.41236 −0.134855
\(321\) −4.88518 −0.272664
\(322\) −0.770238 −0.0429237
\(323\) 7.21545 0.401479
\(324\) −5.66014 −0.314452
\(325\) −4.09956 −0.227403
\(326\) −7.31133 −0.404937
\(327\) −0.586744 −0.0324470
\(328\) 4.85248 0.267933
\(329\) 7.31074 0.403054
\(330\) 4.93046 0.271413
\(331\) −29.6554 −1.63001 −0.815004 0.579455i \(-0.803265\pi\)
−0.815004 + 0.579455i \(0.803265\pi\)
\(332\) 1.99784 0.109646
\(333\) −15.3496 −0.841151
\(334\) −1.06722 −0.0583955
\(335\) 5.59673 0.305782
\(336\) −1.74123 −0.0949921
\(337\) −0.738933 −0.0402523 −0.0201261 0.999797i \(-0.506407\pi\)
−0.0201261 + 0.999797i \(0.506407\pi\)
\(338\) −4.42827 −0.240866
\(339\) 2.53829 0.137861
\(340\) −3.92550 −0.212890
\(341\) 12.3080 0.666515
\(342\) −7.23519 −0.391234
\(343\) 12.6057 0.680643
\(344\) −8.63402 −0.465515
\(345\) 2.08268 0.112128
\(346\) 7.54171 0.405445
\(347\) 5.91866 0.317730 0.158865 0.987300i \(-0.449217\pi\)
0.158865 + 0.987300i \(0.449217\pi\)
\(348\) −9.23988 −0.495310
\(349\) 24.2054 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(350\) 0.982729 0.0525291
\(351\) −9.93502 −0.530292
\(352\) 32.0536 1.70846
\(353\) 3.94926 0.210198 0.105099 0.994462i \(-0.466484\pi\)
0.105099 + 0.994462i \(0.466484\pi\)
\(354\) −2.53383 −0.134672
\(355\) 7.29112 0.386972
\(356\) 9.05625 0.479980
\(357\) −1.03649 −0.0548568
\(358\) −12.8577 −0.679550
\(359\) 2.95226 0.155814 0.0779072 0.996961i \(-0.475176\pi\)
0.0779072 + 0.996961i \(0.475176\pi\)
\(360\) 8.61620 0.454114
\(361\) 11.5232 0.606484
\(362\) −6.92803 −0.364129
\(363\) 20.0630 1.05303
\(364\) 3.68018 0.192894
\(365\) 21.8269 1.14247
\(366\) −4.00559 −0.209376
\(367\) 19.8504 1.03618 0.518092 0.855325i \(-0.326642\pi\)
0.518092 + 0.855325i \(0.326642\pi\)
\(368\) 3.10791 0.162011
\(369\) 5.42997 0.282673
\(370\) 6.65635 0.346047
\(371\) 6.71165 0.348451
\(372\) −2.86404 −0.148493
\(373\) 0.348621 0.0180509 0.00902546 0.999959i \(-0.497127\pi\)
0.00902546 + 0.999959i \(0.497127\pi\)
\(374\) 4.37968 0.226468
\(375\) −10.0085 −0.516839
\(376\) 15.7349 0.811468
\(377\) 15.1419 0.779849
\(378\) 2.38158 0.122495
\(379\) 26.9713 1.38542 0.692712 0.721214i \(-0.256416\pi\)
0.692712 + 0.721214i \(0.256416\pi\)
\(380\) −16.6059 −0.851863
\(381\) −4.73851 −0.242761
\(382\) 10.0901 0.516254
\(383\) 19.8014 1.01181 0.505903 0.862590i \(-0.331159\pi\)
0.505903 + 0.862590i \(0.331159\pi\)
\(384\) −9.49437 −0.484508
\(385\) −10.2511 −0.522445
\(386\) 4.71474 0.239974
\(387\) −9.66155 −0.491124
\(388\) −5.86349 −0.297673
\(389\) 19.2163 0.974303 0.487152 0.873317i \(-0.338036\pi\)
0.487152 + 0.873317i \(0.338036\pi\)
\(390\) 1.88016 0.0952055
\(391\) 1.85002 0.0935594
\(392\) 12.6001 0.636401
\(393\) 3.37755 0.170375
\(394\) 4.92320 0.248027
\(395\) −17.6747 −0.889313
\(396\) 23.2434 1.16803
\(397\) −18.5683 −0.931915 −0.465957 0.884807i \(-0.654290\pi\)
−0.465957 + 0.884807i \(0.654290\pi\)
\(398\) −12.4000 −0.621558
\(399\) −4.38461 −0.219505
\(400\) −3.96531 −0.198266
\(401\) −15.5059 −0.774329 −0.387164 0.922011i \(-0.626545\pi\)
−0.387164 + 0.922011i \(0.626545\pi\)
\(402\) 1.45302 0.0724703
\(403\) 4.69346 0.233798
\(404\) 1.62335 0.0807649
\(405\) 6.01223 0.298750
\(406\) −3.62976 −0.180142
