Properties

Label 784.6.f.e.783.6
Level $784$
Weight $6$
Character 784.783
Analytic conductor $125.741$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,6,Mod(783,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.783"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(125.740914733\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 232 x^{14} + 23092 x^{12} - 1258560 x^{10} + 40996255 x^{8} - 775625040 x^{6} + \cdots + 20552376321 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{34}\cdot 7^{18} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 783.6
Root \(-5.40349 + 0.215219i\) of defining polynomial
Character \(\chi\) \(=\) 784.783
Dual form 784.6.f.e.783.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.1465 q^{3} +48.6032i q^{5} +17.7104 q^{9} -400.090i q^{11} +228.826i q^{13} -784.773i q^{15} +519.281i q^{17} -946.748 q^{19} -1240.48i q^{23} +762.732 q^{25} +3637.64 q^{27} +3638.60 q^{29} -2113.97 q^{31} +6460.06i q^{33} -8590.33 q^{37} -3694.75i q^{39} +1440.06i q^{41} +14544.8i q^{43} +860.783i q^{45} +15759.6 q^{47} -8384.58i q^{51} +13329.8 q^{53} +19445.6 q^{55} +15286.7 q^{57} +31168.4 q^{59} +34886.6i q^{61} -11121.7 q^{65} -61883.7i q^{67} +20029.5i q^{69} +49388.6i q^{71} -4237.71i q^{73} -12315.5 q^{75} -55380.0i q^{79} -63039.0 q^{81} +104615. q^{83} -25238.7 q^{85} -58750.8 q^{87} -13040.9i q^{89} +34133.3 q^{93} -46014.9i q^{95} -12607.0i q^{97} -7085.76i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 1712 q^{9} - 496 q^{25} - 17024 q^{29} + 85664 q^{53} - 95424 q^{57} + 233344 q^{65} - 511216 q^{81} + 697952 q^{85} - 857024 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −16.1465 −1.03580 −0.517900 0.855441i \(-0.673286\pi\)
−0.517900 + 0.855441i \(0.673286\pi\)
\(4\) 0 0
\(5\) 48.6032i 0.869440i 0.900566 + 0.434720i \(0.143153\pi\)
−0.900566 + 0.434720i \(0.856847\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 17.7104 0.0728824
\(10\) 0 0
\(11\) − 400.090i − 0.996955i −0.866902 0.498478i \(-0.833893\pi\)
0.866902 0.498478i \(-0.166107\pi\)
\(12\) 0 0
\(13\) 228.826i 0.375532i 0.982214 + 0.187766i \(0.0601247\pi\)
−0.982214 + 0.187766i \(0.939875\pi\)
\(14\) 0 0
\(15\) − 784.773i − 0.900566i
\(16\) 0 0
\(17\) 519.281i 0.435793i 0.975972 + 0.217896i \(0.0699195\pi\)
−0.975972 + 0.217896i \(0.930081\pi\)
\(18\) 0 0
\(19\) −946.748 −0.601659 −0.300829 0.953678i \(-0.597263\pi\)
−0.300829 + 0.953678i \(0.597263\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 1240.48i − 0.488958i −0.969655 0.244479i \(-0.921383\pi\)
0.969655 0.244479i \(-0.0786170\pi\)
\(24\) 0 0
\(25\) 762.732 0.244074
\(26\) 0 0
\(27\) 3637.64 0.960309
\(28\) 0 0
\(29\) 3638.60 0.803414 0.401707 0.915768i \(-0.368417\pi\)
0.401707 + 0.915768i \(0.368417\pi\)
\(30\) 0 0
\(31\) −2113.97 −0.395089 −0.197545 0.980294i \(-0.563297\pi\)
−0.197545 + 0.980294i \(0.563297\pi\)
\(32\) 0 0
\(33\) 6460.06i 1.03265i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8590.33 −1.03159 −0.515793 0.856713i \(-0.672503\pi\)
−0.515793 + 0.856713i \(0.672503\pi\)
\(38\) 0 0
\(39\) − 3694.75i − 0.388977i
\(40\) 0 0
\(41\) 1440.06i 0.133789i 0.997760 + 0.0668944i \(0.0213091\pi\)
−0.997760 + 0.0668944i \(0.978691\pi\)
\(42\) 0 0
\(43\) 14544.8i 1.19960i 0.800149 + 0.599801i \(0.204754\pi\)
−0.800149 + 0.599801i \(0.795246\pi\)
\(44\) 0 0
\(45\) 860.783i 0.0633669i
\(46\) 0 0
\(47\) 15759.6 1.04064 0.520320 0.853972i \(-0.325813\pi\)
0.520320 + 0.853972i \(0.325813\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) − 8384.58i − 0.451394i
\(52\) 0 0
\(53\) 13329.8 0.651832 0.325916 0.945399i \(-0.394327\pi\)
0.325916 + 0.945399i \(0.394327\pi\)
\(54\) 0 0
\(55\) 19445.6 0.866793
\(56\) 0 0
\(57\) 15286.7 0.623198
\(58\) 0 0
\(59\) 31168.4 1.16569 0.582847 0.812582i \(-0.301939\pi\)
0.582847 + 0.812582i \(0.301939\pi\)
\(60\) 0 0
\(61\) 34886.6i 1.20042i 0.799842 + 0.600211i \(0.204917\pi\)
−0.799842 + 0.600211i \(0.795083\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −11121.7 −0.326503
\(66\) 0 0
\(67\) − 61883.7i − 1.68418i −0.539335 0.842091i \(-0.681324\pi\)
0.539335 0.842091i \(-0.318676\pi\)
\(68\) 0 0
\(69\) 20029.5i 0.506463i
\(70\) 0 0
\(71\) 49388.6i 1.16274i 0.813641 + 0.581368i \(0.197482\pi\)
−0.813641 + 0.581368i \(0.802518\pi\)