\(407\) 39.3056 1.94831
\(408\) −2.23084 −0.110443
\(409\) −22.7977 −1.12727 −0.563636 0.826023i \(-0.690598\pi\)
−0.563636 + 0.826023i \(0.690598\pi\)
\(410\) −2.35471 −0.116291
\(411\) −15.8380 −0.781229
\(412\) −24.7477 −1.21923
\(413\) 5.26818 0.259230
\(414\) −1.85508 −0.0911721
\(415\) −2.12211 −0.104170
\(416\) 12.2232 0.599289
\(417\) −11.3393 −0.555287
\(418\) 18.5271 0.906192
\(419\) 22.0813 1.07874 0.539371 0.842068i \(-0.318662\pi\)
0.539371 + 0.842068i \(0.318662\pi\)
\(420\) 2.38541 0.116396
\(421\) −31.2186 −1.52150 −0.760751 0.649043i \(-0.775169\pi\)
−0.760751 + 0.649043i \(0.775169\pi\)
\(422\) −1.26162 −0.0614149
\(423\) 17.6075 0.856108
\(424\) 14.4455 0.701536
\(425\) −2.36040 −0.114496
\(426\) 1.89292 0.0917124
\(427\) 8.32817 0.403028
\(428\) 9.98695 0.482737
\(429\) 11.1023 0.536023
\(430\) 4.18974 0.202047
\(431\) −23.3351 −1.12401 −0.562007 0.827133i \(-0.689971\pi\)
−0.562007 + 0.827133i \(0.689971\pi\)
\(432\) −9.60968 −0.462346
\(433\) 1.17144 0.0562959 0.0281479 0.999604i \(-0.491039\pi\)
0.0281479 + 0.999604i \(0.491039\pi\)
\(434\) −1.12510 −0.0540064
\(435\) 9.81464 0.470576
\(436\) 1.19950 0.0574457
\(437\) 7.82605 0.374371
\(438\) 5.66671 0.270766
\(439\) 10.7328 0.512247 0.256123 0.966644i \(-0.417555\pi\)
0.256123 + 0.966644i \(0.417555\pi\)
\(440\) −22.0635 −1.05184
\(441\) 14.0996 0.671410
\(442\) 1.67012 0.0794396
\(443\) −10.8312 −0.514604 −0.257302 0.966331i \(-0.582833\pi\)
−0.257302 + 0.966331i \(0.582833\pi\)
\(444\) −9.14632 −0.434065
\(445\) −9.61959 −0.456012
\(446\) −9.59244 −0.454215
\(447\) 3.79175 0.179344
\(448\) 1.30216 0.0615211
\(449\) 32.4116 1.52960 0.764799 0.644269i \(-0.222838\pi\)
0.764799 + 0.644269i \(0.222838\pi\)
\(450\) 2.36685 0.111574
\(451\) −13.9045 −0.654738
\(452\) −5.18913 −0.244076
\(453\) −1.88584 −0.0886044
\(454\) −5.44190 −0.255401
\(455\) −3.90910 −0.183262
\(456\) −9.43701 −0.441929
\(457\) 13.7438 0.642906 0.321453 0.946925i \(-0.395829\pi\)
0.321453 + 0.946925i \(0.395829\pi\)
\(458\) 1.31413 0.0614053
\(459\) −5.72027 −0.266999
\(460\) −4.25769 −0.198516
\(461\) 14.7757 0.688171 0.344085 0.938938i \(-0.388189\pi\)
0.344085 + 0.938938i \(0.388189\pi\)
\(462\) −2.66139 −0.123819
\(463\) −8.16583 −0.379498 −0.189749 0.981833i \(-0.560767\pi\)
−0.189749 + 0.981833i \(0.560767\pi\)
\(464\) 14.6461 0.679928
\(465\) 3.04219 0.141078
\(466\) 3.16247 0.146498
\(467\) 29.7679 1.37750 0.688748 0.725001i \(-0.258161\pi\)
0.688748 + 0.725001i \(0.258161\pi\)
\(468\) 8.86352 0.409716
\(469\) −3.02104 −0.139498
\(470\) −7.63553 −0.352201
\(471\) 0.710561 0.0327409
\(472\) 11.3387 0.521907
\(473\) 24.7403 1.13756
\(474\) −4.58872 −0.210767
\(475\) −9.98507 −0.458146
\(476\) 2.11893 0.0971210
\(477\) 16.1647 0.740129
\(478\) −12.7801 −0.584549
\(479\) −6.77788 −0.309689 −0.154845 0.987939i \(-0.549488\pi\)
−0.154845 + 0.987939i \(0.549488\pi\)
\(480\) 7.92276 0.361623
\(481\) 14.9886 0.683421
\(482\) 15.1464 0.689898
\(483\) −1.12420 −0.0511528
\(484\) −41.0155 −1.86434
\(485\) 6.22822 0.282809
\(486\) 8.96867 0.406827
\(487\) 31.9530 1.44793 0.723964 0.689838i \(-0.242318\pi\)
0.723964 + 0.689838i \(0.242318\pi\)
\(488\) 17.9247 0.811415