\(72\) 0 0
\(73\) − 4237.71i − 0.0930731i −0.998917 0.0465366i \(-0.985182\pi\)
0.998917 0.0465366i \(-0.0148184\pi\)
\(74\) 0 0
\(75\) −12315.5 −0.252812
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 55380.0i − 0.998355i −0.866500 0.499177i \(-0.833636\pi\)
0.866500 0.499177i \(-0.166364\pi\)
\(80\) 0 0
\(81\) −63039.0 −1.06757
\(82\) 0 0
\(83\) 104615. 1.66686 0.833432 0.552622i \(-0.186373\pi\)
0.833432 + 0.552622i \(0.186373\pi\)
\(84\) 0 0
\(85\) −25238.7 −0.378896
\(86\) 0 0
\(87\) −58750.8 −0.832177
\(88\) 0 0
\(89\) − 13040.9i − 0.174515i −0.996186 0.0872574i \(-0.972190\pi\)
0.996186 0.0872574i \(-0.0278103\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 34133.3 0.409234
\(94\) 0 0
\(95\) − 46014.9i − 0.523106i
\(96\) 0 0
\(97\) − 12607.0i − 0.136045i −0.997684 0.0680227i \(-0.978331\pi\)
0.997684 0.0680227i \(-0.0216690\pi\)
\(98\) 0 0
\(99\) − 7085.76i − 0.0726605i
\(100\) 0 0
\(101\) − 82190.0i − 0.801706i −0.916142 0.400853i \(-0.868714\pi\)
0.916142 0.400853i \(-0.131286\pi\)
\(102\) 0 0
\(103\) 77813.7 0.722708 0.361354 0.932429i \(-0.382315\pi\)
0.361354 + 0.932429i \(0.382315\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 67015.8i − 0.565871i −0.959139 0.282936i \(-0.908692\pi\)
0.959139 0.282936i \(-0.0913082\pi\)
\(108\) 0 0
\(109\) −115464. −0.930853 −0.465426 0.885087i \(-0.654099\pi\)
−0.465426 + 0.885087i \(0.654099\pi\)
\(110\) 0 0
\(111\) 138704. 1.06852
\(112\) 0 0
\(113\) −133573. −0.984059 −0.492029 0.870579i \(-0.663745\pi\)
−0.492029 + 0.870579i \(0.663745\pi\)
\(114\) 0 0
\(115\) 60291.5 0.425120
\(116\) 0 0
\(117\) 4052.61i 0.0273697i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 979.152 0.00607976
\(122\) 0 0
\(123\) − 23251.9i − 0.138578i
\(124\) 0 0
\(125\) 188956.i 1.08165i
\(126\) 0 0
\(127\) 137119.i 0.754375i 0.926137 + 0.377188i \(0.123109\pi\)
−0.926137 + 0.377188i \(0.876891\pi\)
\(128\) 0 0
\(129\) − 234848.i − 1.24255i
\(130\) 0 0
\(131\) −7599.78 −0.0386922 −0.0193461 0.999813i \(-0.506158\pi\)
−0.0193461 + 0.999813i \(0.506158\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 176801.i 0.834931i
\(136\) 0 0
\(137\) −354434. −1.61337 −0.806684 0.590983i \(-0.798740\pi\)
−0.806684 + 0.590983i \(0.798740\pi\)
\(138\) 0 0
\(139\) −308453. −1.35410 −0.677052 0.735935i \(-0.736743\pi\)
−0.677052 + 0.735935i \(0.736743\pi\)
\(140\) 0 0
\(141\) −254463. −1.07789
\(142\) 0 0
\(143\) 91551.0 0.374389
\(144\) 0 0
\(145\) 176848.i 0.698520i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 111322. 0.410787 0.205393 0.978679i \(-0.434153\pi\)
0.205393 + 0.978679i \(0.434153\pi\)
\(150\) 0 0
\(151\) 10832.9i 0.0386637i 0.999813 + 0.0193318i \(0.00615390\pi\)
−0.999813 + 0.0193318i \(0.993846\pi\)
\(152\) 0 0
\(153\) 9196.69i 0.0317616i
\(154\) 0 0
\(155\) − 102746.i − 0.343506i
\(156\) 0 0
\(157\) − 144815.i − 0.468882i −0.972130 0.234441i \(-0.924674\pi\)
0.972130 0.234441i \(-0.0753259\pi\)
\(158\) 0 0
\(159\) −215231. −0.675167
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 152647.i − 0.450006i −0.974358 0.225003i \(-0.927761\pi\)
0.974358 0.225003i \(-0.0722392\pi\)
\(164\) 0 0
\(165\) −313979. −0.897824
\(166\) 0 0
\(167\) −347479. −0.964134 −0.482067 0.876134i \(-0.660114\pi\)
−0.482067 + 0.876134i \(0.660114\pi\)
\(168\) 0 0
\(169\) 318932. 0.858975
\(170\) 0 0
\(171\) −16767.3 −0.0438503
\(172\) 0 0
\(173\) 728965.i 1.85179i 0.377782 + 0.925894i \(0.376687\pi\)
−0.377782 + 0.925894i \(0.623313\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −503262. −1.20743
\(178\) 0 0
\(179\) 739166.i 1.72429i 0.506665 + 0.862143i \(0.330878\pi\)
−0.506665 + 0.862143i \(0.669122\pi\)
\(180\) 0 0
\(181\) 614030.i 1.39313i 0.717492 + 0.696567i \(0.245290\pi\)
−0.717492 + 0.696567i \(0.754710\pi\)
\(182\) 0 0
\(183\) − 563297.i − 1.24340i
\(184\) 0 0
\(185\) − 417517.i − 0.896902i
\(186\) 0 0
\(187\) 207759. 0.434466
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 685222.i 1.35909i 0.733635 + 0.679544i \(0.237822\pi\)
−0.733635 + 0.679544i \(0.762178\pi\)
\(192\) 0 0
\(193\) −881141. −1.70275 −0.851377 0.524554i \(-0.824232\pi\)
−0.851377 + 0.524554i \(0.824232\pi\)
\(194\) 0 0
\(195\) 179577. 0.338192
\(196\) 0 0
\(197\) −307862. −0.565185 −0.282592 0.959240i \(-0.591194\pi\)
−0.282592 + 0.959240i \(0.591194\pi\)
\(198\) 0 0
\(199\) −826375. −1.47926 −0.739630 0.673014i \(-0.764999\pi\)
−0.739630 + 0.673014i \(0.764999\pi\)
\(200\) 0 0
\(201\) 999207.i 1.74448i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −69991.3 −0.116321
\(206\) 0 0
\(207\) − 21969.5i − 0.0356365i
\(208\) 0 0
\(209\) 378784.i 0.599827i
\(210\) 0 0
\(211\) − 743853.i − 1.15022i −0.818076 0.575110i \(-0.804959\pi\)
0.818076 0.575110i \(-0.195041\pi\)
\(212\) 0 0
\(213\) − 797455.i − 1.20436i
\(214\) 0 0
\(215\) −706924. −1.04298
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 68424.4i 0.0964052i
\(220\) 0 0
\(221\) −118825. −0.163654
\(222\) 0 0
\(223\) −1.12243e6 −1.51146 −0.755728 0.654885i \(-0.772717\pi\)
−0.755728 + 0.654885i \(0.772717\pi\)
\(224\) 0 0
\(225\) 13508.3 0.0177887
\(226\) 0 0
\(227\) 504464. 0.649779 0.324890 0.945752i \(-0.394673\pi\)
0.324890 + 0.945752i \(0.394673\pi\)
\(228\) 0 0
\(229\) 1.34917e6i 1.70012i 0.526689 + 0.850058i \(0.323433\pi\)
−0.526689 + 0.850058i \(0.676567\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −868468. −1.04801 −0.524003 0.851716i \(-0.675562\pi\)
−0.524003 + 0.851716i \(0.675562\pi\)
\(234\) 0 0
\(235\) 765966.i 0.904773i
\(236\) 0 0
\(237\) 894194.i 1.03410i
\(238\) 0 0
\(239\) 552839.i 0.626043i 0.949746 + 0.313021i \(0.101341\pi\)
−0.949746 + 0.313021i \(0.898659\pi\)
\(240\) 0 0
\(241\) − 446683.i − 0.495401i −0.968837 0.247700i \(-0.920325\pi\)
0.968837 0.247700i \(-0.0796749\pi\)
\(242\) 0 0
\(243\) 133913. 0.145481
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 216641.i − 0.225942i
\(248\) 0 0
\(249\) −1.68918e6 −1.72654
\(250\) 0 0
\(251\) −83590.2 −0.0837474 −0.0418737 0.999123i \(-0.513333\pi\)
−0.0418737 + 0.999123i \(0.513333\pi\)
\(252\) 0 0
\(253\) −496305. −0.487470
\(254\) 0 0
\(255\) 407517. 0.392460
\(256\) 0 0
\(257\) 492968.i 0.465571i 0.972528 + 0.232786i \(0.0747840\pi\)
−0.972528 + 0.232786i \(0.925216\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 64441.2 0.0585548
\(262\) 0 0
\(263\) − 1.11123e6i − 0.990637i −0.868711 0.495319i \(-0.835051\pi\)
0.868711 0.495319i \(-0.164949\pi\)
\(264\) 0 0
\(265\) 647873.i 0.566728i
\(266\) 0 0
\(267\) 210565.i 0.180762i
\(268\) 0 0
\(269\) − 1.48558e6i − 1.25174i −0.779926 0.625871i \(-0.784744\pi\)
0.779926 0.625871i \(-0.215256\pi\)
\(270\) 0 0
\(271\) 429636. 0.355368 0.177684 0.984088i \(-0.443140\pi\)
0.177684 + 0.984088i \(0.443140\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 305161.i − 0.243331i
\(276\) 0 0
\(277\) −2.48618e6 −1.94686 −0.973428 0.228992i \(-0.926457\pi\)
−0.973428 + 0.228992i \(0.926457\pi\)
\(278\) 0 0
\(279\) −37439.4 −0.0287951
\(280\) 0 0
\(281\) −895843. −0.676809 −0.338405 0.941001i \(-0.609887\pi\)
−0.338405 + 0.941001i \(0.609887\pi\)
\(282\) 0 0
\(283\) 1.06303e6 0.789003 0.394501 0.918895i \(-0.370917\pi\)
0.394501 + 0.918895i \(0.370917\pi\)
\(284\) 0 0
\(285\) 742981.i 0.541833i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.15020e6 0.810085
\(290\) 0 0
\(291\) 203560.i 0.140916i
\(292\) 0 0
\(293\) 286091.i 0.194686i 0.995251 + 0.0973430i \(0.0310344\pi\)
−0.995251 + 0.0973430i \(0.968966\pi\)
\(294\) 0 0
\(295\) 1.51488e6i 1.01350i
\(296\) 0 0
\(297\) − 1.45538e6i − 0.957385i
\(298\) 0 0
\(299\) 283855. 0.183620
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.32708e6i 0.830408i
\(304\) 0 0
\(305\) −1.69560e6 −1.04369
\(306\) 0 0
\(307\) 2.54873e6 1.54340 0.771700 0.635987i \(-0.219407\pi\)
0.771700 + 0.635987i \(0.219407\pi\)
\(308\) 0 0
\(309\) −1.25642e6 −0.748581
\(310\) 0 0
\(311\) −2.76090e6 −1.61864 −0.809319 0.587369i \(-0.800164\pi\)
−0.809319 + 0.587369i \(0.800164\pi\)
\(312\) 0 0
\(313\) − 272811.i − 0.157399i −0.996898 0.0786994i \(-0.974923\pi\)
0.996898 0.0786994i \(-0.0250767\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 206589. 0.115467 0.0577337 0.998332i \(-0.481613\pi\)
0.0577337 + 0.998332i \(0.481613\pi\)
\(318\) 0 0
\(319\) − 1.45577e6i − 0.800968i
\(320\) 0 0
\(321\) 1.08207e6i 0.586129i
\(322\) 0 0
\(323\) − 491628.i − 0.262198i
\(324\) 0 0
\(325\) 174533.i 0.0916578i
\(326\) 0 0
\(327\) 1.86435e6 0.964177
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 3.71327e6i − 1.86289i −0.363885 0.931444i \(-0.618550\pi\)