\(489\) −10.6712 −0.482570
\(490\) −6.11431 −0.276216
\(491\) −32.5786 −1.47025 −0.735125 0.677931i \(-0.762877\pi\)
−0.735125 + 0.677931i \(0.762877\pi\)
\(492\) 3.23555 0.145870
\(493\) 8.71824 0.392650
\(494\) 7.06504 0.317871
\(495\) −24.6892 −1.10970
\(496\) 4.53977 0.203842
\(497\) −3.93564 −0.176538
\(498\) −0.550944 −0.0246884
\(499\) −1.60801 −0.0719845 −0.0359923 0.999352i \(-0.511459\pi\)
−0.0359923 + 0.999352i \(0.511459\pi\)
\(500\) 20.4608 0.915036
\(501\) −1.55765 −0.0695908
\(502\) 2.97463 0.132764
\(503\) −37.2126 −1.65923 −0.829615 0.558337i \(-0.811440\pi\)
−0.829615 + 0.558337i \(0.811440\pi\)
\(504\) −4.65090 −0.207168
\(505\) −1.72433 −0.0767318
\(506\) 4.75030 0.211176
\(507\) −6.46327 −0.287044
\(508\) 9.68710 0.429796
\(509\) 23.0310 1.02083 0.510415 0.859928i \(-0.329492\pi\)
0.510415 + 0.859928i \(0.329492\pi\)
\(510\) 1.08253 0.0479355
\(511\) −11.7819 −0.521199
\(512\) 20.9320 0.925071
\(513\) −24.1982 −1.06838
\(514\) −1.81002 −0.0798366
\(515\) 26.2871 1.15835
\(516\) −5.75701 −0.253438
\(517\) −45.0876 −1.98295
\(518\) −3.59300 −0.157868
\(519\) 11.0075 0.483175
\(520\) −8.41358 −0.368960
\(521\) 32.5635 1.42663 0.713317 0.700841i \(-0.247192\pi\)
0.713317 + 0.700841i \(0.247192\pi\)
\(522\) −8.74209 −0.382631
\(523\) 6.32841 0.276722 0.138361 0.990382i \(-0.455817\pi\)
0.138361 + 0.990382i \(0.455817\pi\)
\(524\) −6.90486 −0.301640
\(525\) 1.43434 0.0625997
\(526\) 8.26729 0.360471
\(527\) 2.70235 0.117716
\(528\) 10.7387 0.467343
\(529\) −20.9934 −0.912758
\(530\) −7.00982 −0.304487
\(531\) 12.6881 0.550618
\(532\) 8.96361 0.388622
\(533\) −5.30227 −0.229667
\(534\) −2.49744 −0.108075
\(535\) −10.6082 −0.458632
\(536\) −6.50219 −0.280852
\(537\) −18.7664 −0.809830
\(538\) 5.87668 0.253362
\(539\) −36.1049 −1.55515
\(540\) 13.1648 0.566523
\(541\) −21.1262 −0.908285 −0.454142 0.890929i \(-0.650054\pi\)
−0.454142 + 0.890929i \(0.650054\pi\)
\(542\) −6.63322 −0.284921
\(543\) −10.1118 −0.433938
\(544\) 7.03770 0.301739
\(545\) −1.27412 −0.0545771
\(546\) −1.01488 −0.0434329
\(547\) −44.5357 −1.90421 −0.952104 0.305773i \(-0.901085\pi\)
−0.952104 + 0.305773i \(0.901085\pi\)
\(548\) 32.3781 1.38312
\(549\) 20.0580 0.856053
\(550\) −6.06079 −0.258433
\(551\) 36.8804 1.57116
\(552\) −2.41962 −0.102986
\(553\) 9.54057 0.405706
\(554\) 13.4855 0.572942
\(555\) 9.71526 0.412390
\(556\) 23.1813 0.983107
\(557\) −15.9218 −0.674627 −0.337313 0.941392i \(-0.609518\pi\)
−0.337313 + 0.941392i \(0.609518\pi\)
\(558\) −2.70974 −0.114712
\(559\) 9.43434 0.399030
\(560\) −3.78110 −0.159780
\(561\) 6.39234 0.269885
\(562\) 10.5553 0.445250
\(563\) 6.21090 0.261758 0.130879 0.991398i \(-0.458220\pi\)
0.130879 + 0.991398i \(0.458220\pi\)
\(564\) 10.4918 0.441783
\(565\) 5.51191 0.231888
\(566\) −14.0976 −0.592566
\(567\) −3.24531 −0.136290
\(568\) −8.47070 −0.355423
\(569\) 37.8833 1.58815 0.794074 0.607820i \(-0.207956\pi\)
0.794074 + 0.607820i \(0.207956\pi\)
\(570\) 4.57940 0.191810
\(571\) 19.6363 0.821752 0.410876 0.911691i \(-0.365223\pi\)
0.410876 + 0.911691i \(0.365223\pi\)
\(572\) −22.6968 −0.949001
\(573\) 14.7270 0.615227
\(574\) 1.27104 0.0530521
\(575\) −2.56014 −0.106765
\(576\) 3.13618 0.130674
\(577\) −18.9167 −0.787513 −0.393757 0.919215i \(-0.628825\pi\)
−0.393757 + 0.919215i \(0.628825\pi\)
\(578\) −8.62242 −0.358645
\(579\) 6.88139 0.285981
\(580\) −20.0644 −0.833130
\(581\) 1.14549 0.0475228
\(582\) 1.61697 0.0670256
\(583\) −41.3928 −1.71431
\(584\) −25.3581 −1.04933
\(585\) −9.41487 −0.389257
\(586\) 8.13337 0.335986
\(587\) −43.0668 −1.77756 −0.888779 0.458336i \(-0.848446\pi\)
−0.888779 + 0.458336i \(0.848446\pi\)
\(588\) 8.40151 0.346472
\(589\) 11.4316 0.471031
\(590\) −5.50222 −0.226523
\(591\) 7.18565 0.295578
\(592\) 14.4978 0.595855
\(593\) −32.7597 −1.34528 −0.672640 0.739970i \(-0.734840\pi\)
−0.672640 + 0.739970i \(0.734840\pi\)
\(594\) −14.6879 −0.602654
\(595\) −2.25074 −0.0922712
\(596\) −7.75161 −0.317518
\(597\) −18.0984 −0.740720
\(598\) 1.81145 0.0740758
\(599\) −47.9098 −1.95754 −0.978772 0.204954i \(-0.934295\pi\)
−0.978772 + 0.204954i \(0.934295\pi\)
\(600\) 3.08713 0.126032
\(601\) −29.4929 −1.20304 −0.601520 0.798858i \(-0.705438\pi\)
−0.601520 + 0.798858i \(0.705438\pi\)
\(602\) −2.26156 −0.0921743
\(603\) −7.27601 −0.296302
\(604\) 3.85529 0.156869
\(605\) 43.5668 1.77124
\(606\) −0.447672 −0.0181854
\(607\) 10.0240 0.406861 0.203430 0.979089i \(-0.434791\pi\)
0.203430 + 0.979089i \(0.434791\pi\)
\(608\) 29.7713 1.20738
\(609\) −5.29780 −0.214678
\(610\) −8.69815 −0.352178
\(611\) −17.1935 −0.695574
\(612\) 5.10333 0.206290
\(613\) −3.46352 −0.139890 −0.0699450 0.997551i \(-0.522282\pi\)
−0.0699450 + 0.997551i \(0.522282\pi\)
\(614\) −2.76920 −0.111756
\(615\) −3.43681 −0.138586
\(616\) 11.9096 0.479850
\(617\) 33.9350 1.36617 0.683085 0.730339i \(-0.260638\pi\)
0.683085 + 0.730339i \(0.260638\pi\)
\(618\) 6.82465 0.274528
\(619\) −37.1102 −1.49158 −0.745792 0.666179i \(-0.767929\pi\)
−0.745792 + 0.666179i \(0.767929\pi\)
\(620\) −6.21927 −0.249772
\(621\) −6.20433 −0.248971
\(622\) 8.25282 0.330908
\(623\) 5.19252 0.208034
\(624\) 4.09505 0.163933
\(625\) −12.6970 −0.507878
\(626\) −9.14830 −0.365640
\(627\) 27.0412 1.07992
\(628\) −1.45263 −0.0579661
\(629\) 8.62996 0.344099
\(630\) 2.25689 0.0899168
\(631\) −14.5875 −0.580720 −0.290360 0.956917i \(-0.593775\pi\)
−0.290360 + 0.956917i \(0.593775\pi\)
\(632\) 20.5342 0.816807
\(633\) −1.84140 −0.0731890
\(634\) −10.4395 −0.414604
\(635\) −10.2897 −0.408334
\(636\) 9.63201 0.381934
\(637\) −13.7680 −0.545510
\(638\) 22.3858 0.886264
\(639\) −9.47879 −0.374975
\(640\) −20.6171 −0.814961
\(641\) −8.25882 −0.326204 −0.163102 0.986609i \(-0.552150\pi\)
−0.163102 + 0.986609i \(0.552150\pi\)
\(642\) −2.75410 −0.108696
\(643\) −14.4390 −0.569418 −0.284709 0.958614i \(-0.591897\pi\)
−0.284709 + 0.958614i \(0.591897\pi\)
\(644\) 2.29824 0.0905634
\(645\) 6.11512 0.240783
\(646\) 4.06783 0.160047
\(647\) 28.5178 1.12115 0.560576 0.828103i \(-0.310580\pi\)
0.560576 + 0.828103i \(0.310580\pi\)
\(648\) −6.98490 −0.274393
\(649\) −32.4905 −1.27536
\(650\) −2.31119 −0.0906524
\(651\) −1.64213 −0.0643602
\(652\) 21.8156 0.854364
\(653\) −34.5336 −1.35140 −0.675701 0.737175i \(-0.736159\pi\)
−0.675701 + 0.737175i \(0.736159\pi\)
\(654\) −0.330786 −0.0129348
\(655\) 7.33437 0.286577
\(656\) −5.12864 −0.200240
\(657\) −28.3760 −1.10705