0.363885 0.931444i \(-0.381450\pi\)
\(332\) 0 0
\(333\) −152138. −0.0751845
\(334\) 0 0
\(335\) 3.00774e6 1.46430
\(336\) 0 0
\(337\) −1.35554e6 −0.650184 −0.325092 0.945682i \(-0.605395\pi\)
−0.325092 + 0.945682i \(0.605395\pi\)
\(338\) 0 0
\(339\) 2.15673e6 1.01929
\(340\) 0 0
\(341\) 845779.i 0.393886i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −973498. −0.440339
\(346\) 0 0
\(347\) − 1.03682e6i − 0.462252i −0.972924 0.231126i \(-0.925759\pi\)
0.972924 0.231126i \(-0.0742410\pi\)
\(348\) 0 0
\(349\) 163154.i 0.0717023i 0.999357 + 0.0358511i \(0.0114142\pi\)
−0.999357 + 0.0358511i \(0.988586\pi\)
\(350\) 0 0
\(351\) 832389.i 0.360627i
\(352\) 0 0
\(353\) − 1.99564e6i − 0.852406i −0.904628 0.426203i \(-0.859851\pi\)
0.904628 0.426203i \(-0.140149\pi\)
\(354\) 0 0
\(355\) −2.40044e6 −1.01093
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 1.48740e6i − 0.609106i −0.952495 0.304553i \(-0.901493\pi\)
0.952495 0.304553i \(-0.0985071\pi\)
\(360\) 0 0
\(361\) −1.57977e6 −0.638007
\(362\) 0 0
\(363\) −15809.9 −0.00629742
\(364\) 0 0
\(365\) 205966. 0.0809215
\(366\) 0 0
\(367\) −1.50150e6 −0.581916 −0.290958 0.956736i \(-0.593974\pi\)
−0.290958 + 0.956736i \(0.593974\pi\)
\(368\) 0 0
\(369\) 25504.0i 0.00975085i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.04712e6 0.761851 0.380926 0.924606i \(-0.375605\pi\)
0.380926 + 0.924606i \(0.375605\pi\)
\(374\) 0 0
\(375\) − 3.05099e6i − 1.12037i
\(376\) 0 0
\(377\) 832608.i 0.301708i
\(378\) 0 0
\(379\) 685344.i 0.245082i 0.992463 + 0.122541i \(0.0391042\pi\)
−0.992463 + 0.122541i \(0.960896\pi\)
\(380\) 0 0
\(381\) − 2.21399e6i − 0.781382i
\(382\) 0 0
\(383\) −1.29125e6 −0.449793 −0.224896 0.974383i \(-0.572204\pi\)
−0.224896 + 0.974383i \(0.572204\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 257595.i 0.0874299i
\(388\) 0 0
\(389\) −148250. −0.0496731 −0.0248366 0.999692i \(-0.507907\pi\)
−0.0248366 + 0.999692i \(0.507907\pi\)
\(390\) 0 0
\(391\) 644160. 0.213085
\(392\) 0 0
\(393\) 122710. 0.0400773
\(394\) 0 0
\(395\) 2.69164e6 0.868009
\(396\) 0 0
\(397\) 1.54828e6i 0.493031i 0.969139 + 0.246516i \(0.0792856\pi\)
−0.969139 + 0.246516i \(0.920714\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4.13978e6 −1.28563 −0.642816 0.766021i \(-0.722234\pi\)
−0.642816 + 0.766021i \(0.722234\pi\)
\(402\) 0 0
\(403\) − 483733.i − 0.148369i
\(404\) 0 0
\(405\) − 3.06389e6i − 0.928188i
\(406\) 0 0
\(407\) 3.43690e6i 1.02845i
\(408\) 0 0
\(409\) 6.33427e6i 1.87236i 0.351525 + 0.936178i \(0.385663\pi\)
−0.351525 + 0.936178i \(0.614337\pi\)
\(410\) 0 0
\(411\) 5.72287e6 1.67113
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 5.08464e6i 1.44924i
\(416\) 0 0
\(417\) 4.98045e6 1.40258
\(418\) 0 0
\(419\) −1.79755e6 −0.500204 −0.250102 0.968220i \(-0.580464\pi\)
−0.250102 + 0.968220i \(0.580464\pi\)
\(420\) 0 0
\(421\) 6.47827e6 1.78137 0.890684 0.454623i \(-0.150226\pi\)
0.890684 + 0.454623i \(0.150226\pi\)
\(422\) 0 0
\(423\) 279109. 0.0758443
\(424\) 0 0
\(425\) 396072.i 0.106366i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.47823e6 −0.387792
\(430\) 0 0
\(431\) 3.95051e6i 1.02438i 0.858873 + 0.512189i \(0.171165\pi\)
−0.858873 + 0.512189i \(0.828835\pi\)
\(432\) 0 0
\(433\) 4.25945e6i 1.09178i 0.837858 + 0.545888i \(0.183808\pi\)
−0.837858 + 0.545888i \(0.816192\pi\)
\(434\) 0 0
\(435\) − 2.85547e6i − 0.723528i
\(436\) 0 0
\(437\) 1.17443e6i 0.294186i
\(438\) 0 0
\(439\) −1.88043e6 −0.465690 −0.232845 0.972514i \(-0.574804\pi\)
−0.232845 + 0.972514i \(0.574804\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 4.38368e6i − 1.06128i −0.847598 0.530639i \(-0.821952\pi\)
0.847598 0.530639i \(-0.178048\pi\)
\(444\) 0 0
\(445\) 633829. 0.151730
\(446\) 0 0
\(447\) −1.79747e6 −0.425493
\(448\) 0 0
\(449\) −925156. −0.216570 −0.108285 0.994120i \(-0.534536\pi\)
−0.108285 + 0.994120i \(0.534536\pi\)
\(450\) 0 0
\(451\) 576152. 0.133381
\(452\) 0 0
\(453\) − 174914.i − 0.0400479i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.16812e6 0.709596 0.354798 0.934943i \(-0.384550\pi\)
0.354798 + 0.934943i \(0.384550\pi\)
\(458\) 0 0
\(459\) 1.88896e6i 0.418496i
\(460\) 0 0
\(461\) − 6.38784e6i − 1.39991i −0.714185 0.699957i \(-0.753202\pi\)
0.714185 0.699957i \(-0.246798\pi\)
\(462\) 0 0