\(658\) 4.12155 0.160675
\(659\) −10.7848 −0.420118 −0.210059 0.977689i \(-0.567366\pi\)
−0.210059 + 0.977689i \(0.567366\pi\)
\(660\) −14.7115 −0.572646
\(661\) 18.5717 0.722354 0.361177 0.932497i \(-0.382375\pi\)
0.361177 + 0.932497i \(0.382375\pi\)
\(662\) −16.7187 −0.649791
\(663\) 2.43762 0.0946694
\(664\) 2.46544 0.0956775
\(665\) −9.52119 −0.369216
\(666\) −8.65356 −0.335319
\(667\) 9.45600 0.366138
\(668\) 3.18437 0.123207
\(669\) −14.0006 −0.541295
\(670\) 3.15525 0.121898
\(671\) −51.3624 −1.98282
\(672\) −4.27659 −0.164973
\(673\) 12.0496 0.464476 0.232238 0.972659i \(-0.425395\pi\)
0.232238 + 0.972659i \(0.425395\pi\)
\(674\) −0.416586 −0.0160463
\(675\) 7.91596 0.304686
\(676\) 13.2131 0.508196
\(677\) −15.4952 −0.595529 −0.297765 0.954639i \(-0.596241\pi\)
−0.297765 + 0.954639i \(0.596241\pi\)
\(678\) 1.43100 0.0549574
\(679\) −3.36190 −0.129018
\(680\) −4.84427 −0.185769
\(681\) −7.94271 −0.304365
\(682\) 6.93882 0.265701
\(683\) −11.9438 −0.457018 −0.228509 0.973542i \(-0.573385\pi\)
−0.228509 + 0.973542i \(0.573385\pi\)
\(684\) 21.5884 0.825453
\(685\) −34.3922 −1.31406
\(686\) 7.10665 0.271333
\(687\) 1.91804 0.0731776
\(688\) 9.12540 0.347903
\(689\) −15.7845 −0.601342
\(690\) 1.17414 0.0446988
\(691\) 0.886939 0.0337407 0.0168704 0.999858i \(-0.494630\pi\)
0.0168704 + 0.999858i \(0.494630\pi\)
\(692\) −22.5030 −0.855436
\(693\) 13.3269 0.506247
\(694\) 3.33674 0.126661
\(695\) −24.6233 −0.934015
\(696\) −11.4025 −0.432210
\(697\) −3.05288 −0.115636
\(698\) 13.6462 0.516516
\(699\) 4.61577 0.174584
\(700\) −2.93227 −0.110829
\(701\) 15.4593 0.583890 0.291945 0.956435i \(-0.405698\pi\)
0.291945 + 0.956435i \(0.405698\pi\)
\(702\) −5.60102 −0.211397
\(703\) 36.5069 1.37688
\(704\) −8.03080 −0.302672
\(705\) −11.1444 −0.419723
\(706\) 2.22646 0.0837940
\(707\) 0.930771 0.0350052
\(708\) 7.56046 0.284139
\(709\) −38.3069 −1.43864 −0.719322 0.694676i \(-0.755548\pi\)
−0.719322 + 0.694676i \(0.755548\pi\)
\(710\) 4.11049 0.154264
\(711\) 22.9780 0.861741
\(712\) 11.1759 0.418834
\(713\) 2.93103 0.109768
\(714\) −0.584337 −0.0218683
\(715\) 24.1086 0.901612
\(716\) 38.3648 1.43376
\(717\) −18.6532 −0.696616
\(718\) 1.66439 0.0621143
\(719\) −13.4500 −0.501600 −0.250800 0.968039i \(-0.580694\pi\)
−0.250800 + 0.968039i \(0.580694\pi\)
\(720\) −9.10657 −0.339382
\(721\) −14.1894 −0.528440
\(722\) 6.49639 0.241770
\(723\) 22.1068 0.822161
\(724\) 20.6719 0.768265
\(725\) −12.0647 −0.448071
\(726\) 11.3108 0.419784
\(727\) −21.5259 −0.798352 −0.399176 0.916874i \(-0.630704\pi\)
−0.399176 + 0.916874i \(0.630704\pi\)
\(728\) 4.54153 0.168320
\(729\) 2.99583 0.110957
\(730\) 12.3053 0.455439
\(731\) 5.43199 0.200910
\(732\) 11.9519 0.441755
\(733\) 44.2760 1.63537 0.817685 0.575665i \(-0.195257\pi\)
0.817685 + 0.575665i \(0.195257\pi\)
\(734\) 11.1910 0.413067
\(735\) −8.92412 −0.329171
\(736\) 7.63325 0.281365
\(737\) 18.6317 0.686306
\(738\) 3.06123 0.112685
\(739\) −2.70594 −0.0995396 −0.0497698 0.998761i \(-0.515849\pi\)
−0.0497698 + 0.998761i \(0.515849\pi\)
\(740\) −19.8613 −0.730115
\(741\) 10.3118 0.378812
\(742\) 3.78380 0.138908
\(743\) 16.0120 0.587423 0.293711 0.955894i \(-0.405110\pi\)
0.293711 + 0.955894i \(0.405110\pi\)
\(744\) −3.53437 −0.129576
\(745\) 8.23380 0.301663
\(746\) 0.196541 0.00719587
\(747\) 2.75884 0.100941
\(748\) −13.0681 −0.477817
\(749\) 5.72614 0.209229
\(750\) −5.64248 −0.206034
\(751\) −10.8480 −0.395850 −0.197925 0.980217i \(-0.563420\pi\)
−0.197925 + 0.980217i \(0.563420\pi\)
\(752\) −16.6305 −0.606450
\(753\) 4.34161 0.158217
\(754\) 8.53650 0.310881
\(755\) −4.09510 −0.149036
\(756\) −7.10617 −0.258449
\(757\) 41.0794 1.49306 0.746529 0.665353i \(-0.231719\pi\)
0.746529 + 0.665353i \(0.231719\pi\)
\(758\) 15.2055 0.552289
\(759\) 6.93328 0.251662
\(760\) −20.4925 −0.743341
\(761\) 17.9713 0.651460 0.325730 0.945463i \(-0.394390\pi\)
0.325730 + 0.945463i \(0.394390\pi\)
\(762\) −2.67141 −0.0967750
\(763\) 0.687750 0.0248982
\(764\) −30.1069 −1.08923
\(765\) −5.42078 −0.195989
\(766\) 11.1634 0.403349
\(767\) −12.3898 −0.447368
\(768\) −3.13077 −0.112972
\(769\) 3.58238 0.129184 0.0645919 0.997912i \(-0.479425\pi\)
0.0645919 + 0.997912i \(0.479425\pi\)
\(770\) −5.77922 −0.208269
\(771\) −2.64181 −0.0951425
\(772\) −14.0679 −0.506314
\(773\) −35.3158 −1.27022 −0.635111 0.772421i \(-0.719046\pi\)
−0.635111 + 0.772421i \(0.719046\pi\)
\(774\) −5.44685 −0.195783
\(775\) −3.73963 −0.134331
\(776\) −7.23584 −0.259752
\(777\) −5.24416 −0.188133
\(778\) 10.8335 0.388399
\(779\) −12.9145 −0.462708
\(780\) −5.61002 −0.200871
\(781\) 24.2723 0.868532
\(782\) 1.04298 0.0372968
\(783\) −29.2380 −1.04488
\(784\) −13.3172 −0.475614
\(785\) 1.54299 0.0550715
\(786\) 1.90415 0.0679188
\(787\) 1.00000 0.0356462
\(788\) −14.6899 −0.523305
\(789\) 12.0665 0.429579
\(790\) −9.96442 −0.354518
\(791\) −2.97525 −0.105788
\(792\) 28.6836 1.01923
\(793\) −19.5863 −0.695528
\(794\) −10.4682 −0.371501
\(795\) −10.2312 −0.362862
\(796\) 36.9993 1.31140
\(797\) 26.1947 0.927864 0.463932 0.885871i \(-0.346438\pi\)
0.463932 + 0.885871i \(0.346438\pi\)
\(798\) −2.47189 −0.0875041
\(799\) −9.89946 −0.350218
\(800\) −9.73909 −0.344329
\(801\) 12.5059 0.441875
\(802\) −8.74171 −0.308681
\(803\) 72.6624 2.56420
\(804\) −4.33554 −0.152903
\(805\) −2.44120 −0.0860410
\(806\) 2.64601 0.0932019
\(807\) 8.57730 0.301935
\(808\) 2.00330 0.0704759
\(809\) 44.3757 1.56017 0.780083 0.625676i \(-0.215177\pi\)
0.780083 + 0.625676i \(0.215177\pi\)
\(810\) 3.38949 0.119095
\(811\) −40.6451 −1.42724 −0.713621 0.700532i \(-0.752946\pi\)
−0.713621 + 0.700532i \(0.752946\pi\)
\(812\) 10.8305 0.380076
\(813\) −9.68150 −0.339545
\(814\) 22.1592 0.776678
\(815\) −23.1726 −0.811701
\(816\) 2.35780 0.0825395
\(817\) 22.9787 0.803923
\(818\) −12.8526 −0.449379
\(819\) 5.08201 0.177580
\(820\) 7.02600 0.245358
\(821\) −17.8408 −0.622650 −0.311325 0.950304i \(-0.600773\pi\)
−0.311325 + 0.950304i \(0.600773\pi\)
\(822\) −8.92890 −0.311431
\(823\) 21.7170 0.757006 0.378503 0.925600i \(-0.376439\pi\)
0.378503 + 0.925600i \(0.376439\pi\)
\(824\) −30.5399 −1.06391
\(825\) −8.84601 −0.307979
\(826\) 2.97002 0.103340
\(827\) 34.3025 1.19282 0.596408 0.802681i \(-0.296594\pi\)
0.596408 + 0.802681i \(0.296594\pi\)
\(828\) 5.53519 0.192361
\(829\) 50.9762 1.77048 0.885238 0.465137i \(-0.153995\pi\)
0.885238 + 0.465137i \(0.153995\pi\)