\(463\) − 219636.i − 0.0476159i −0.999717 0.0238079i \(-0.992421\pi\)
0.999717 0.0238079i \(-0.00757902\pi\)
\(464\) 0 0
\(465\) 1.65899e6i 0.355804i
\(466\) 0 0
\(467\) −576006. −0.122218 −0.0611089 0.998131i \(-0.519464\pi\)
−0.0611089 + 0.998131i \(0.519464\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 2.33825e6i 0.485668i
\(472\) 0 0
\(473\) 5.81923e6 1.19595
\(474\) 0 0
\(475\) −722115. −0.146849
\(476\) 0 0
\(477\) 236077. 0.0475071
\(478\) 0 0
\(479\) −3.61839e6 −0.720571 −0.360285 0.932842i \(-0.617321\pi\)
−0.360285 + 0.932842i \(0.617321\pi\)
\(480\) 0 0
\(481\) − 1.96569e6i − 0.387394i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 612742. 0.118283
\(486\) 0 0
\(487\) 4.82652e6i 0.922172i 0.887356 + 0.461086i \(0.152540\pi\)
−0.887356 + 0.461086i \(0.847460\pi\)
\(488\) 0 0
\(489\) 2.46471e6i 0.466116i
\(490\) 0 0
\(491\) − 2.65250e6i − 0.496537i −0.968691 0.248269i \(-0.920138\pi\)
0.968691 0.248269i \(-0.0798615\pi\)
\(492\) 0 0
\(493\) 1.88946e6i 0.350122i
\(494\) 0 0
\(495\) 344390. 0.0631740
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.37551e6i 0.786643i 0.919401 + 0.393321i \(0.128674\pi\)
−0.919401 + 0.393321i \(0.871326\pi\)
\(500\) 0 0
\(501\) 5.61058e6 0.998651
\(502\) 0 0
\(503\) −8.18256e6 −1.44201 −0.721007 0.692928i \(-0.756320\pi\)
−0.721007 + 0.692928i \(0.756320\pi\)
\(504\) 0 0
\(505\) 3.99469e6 0.697035
\(506\) 0 0
\(507\) −5.14964e6 −0.889727
\(508\) 0 0
\(509\) − 5.83251e6i − 0.997841i −0.866648 0.498920i \(-0.833730\pi\)
0.866648 0.498920i \(-0.166270\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −3.44393e6 −0.577778
\(514\) 0 0
\(515\) 3.78199e6i 0.628351i
\(516\) 0 0
\(517\) − 6.30525e6i − 1.03747i
\(518\) 0 0
\(519\) − 1.17703e7i − 1.91808i
\(520\) 0 0
\(521\) 6.46082e6i 1.04278i 0.853318 + 0.521391i \(0.174587\pi\)
−0.853318 + 0.521391i \(0.825413\pi\)
\(522\) 0 0
\(523\) −1.18045e7 −1.88710 −0.943550 0.331231i \(-0.892536\pi\)
−0.943550 + 0.331231i \(0.892536\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 1.09775e6i − 0.172177i
\(528\) 0 0
\(529\) 4.89754e6 0.760920
\(530\) 0 0
\(531\) 552006. 0.0849586
\(532\) 0 0
\(533\) −329523. −0.0502420
\(534\) 0 0
\(535\) 3.25718e6 0.491991
\(536\) 0 0
\(537\) − 1.19350e7i − 1.78602i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 6.01567e6 0.883672 0.441836 0.897096i \(-0.354327\pi\)
0.441836 + 0.897096i \(0.354327\pi\)
\(542\) 0 0
\(543\) − 9.91445e6i − 1.44301i
\(544\) 0 0
\(545\) − 5.61192e6i − 0.809320i
\(546\) 0 0
\(547\) 385072.i 0.0550268i 0.999621 + 0.0275134i \(0.00875889\pi\)
−0.999621 + 0.0275134i \(0.991241\pi\)
\(548\) 0 0
\(549\) 617856.i 0.0874896i
\(550\) 0 0
\(551\) −3.44484e6 −0.483381
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 6.74145e6i 0.929011i
\(556\) 0 0
\(557\) 7.74663e6 1.05797 0.528987 0.848630i \(-0.322572\pi\)
0.528987 + 0.848630i \(0.322572\pi\)
\(558\) 0 0
\(559\) −3.32824e6 −0.450489
\(560\) 0 0
\(561\) −3.35459e6 −0.450020
\(562\) 0 0
\(563\) 953532. 0.126784 0.0633920 0.997989i \(-0.479808\pi\)
0.0633920 + 0.997989i \(0.479808\pi\)
\(564\) 0 0
\(565\) − 6.49205e6i − 0.855580i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.22245e6 0.287773 0.143887 0.989594i \(-0.454040\pi\)
0.143887 + 0.989594i \(0.454040\pi\)
\(570\) 0 0
\(571\) 1.18157e7i 1.51659i 0.651911 + 0.758295i \(0.273967\pi\)
−0.651911 + 0.758295i \(0.726033\pi\)
\(572\) 0 0
\(573\) − 1.10640e7i − 1.40774i
\(574\) 0 0
\(575\) − 946157.i − 0.119342i
\(576\) 0 0
\(577\) 7.60972e6i 0.951544i 0.879569 + 0.475772i \(0.157831\pi\)
−0.879569 + 0.475772i \(0.842169\pi\)
\(578\) 0 0
\(579\) 1.42274e7 1.76371
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 5.33314e6i − 0.649847i
\(584\) 0 0
\(585\) −196970. −0.0237963
\(586\) 0 0
\(587\) −4.33875e6 −0.519720 −0.259860 0.965646i \(-0.583676\pi\)
−0.259860 + 0.965646i \(0.583676\pi\)
\(588\) 0 0
\(589\) 2.00140e6 0.237709
\(590\) 0 0
\(591\) 4.97090e6 0.585419
\(592\) 0 0
\(593\) − 1.37445e7i − 1.60506i −0.596612 0.802530i \(-0.703487\pi\)
0.596612 0.802530i \(-0.296513\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.33431e7 1.53222
\(598\) 0 0
\(599\) 5.55539e6i 0.632627i 0.948655 + 0.316314i \(0.102445\pi\)
−0.948655 + 0.316314i \(0.897555\pi\)
\(600\) 0 0
\(601\) 5.23135e6i 0.590782i 0.955376 + 0.295391i \(0.0954499\pi\)