\(830\) −1.19638 −0.0415268
\(831\) 19.6827 0.682784
\(832\) −3.06242 −0.106170
\(833\) −7.92720 −0.274661
\(834\) −6.39271 −0.221361
\(835\) −3.38245 −0.117055
\(836\) −55.2814 −1.91195
\(837\) −9.06275 −0.313255
\(838\) 12.4487 0.430033
\(839\) −3.88375 −0.134082 −0.0670409 0.997750i \(-0.521356\pi\)
−0.0670409 + 0.997750i \(0.521356\pi\)
\(840\) 2.94371 0.101568
\(841\) 15.5615 0.536605
\(842\) −17.6000 −0.606536
\(843\) 15.4060 0.530611
\(844\) 3.76444 0.129577
\(845\) −14.0350 −0.482819
\(846\) 9.92653 0.341281
\(847\) −23.5168 −0.808045
\(848\) −15.2676 −0.524293
\(849\) −20.5761 −0.706170
\(850\) −1.33071 −0.0456430
\(851\) 9.36025 0.320865
\(852\) −5.64811 −0.193501
\(853\) −48.3238 −1.65458 −0.827288 0.561778i \(-0.810118\pi\)
−0.827288 + 0.561778i \(0.810118\pi\)
\(854\) 4.69514 0.160664
\(855\) −22.9313 −0.784233
\(856\) 12.3244 0.421240
\(857\) 50.1708 1.71380 0.856901 0.515481i \(-0.172387\pi\)
0.856901 + 0.515481i \(0.172387\pi\)
\(858\) 6.25909 0.213682
\(859\) −50.9676 −1.73899 −0.869496 0.493940i \(-0.835556\pi\)
−0.869496 + 0.493940i \(0.835556\pi\)
\(860\) −12.5014 −0.426293
\(861\) 1.85514 0.0632230
\(862\) −13.1556 −0.448080
\(863\) −31.5730 −1.07476 −0.537379 0.843341i \(-0.680586\pi\)
−0.537379 + 0.843341i \(0.680586\pi\)
\(864\) −23.6021 −0.802958
\(865\) 23.9028 0.812719
\(866\) 0.660419 0.0224419
\(867\) −12.5848 −0.427403
\(868\) 3.35707 0.113946
\(869\) −58.8396 −1.99600
\(870\) 5.53316 0.187592
\(871\) 7.10490 0.240740
\(872\) 1.48025 0.0501275
\(873\) −8.09697 −0.274041
\(874\) 4.41206 0.149240
\(875\) 11.7315 0.396596
\(876\) −16.9084 −0.571280
\(877\) −32.4538 −1.09589 −0.547944 0.836515i \(-0.684589\pi\)
−0.547944 + 0.836515i \(0.684589\pi\)
\(878\) 6.05077 0.204204
\(879\) 11.8710 0.400400
\(880\) 23.3192 0.786089
\(881\) −33.7444 −1.13688 −0.568439 0.822726i \(-0.692452\pi\)
−0.568439 + 0.822726i \(0.692452\pi\)
\(882\) 7.94888 0.267653
\(883\) 25.4446 0.856278 0.428139 0.903713i \(-0.359169\pi\)
0.428139 + 0.903713i \(0.359169\pi\)
\(884\) −4.98332 −0.167607
\(885\) −8.03075 −0.269951
\(886\) −6.10624 −0.205143
\(887\) −46.3958 −1.55782 −0.778910 0.627136i \(-0.784227\pi\)
−0.778910 + 0.627136i \(0.784227\pi\)
\(888\) −11.2870 −0.378768
\(889\) 5.55422 0.186283
\(890\) −5.42320 −0.181786
\(891\) 20.0148 0.670523
\(892\) 28.6220 0.958334
\(893\) −41.8772 −1.40137
\(894\) 2.13766 0.0714940
\(895\) −40.7513 −1.36217
\(896\) 11.1288 0.371787
\(897\) 2.64390 0.0882773
\(898\) 18.2726 0.609763
\(899\) 13.8125 0.460673
\(900\) −7.06222 −0.235407
\(901\) −9.08823 −0.302773
\(902\) −7.83889 −0.261006
\(903\) −3.30085 −0.109846
\(904\) −6.40365 −0.212982
\(905\) −21.9578 −0.729901
\(906\) −1.06317 −0.0353215
\(907\) 48.6415 1.61511 0.807557 0.589789i \(-0.200789\pi\)
0.807557 + 0.589789i \(0.200789\pi\)
\(908\) 16.2376 0.538862
\(909\) 2.24171 0.0743529
\(910\) −2.20382 −0.0730559
\(911\) 16.4768 0.545901 0.272950 0.962028i \(-0.412001\pi\)
0.272950 + 0.962028i \(0.412001\pi\)
\(912\) 9.97409 0.330275
\(913\) −7.06457 −0.233803
\(914\) 7.74827 0.256290
\(915\) −12.6954 −0.419696
\(916\) −3.92111 −0.129557
\(917\) −3.95899 −0.130737
\(918\) −3.22489 −0.106437
\(919\) −27.4858 −0.906672 −0.453336 0.891340i \(-0.649766\pi\)
−0.453336 + 0.891340i \(0.649766\pi\)
\(920\) −5.25421 −0.173226
\(921\) −4.04177 −0.133181
\(922\) 8.33001 0.274334
\(923\) 9.25588 0.304661
\(924\) 7.94108 0.261242
\(925\) −11.9425 −0.392668
\(926\) −4.60362 −0.151284
\(927\) −34.1744 −1.12243
\(928\) 35.9718 1.18083
\(929\) −36.6595 −1.20276 −0.601380 0.798963i \(-0.705382\pi\)
−0.601380 + 0.798963i \(0.705382\pi\)
\(930\) 1.71509 0.0562399
\(931\) −33.5341 −1.09903
\(932\) −9.43619 −0.309093
\(933\) 12.0454 0.394348
\(934\) 16.7822 0.549129
\(935\) 13.8810 0.453957
\(936\) 10.9380 0.357521
\(937\) −17.5825 −0.574395 −0.287197 0.957871i \(-0.592724\pi\)
−0.287197 + 0.957871i \(0.592724\pi\)
\(938\) −1.70316 −0.0556101
\(939\) −13.3524 −0.435738
\(940\) 22.7829 0.743097
\(941\) −7.96809 −0.259752 −0.129876 0.991530i \(-0.541458\pi\)
−0.129876 + 0.991530i \(0.541458\pi\)
\(942\) 0.400590 0.0130519
\(943\) −3.31122 −0.107828
\(944\) −11.9840 −0.390047
\(945\) 7.54821 0.245543
\(946\) 13.9477 0.453480
\(947\) −42.1432 −1.36947 −0.684735 0.728792i \(-0.740082\pi\)
−0.684735 + 0.728792i \(0.740082\pi\)
\(948\) 13.6918 0.444690
\(949\) 27.7087 0.899462
\(950\) −5.62924 −0.182637
\(951\) −15.2369 −0.494089
\(952\) 2.61487 0.0847484
\(953\) 55.8926 1.81054 0.905270 0.424837i \(-0.139669\pi\)
0.905270 + 0.424837i \(0.139669\pi\)
\(954\) 9.11308 0.295047
\(955\) 31.9796 1.03484
\(956\) 38.1334 1.23332
\(957\) 32.6732 1.05617
\(958\) −3.82114 −0.123455
\(959\) 18.5644 0.599476
\(960\) −1.98499 −0.0640653
\(961\) −26.7186 −0.861891
\(962\) 8.45006 0.272441
\(963\) 13.7911 0.444413
\(964\) −45.1938 −1.45559
\(965\) 14.9430 0.481031
\(966\) −0.633785 −0.0203917
\(967\) 57.5939 1.85210 0.926048 0.377407i \(-0.123184\pi\)
0.926048 + 0.377407i \(0.123184\pi\)
\(968\) −50.6152 −1.62683
\(969\) 5.93719 0.190730
\(970\) 3.51126 0.112740
\(971\) −10.4849 −0.336476 −0.168238 0.985746i \(-0.553808\pi\)
−0.168238 + 0.985746i \(0.553808\pi\)
\(972\) −26.7608 −0.858352
\(973\) 13.2913 0.426100
\(974\) 18.0140 0.577206
\(975\) −3.37329 −0.108032
\(976\) −18.9449 −0.606411
\(977\) 21.8527 0.699129 0.349564 0.936912i \(-0.386330\pi\)
0.349564 + 0.936912i \(0.386330\pi\)
\(978\) −6.01608 −0.192373
\(979\) −32.0239 −1.02349
\(980\) 18.2439 0.582780
\(981\) 1.65641 0.0528851
\(982\) −18.3667 −0.586105
\(983\) 28.9940 0.924764 0.462382 0.886681i \(-0.346995\pi\)
0.462382 + 0.886681i \(0.346995\pi\)
\(984\) 3.99283 0.127287
\(985\) 15.6037 0.497174
\(986\) 4.91505 0.156527
\(987\) 6.01559 0.191478
\(988\) −21.0807 −0.670667
\(989\) 5.89166 0.187344
\(990\) −13.9190 −0.442374
\(991\) −24.7102 −0.784946 −0.392473 0.919764i \(-0.628380\pi\)
−0.392473 + 0.919764i \(0.628380\pi\)
\(992\) 11.1500 0.354013
\(993\) −24.4017 −0.774366
\(994\) −2.21878 −0.0703755
\(995\) −39.3008 −1.24592
\(996\) 1.64391 0.0520892
\(997\) −26.9722 −0.854219 −0.427110 0.904200i \(-0.640468\pi\)
−0.427110 + 0.904200i \(0.640468\pi\)
\(998\) −0.906543 −0.0286961
\(999\) −28.9420 −0.915683
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 787.2.a.b.1.20 37
3.2 odd 2 7083.2.a.g.1.18 37
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
787.2.a.b.1.20 37 1.1 even 1 trivial
7083.2.a.g.1.18 37 3.2 odd 2