−0.955376 + 0.295391i \(0.904550\pi\)
\(602\) 0 0
\(603\) − 1.09599e6i − 0.122747i
\(604\) 0 0
\(605\) 47589.9i 0.00528599i
\(606\) 0 0
\(607\) 3.82822e6 0.421720 0.210860 0.977516i \(-0.432374\pi\)
0.210860 + 0.977516i \(0.432374\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.60621e6i 0.390794i
\(612\) 0 0
\(613\) 5.38387e6 0.578687 0.289343 0.957225i \(-0.406563\pi\)
0.289343 + 0.957225i \(0.406563\pi\)
\(614\) 0 0
\(615\) 1.13012e6 0.120486
\(616\) 0 0
\(617\) −5.05258e6 −0.534319 −0.267159 0.963652i \(-0.586085\pi\)
−0.267159 + 0.963652i \(0.586085\pi\)
\(618\) 0 0
\(619\) −6.36785e6 −0.667984 −0.333992 0.942576i \(-0.608396\pi\)
−0.333992 + 0.942576i \(0.608396\pi\)
\(620\) 0 0
\(621\) − 4.51244e6i − 0.469551i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −6.80033e6 −0.696354
\(626\) 0 0
\(627\) − 6.11605e6i − 0.621301i
\(628\) 0 0
\(629\) − 4.46079e6i − 0.449558i
\(630\) 0 0
\(631\) 1.69140e7i 1.69111i 0.533884 + 0.845557i \(0.320732\pi\)
−0.533884 + 0.845557i \(0.679268\pi\)
\(632\) 0 0
\(633\) 1.20106e7i 1.19140i
\(634\) 0 0
\(635\) −6.66441e6 −0.655884
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 874694.i 0.0847430i
\(640\) 0 0
\(641\) 1.07281e7 1.03128 0.515641 0.856805i \(-0.327554\pi\)
0.515641 + 0.856805i \(0.327554\pi\)
\(642\) 0 0
\(643\) −651819. −0.0621727 −0.0310864 0.999517i \(-0.509897\pi\)
−0.0310864 + 0.999517i \(0.509897\pi\)
\(644\) 0 0
\(645\) 1.14144e7 1.08032
\(646\) 0 0
\(647\) 861222. 0.0808825 0.0404412 0.999182i \(-0.487124\pi\)
0.0404412 + 0.999182i \(0.487124\pi\)
\(648\) 0 0
\(649\) − 1.24702e7i − 1.16215i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.19553e6 0.476811 0.238406 0.971166i \(-0.423375\pi\)
0.238406 + 0.971166i \(0.423375\pi\)
\(654\) 0 0
\(655\) − 369374.i − 0.0336405i
\(656\) 0 0
\(657\) − 75051.7i − 0.00678340i
\(658\) 0 0
\(659\) 1.50166e7i 1.34697i 0.739201 + 0.673485i \(0.235204\pi\)
−0.739201 + 0.673485i \(0.764796\pi\)
\(660\) 0 0
\(661\) 9.09393e6i 0.809558i 0.914414 + 0.404779i \(0.132652\pi\)
−0.914414 + 0.404779i \(0.867348\pi\)
\(662\) 0 0
\(663\) 1.91861e6 0.169513
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 4.51363e6i − 0.392836i
\(668\) 0 0
\(669\) 1.81233e7 1.56557
\(670\) 0 0
\(671\) 1.39578e7 1.19677
\(672\) 0 0
\(673\) 3.36768e6 0.286611 0.143306 0.989678i \(-0.454227\pi\)
0.143306 + 0.989678i \(0.454227\pi\)
\(674\) 0 0
\(675\) 2.77455e6 0.234387
\(676\) 0 0
\(677\) 1.03541e7i 0.868244i 0.900854 + 0.434122i \(0.142941\pi\)
−0.900854 + 0.434122i \(0.857059\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −8.14535e6 −0.673041
\(682\) 0 0
\(683\) − 1.58292e7i − 1.29839i −0.760621 0.649196i \(-0.775105\pi\)
0.760621 0.649196i \(-0.224895\pi\)
\(684\) 0 0
\(685\) − 1.72266e7i − 1.40273i
\(686\) 0 0
\(687\) − 2.17844e7i − 1.76098i
\(688\) 0 0
\(689\) 3.05022e6i 0.244784i
\(690\) 0 0
\(691\) 2.66927e6 0.212666 0.106333 0.994331i \(-0.466089\pi\)
0.106333 + 0.994331i \(0.466089\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 1.49918e7i − 1.17731i
\(696\) 0 0
\(697\) −747793. −0.0583042
\(698\) 0 0
\(699\) 1.40227e7 1.08553
\(700\) 0 0
\(701\) −3.67634e6 −0.282566 −0.141283 0.989969i \(-0.545123\pi\)
−0.141283 + 0.989969i \(0.545123\pi\)
\(702\) 0 0
\(703\) 8.13287e6 0.620663
\(704\) 0 0
\(705\) − 1.23677e7i − 0.937165i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.02821e7 0.768184 0.384092 0.923295i \(-0.374515\pi\)
0.384092 + 0.923295i \(0.374515\pi\)
\(710\) 0 0
\(711\) − 980803.i − 0.0727625i
\(712\) 0 0
\(713\) 2.62235e6i 0.193182i
\(714\) 0 0
\(715\) 4.44967e6i 0.325509i
\(716\) 0 0
\(717\) − 8.92643e6i − 0.648455i
\(718\) 0 0
\(719\) −1.72299e6 −0.124297 −0.0621484 0.998067i \(-0.519795\pi\)
−0.0621484 + 0.998067i \(0.519795\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 7.21238e6i 0.513136i
\(724\) 0 0
\(725\) 2.77528e6 0.196093
\(726\) 0 0
\(727\) 1.13322e7 0.795203 0.397601 0.917558i \(-0.369843\pi\)
0.397601 + 0.917558i \(0.369843\pi\)
\(728\) 0 0
\(729\) 1.31562e7 0.916881
\(730\) 0 0
\(731\) −7.55284e6 −0.522778
\(732\) 0 0
\(733\) 1.26858e7i 0.872086i 0.899926 + 0.436043i \(0.143620\pi\)
−0.899926 + 0.436043i \(0.856380\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.47590e7 −1.67906
\(738\) 0 0
\(739\) − 2.76738e7i − 1.86405i −0.362395 0.932024i \(-0.618041\pi\)
0.362395 0.932024i \(-0.381959\pi\)
\(740\) 0 0
\(741\) 3.49800e6i 0.234031i
\(742\) 0 0
\(743\) 1.06315e7i 0.706516i 0.935526 + 0.353258i \(0.114926\pi\)
−0.935526 + 0.353258i \(0.885074\pi\)
\(744\) 0 0
\(745\) 5.41062e6i 0.357155i
\(746\) 0 0
\(747\) 1.85278e6 0.121485
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 2.17119e7i − 1.40475i −0.711809 0.702373i \(-0.752124\pi\)
0.711809 0.702373i \(-0.247876\pi\)
\(752\) 0 0
\(753\) 1.34969e6 0.0867456
\(754\) 0 0
\(755\) −526514. −0.0336158
\(756\) 0 0
\(757\) 7.18252e6 0.455551 0.227776 0.973714i \(-0.426855\pi\)
0.227776 + 0.973714i \(0.426855\pi\)
\(758\) 0 0
\(759\) 8.01361e6 0.504921
\(760\) 0 0
\(761\) 6.84692e6i 0.428582i 0.976770 + 0.214291i \(0.0687440\pi\)
−0.976770 + 0.214291i \(0.931256\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −446988. −0.0276148
\(766\) 0 0
\(767\) 7.13215e6i 0.437756i
\(768\) 0 0
\(769\) 4.71388e6i 0.287450i 0.989618 + 0.143725i \(0.0459081\pi\)
−0.989618 + 0.143725i \(0.954092\pi\)
\(770\) 0 0
\(771\) − 7.95972e6i − 0.482239i
\(772\) 0 0
\(773\) 1.36324e7i 0.820588i 0.911953 + 0.410294i \(0.134574\pi\)
−0.911953 + 0.410294i \(0.865426\pi\)
\(774\) 0 0
\(775\) −1.61239e6 −0.0964311
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 1.36337e6i − 0.0804952i
\(780\) 0 0
\(781\) 1.97599e7 1.15920
\(782\) 0 0
\(783\) 1.32359e7 0.771526
\(784\) 0 0
\(785\) 7.03845e6 0.407664
\(786\) 0 0
\(787\) −2.20492e7 −1.26899 −0.634493 0.772928i \(-0.718791\pi\)
−0.634493 + 0.772928i \(0.718791\pi\)
\(788\) 0 0
\(789\) 1.79425e7i 1.02610i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −7.98296e6 −0.450797
\(794\) 0 0
\(795\) − 1.04609e7i − 0.587018i
\(796\) 0 0
\(797\) − 1.07895e6i − 0.0601664i −0.999547 0.0300832i \(-0.990423\pi\)
0.999547 0.0300832i \(-0.00957723\pi\)
\(798\) 0 0
\(799\) 8.18365e6i 0.453503i
\(800\) 0 0
\(801\) − 230960.i − 0.0127191i
\(802\) 0 0
\(803\) −1.69547e6 −0.0927898
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.39869e7i 1.29656i
\(808\) 0 0
\(809\) −1.69245e7 −0.909167 −0.454584 0.890704i \(-0.650212\pi\)
−0.454584 + 0.890704i \(0.650212\pi\)
\(810\) 0 0
\(811\) −6.70607e6 −0.358027 −0.179014 0.983847i \(-0.557291\pi\)
−0.179014 + 0.983847i \(0.557291\pi\)
\(812\) 0 0
\(813\) −6.93714e6 −0.368090
\(814\) 0 0
\(815\) 7.41911e6 0.391253
\(816\) 0 0
\(817\) − 1.37703e7i − 0.721751i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.45166e7 1.78719 0.893593 0.448878i \(-0.148176\pi\)
0.893593 + 0.448878i \(0.148176\pi\)
\(822\) 0 0
\(823\) 2.66931e7i 1.37373i 0.726787 + 0.686863i \(0.241013\pi\)
−0.726787 + 0.686863i \(0.758987\pi\)
\(824\) 0 0
\(825\) 4.92730e6i 0.252042i
\(826\) 0 0
\(827\) 3.60205e7i 1.83141i 0.401849 + 0.915706i \(0.368368\pi\)
−0.401849 + 0.915706i \(0.631632\pi\)
\(828\) 0 0
\(829\) − 3.44066e7i − 1.73882i −0.494088 0.869412i \(-0.664498\pi\)
0.494088 0.869412i \(-0.335502\pi\)
\(830\) 0 0
\(831\) 4.01433e7 2.01655
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) − 1.68886e7i − 0.838257i
\(836\) 0 0
\(837\) −7.68988e6 −0.379408
\(838\) 0 0
\(839\) 8.86948e6 0.435004 0.217502 0.976060i \(-0.430209\pi\)
0.217502 + 0.976060i \(0.430209\pi\)
\(840\) 0 0
\(841\) −7.27172e6 −0.354525
\(842\) 0 0
\(843\) 1.44648e7 0.701039
\(844\) 0 0
\(845\) 1.55011e7i 0.746828i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.71642e7 −0.817249
\(850\) 0 0
\(851\) 1.06562e7i 0.504402i
\(852\) 0 0
\(853\) 1.01426e7i 0.477284i 0.971108 + 0.238642i \(0.0767022\pi\)
−0.971108 + 0.238642i \(0.923298\pi\)
\(854\) 0 0
\(855\) − 814944.i − 0.0381252i
\(856\) 0 0
\(857\) 2.80748e7i 1.30576i 0.757460 + 0.652881i \(0.226440\pi\)
−0.757460 + 0.652881i \(0.773560\pi\)
\(858\) 0 0
\(859\) −2.41550e7 −1.11693 −0.558463 0.829529i \(-0.688609\pi\)
−0.558463 + 0.829529i \(0.688609\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.41819e6i 0.156232i 0.996944 + 0.0781158i \(0.0248904\pi\)
−0.996944 + 0.0781158i \(0.975110\pi\)
\(864\) 0 0
\(865\) −3.54300e7 −1.61002
\(866\) 0 0
\(867\) −1.85718e7 −0.839086
\(868\) 0 0
\(869\) −2.21570e7 −0.995315
\(870\) 0 0
\(871\) 1.41606e7 0.632465
\(872\) 0 0
\(873\) − 223276.i − 0.00991532i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 5.80560e6 0.254887 0.127444 0.991846i \(-0.459323\pi\)
0.127444 + 0.991846i \(0.459323\pi\)
\(878\) 0 0
\(879\) − 4.61937e6i − 0.201656i
\(880\) 0 0
\(881\) 1.08943e7i 0.472887i 0.971645 + 0.236444i \(0.0759819\pi\)
−0.971645 + 0.236444i \(0.924018\pi\)
\(882\) 0 0
\(883\) − 2.50812e7i − 1.08255i −0.840846 0.541274i \(-0.817942\pi\)
0.840846 0.541274i \(-0.182058\pi\)
\(884\) 0 0
\(885\) − 2.44601e7i − 1.04978i
\(886\) 0 0
\(887\) −3.08964e7 −1.31856 −0.659278 0.751899i \(-0.729138\pi\)
−0.659278 + 0.751899i \(0.729138\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 2.52213e7i 1.06432i
\(892\) 0 0
\(893\) −1.49204e7 −0.626110
\(894\) 0 0
\(895\) −3.59258e7 −1.49916
\(896\) 0 0
\(897\) −4.58328e6 −0.190193
\(898\) 0 0
\(899\) −7.69191e6 −0.317420
\(900\) 0 0
\(901\) 6.92193e6i 0.284064i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.98438e7 −1.21125
\(906\) 0 0
\(907\) − 1.37304e6i − 0.0554198i −0.999616 0.0277099i \(-0.991179\pi\)
0.999616 0.0277099i \(-0.00882147\pi\)
\(908\) 0 0
\(909\) − 1.45562e6i − 0.0584303i
\(910\) 0 0
\(911\) − 4.47920e7i − 1.78815i −0.447916 0.894075i \(-0.647834\pi\)
0.447916 0.894075i \(-0.352166\pi\)
\(912\) 0 0
\(913\) − 4.18555e7i − 1.66179i
\(914\) 0 0
\(915\) 2.73780e7 1.08106
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) − 1.68926e7i − 0.659792i −0.944017 0.329896i \(-0.892986\pi\)
0.944017 0.329896i \(-0.107014\pi\)
\(920\) 0 0
\(921\) −4.11532e7 −1.59865
\(922\) 0 0
\(923\) −1.13014e7 −0.436645
\(924\) 0 0
\(925\) −6.55212e6 −0.251783
\(926\) 0 0
\(927\) 1.37811e6 0.0526727
\(928\) 0 0
\(929\) − 1.32849e6i − 0.0505034i −0.999681 0.0252517i \(-0.991961\pi\)
0.999681 0.0252517i \(-0.00803871\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 4.45790e7 1.67659
\(934\) 0 0
\(935\) 1.00977e7i 0.377742i
\(936\) 0 0
\(937\) 3.01493e7i 1.12183i 0.827872 + 0.560917i \(0.189551\pi\)
−0.827872 + 0.560917i \(0.810449\pi\)
\(938\) 0 0
\(939\) 4.40496e6i 0.163034i
\(940\) 0 0
\(941\) − 2.28510e7i − 0.841263i −0.907231 0.420632i \(-0.861808\pi\)
0.907231 0.420632i \(-0.138192\pi\)
\(942\) 0 0
\(943\) 1.78637e6 0.0654171
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.33819e7i 1.20958i 0.796384 + 0.604792i \(0.206744\pi\)
−0.796384 + 0.604792i \(0.793256\pi\)
\(948\) 0 0
\(949\) 969700. 0.0349520
\(950\) 0 0
\(951\) −3.33570e6 −0.119601
\(952\) 0 0
\(953\) −2.52665e7 −0.901183 −0.450591 0.892730i \(-0.648787\pi\)
−0.450591 + 0.892730i \(0.648787\pi\)
\(954\) 0 0
\(955\) −3.33039e7 −1.18165
\(956\) 0 0
\(957\) 2.35056e7i 0.829643i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.41603e7 −0.843904
\(962\) 0 0
\(963\) − 1.18688e6i − 0.0412421i
\(964\) 0 0
\(965\) − 4.28262e7i − 1.48044i
\(966\) 0 0
\(967\) − 2.20016e6i − 0.0756636i −0.999284 0.0378318i \(-0.987955\pi\)
0.999284 0.0378318i \(-0.0120451\pi\)
\(968\) 0 0
\(969\) 7.93808e6i 0.271585i
\(970\) 0 0
\(971\) −4.05329e7 −1.37962 −0.689810 0.723991i \(-0.742306\pi\)
−0.689810 + 0.723991i \(0.742306\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) − 2.81810e6i − 0.0949392i
\(976\) 0 0
\(977\) −2.72584e7 −0.913617 −0.456808 0.889565i \(-0.651008\pi\)
−0.456808 + 0.889565i \(0.651008\pi\)
\(978\) 0 0
\(979\) −5.21753e6 −0.173983
\(980\) 0 0
\(981\) −2.04492e6 −0.0678428
\(982\) 0 0
\(983\) −2.06387e7 −0.681236 −0.340618 0.940202i \(-0.610636\pi\)
−0.340618 + 0.940202i \(0.610636\pi\)
\(984\) 0 0
\(985\) − 1.49631e7i − 0.491394i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.80426e7 0.586555
\(990\) 0 0
\(991\) 1.59478e7i 0.515841i 0.966166 + 0.257920i \(0.0830372\pi\)
−0.966166 + 0.257920i \(0.916963\pi\)
\(992\) 0 0
\(993\) 5.99564e7i 1.92958i
\(994\) 0 0
\(995\) − 4.01644e7i − 1.28613i
\(996\) 0 0
\(997\) − 4.70254e7i − 1.49829i −0.662408 0.749143i \(-0.730466\pi\)
0.662408 0.749143i \(-0.269534\pi\)
\(998\) 0 0
\(999\) −3.12486e7 −0.990641
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.f.e.783.6 yes 16
4.3 odd 2 inner 784.6.f.e.783.12 yes 16
7.6 odd 2 inner 784.6.f.e.783.11 yes 16
28.27 even 2 inner 784.6.f.e.783.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
784.6.f.e.783.5 16 28.27 even 2 inner
784.6.f.e.783.6 yes 16 1.1 even 1 trivial
784.6.f.e.783.11 yes 16 7.6 odd 2 inner
784.6.f.e.783.12 yes 16 4.3 odd 2 inner